
A Hierarchical Architectural Framework for Reconfigurable Logic
Computing

Peng Li*, Angshuman Parashar†, Michael Pellauer†, Tao Wang*, and Joel Emer†‡

* Peking University † Intel Corporation ‡Massachusetts Institute of Technology

{peng.li, wangtao}@pku.edu.cn {angshuman.parashar, michael.i.pellauer, joel.emer}@intel.com

Abstract
Recently there has been growing interest in using Recon-
figurable Logic (RL) for computation because of the sig-
nificant performance gains that they can provide over
traditional architectures on many classes of workloads.
While there is a rich body of prior work proposing a va-
riety of reconfigurable systems, we believe there hasn’t
been an attempt to clearly identify the architectural tra-
deoff spaces for an RL compute engine and to clearly
separate architectural choices from implementation ones.

In this paper, we propose a taxonomy of architectural
choices for RL computing. The taxonomy covers a mul-
ti-dimensional tradeoff space involving choices on opera-
tions, data types, states, sequencing, and communication
primitives, and provides architects with a systematic
framework for making decisions on these choices. We
highlight the implementation and programmability con-
sequences of such decisions, and wherever appropriate,
punctuate the descriptions with examples of prior work
that have made specific choices. Finally, we demonstrate
how our proposed taxonomy is general enough to be hie-
rarchically composed into a multi-level framework cap-
turing the architectural design space of complex systems
based on RL, such as heterogeneous systems comprising
of traditional CPUs augmented with RL engines.

1. Introduction
The evolution of computer architecture in the past decade
witnessed the saturation of single-thread performance
scaling and the rapid rise of multi-core processors in an
attempt to make use of the exponentially increasing tran-
sistors afforded by Moore’s Law. Unfortunately, not all
applications scale easily with increasing core counts.
Consequently, some vendors have started integrating
custom fixed-function logic blocks next to gener-
al-purpose processors to accelerate specific algorithms.
Though accelerators could be designed with some limited
flexibility in mind, their extensibility is still limited to
what hardware designers envisioned at design time. This
limits such architectures’ agility in responding to emerg-
ing workloads. More importantly, architectures designed
around arrays of fixed-function accelerators do not en-
courage programmer innovation to the extent that gener-
al-purpose processors have done in the past few decades
of computing.

 There is a middle ground between general purpose
processors and full custom ASICs, namely, Reconfigura-
ble Logic (RL) architectures such as FPGAs. RL archi-
tectures are composed of logic circuits that can be confi-
gured in the field to perform a variety of logic functions.
While RL architectures are inherently less area and power
efficient than fixed-function logic, they possess certain
unique traits that allow them to efficiently execute a
number of applications that are not amenable to mul-
ti-threading or vectorization. These traits include the abil-
ity to support workloads exhibiting immense fine-grained
but irregular parallelism, the ability to perform custom
bit-level manipulations, abundant configurable local sto-
rage structures and high-bandwidth on-chip networks to
transfer data locally between pipeline stages at a fine
granularity. Several applications have been shown to
achieve tremendous speedups over CPU execution when
ported to Reconfigurable Logic fabrics [1-3].
 RL, particularly FPGAs, have traditionally been used
either for prototyping ASICs or for replacing ASICs in
low-volume deployments. An FPGA’s LUT-based archi-
tecture allows for extremely fine-grained bit-level opera-
tions, which is useful for logic replacement. However,
LUTs are often inefficient for expressing datapaths for
algorithmic computation which usually involve coars-
er-granularity data operations. Coarser-grain RL archi-
tectures such as MATRIX[4] and PipeRench[5] have been
proposed to address these inefficiencies.
 These are just a few examples in a rich body of litera-
ture on reconfigurable architectures. In defining each of
these architectures, designers would have made decisions
on a variety of architectural, microarchitectural and im-
plementation choices. We believe there hasn’t been an
effort to systematically identify the architectural tradeoff
spaces within which such decisions can be made, with a
clear emphasis on separating architectural choices from
microarchitectural or implementation ones. Examples of
architectural choices for an RL engine include defining the
state elements and operations supported by atomic
processing blocks (PBs) in the RL fabric, the control
model used to sequence operations within each PB and
the inter-PB communication semantics.

In this paper, we attempt to establish a systematic
architectural framework within which these choices can be
made. The framework is in the form of a taxonomy of
Reconfigurable Logic architectures, which we use to
identify the tradeoff spaces, enumerate the architectural
choices therein, and discuss the implications of these
choices on programmability and implementation cost.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.252

287

2. Reconfigurable Logic Compute
Architecture

The computation model of Reconfigurable Logic archi-
tecture is quite different from that on a traditional
von-Neumann processor. To appreciate the range of arc-
hitectural choices involved in defining such a computa-
tion model, consider the workload example presented in
Figure 1, a Finite Impulse Response (FIR) filter. At-
tempting to construct an RL architecture that can effi-
ciently execute this workload reveals a number of choic-
es.
 The first architectural choice is whether a PB contains
internal state to store constant parameters (W in the ex-
ample) or intermediate results.
 The second choice involves the manner in which a PB
gets its input data (X in this example) – does it have au-
tonomous access to the system memory, or does an ex-
ternal agent (e.g. a CPU core) feed the required data to the
PB?
 The third choice involves the sequencing of different
operations mapped onto a PB. If the four multiplications in
this example are mapped onto a single PB, should each
multiplication start based on a program counter in the PB,
or a finite-state machine based on the arrival of data?
 The fourth architectural choice is the semantics of the
interconnection network used by different PBs to com-
municate with each other – What is the interconnection
topology? Do they use channels or shared buffers to
communicate?
 The choices illustrated using this simple example in
fact reflect fundamental architectural choices that define
an RL architecture, namely, context-availability, memo-
ry-accessibility, sequencing model within a PB and the
communication model between multiple PBs. The set of
alternatives for each of these choices are shown in Figure
2. Defining an RL architecture involves selecting a set of
these options. Each option naturally has implementation
ramifications, as well as performance implications for
workloads mapped onto the architecture. The example RL
architecture shown in Figure 1(c) makes a set of choices
that makes it an effective architecture to map our example

FIR filter workload onto. The fabric has 4 Processing
Blocks (PBs) connected with mesh interconnection is
shown Figure 1(c). Communication between adjacent
PBs in this example RL fabric takes a single cycle, which
is much shorter than communication between multi-cores
which typically takes thousands of cycles. All the load
operations can be mapped onto PB0 since memory opera-
tion is probably to be serialized somewhere. The loaded
data can be passed to PB1 for multiplication with con-
stant W[j] saved in its local storage, and the result is pipe-
lined to PB3 for the accumulation. The store operation of
the final result is mapped onto PB2.
 In the remainder of this section, we explore each of
these architectural choices in detail and discuss tradeoffs
associated with the possible options for each choice.

2.1 Local State
Programmer-visible state is typically pragmatically di-
vided into small and fast local state and large and slow
remote state. Local state is maintained in the set of archi-
tectural registers, and its remote state is the contents of
main memory. It is reasonable to consider whether a PB
contains programmer-visible local state or not. A PB
without local state is simple to build and manage. If the PB
is used for independent computations that do not require
intermediate data to be maintained between executions,
the need for maintaining local state inside the unit is ob-
viated. However, if intermediate data does need to be
transferred across computations (for example, the accu-
mulated sum in an RL-based accumulator), a PB without
local state has to return the intermediate data to an exter-
nal agent (e.g. a CPU core or a global memory location),
which needs to be sent back to the PB as a parameter for
the next computation.
 With support for local state, intermediate data can be
saved inside the PB; this reduces data transfer cost in and
out of the unit. For example, if a PB is being used for
Regular Expression matching, having local state obviates
the need to provide the regular expression for each chunk
of the string being processed. The disadvantage of main-
taining local state is that the state must be preserved
(saved and restored) across context switches.

2.2 Remote State
The majority of persistent state that a software application

Local State
[2.1]

With Internal Con-
text

Without Internal Con-
text

Remote State
[2.2]

With Memory
Access

Without Memory
Access

Control
[2.3]

PC Se-
quencing

FSM Se-
quencing

No Se-
quencing

Communica-
tion
[2.4]

Non-Blockin
g Message

Passing

Blocking
Message
Passing

Static
Scheduling

Clock-based Com-
munication Shared Memory

Figure 1. Typical Workload on an RL Architecture
(b) DFG of FIR

(a) FIR Algorithm

Y[i]=W[0]*X[i]+W[1]*X[i-1]+ W[2]*X[i-2]+W[3]*X[i-3]

(c) Example RL arch

Figure 2. Architecture Taxonomy

288

maintains during its execution resides in main memory. A
reconfigurable PB in the system may or may not be given
the ability to directly access the main memory hierarchy.
Without access to this remote state, input and output data
for operations mapped onto this PB will have to be expli-
citly transferred to and from the unit by an agent such as a
CPU core. This behavior is similar to that of a functional
unit inside a CPU core, which relies on the core’s
load/store modules to access the system memory hierarchy.
Many existing integrated RL systems follow this approach
since it is easy to implement.
 The alternative would be to allow the reconfigurable PB
to access the system memory autonomously. The data
access patterns from the RL could vary from application to
application, which is why it could be beneficial to allow
PBs in RL to handle them autonomously and indepen-
dently of the CPU. Prior research on this issue has pointed
out the importance of providing this capability to an RL[6].
A secondary advantage of memory access is that the ad-
dress calculations can also take advantage of the RL fabric,
and the local storage in the RL fabric can be exploited to
buffer requests from memory independently from a pro-
cessor.

2.3 Control
Internal control within each PB in a reconfigurable archi-
tecture can be achieved using a traditional von-Neumann
model, where a Program Counter (PC) is used to index and
read the instruction store and fetch a sequence of instruc-
tions for execution.
 While this PC-based sequencing model is very general
and effective at expressing single-threaded control, it is
ill-suited to capture the more complex Finite State Ma-
chine (FSM)-like behavior of PBs in a reconfigurable
architecture. In a PC-based architecture, determination of
the next FSM state must be achieved either with a cas-
cading sequence of if-else clauses or an indirect-branching
mechanism – both of which are inefficient in a dynamic
environment with fine-grained messages traversing along
numerous input and output channels. However, the gene-
rality of this control model coupled with the depth of un-
derstanding of the model that architects have accumulated
over decades makes it a viable choice for certain RL ar-
chitectures.

The control model used by Configurable Logic Blocks
(CLBs) on FPGAs stands in stark contrast to the sequential
PC-based model. A CLB typically consists of a small
number of Look-Up Tables (LUTs), registers and a set of
configurable multiplexors (MUXes). Each operation of a
CLB could be defined as the composition of a set of reg-
ister reads, a set of input-wire reads, a set of LUT lookups,
a set of register writes and a set of output-wire writes.
Unlike a von-Neumann CPU, a CLB is first configured
before usage, during which the contents of the LUTs and
the configuration of the MUXes are set. These configura-
tions are not altered during the execution of the algorithm.
The entire CLB can, in a sense, be viewed as executing the
same “operation” all the time, but the parameters of the
operation depend on input data and local state. Thus, the
sequencing model for a CLB is a trivial no-sequencing

model where the same operation executes repeatedly.
It is possible to design medium-grain PBs that alleviate

some of the limitations of the von-Neumann sequencing
model described earlier by drawing inspiration from CLBs.
The key idea is to separate data computation from control
(next state) computation based on the intuition that archi-
tectural structures that are optimal for data transformations
may be distinct from structures that are optimal for control
computation.

Consider a PB with a set of operations stored in an in-
struction memory, but for which the next state is not set by
an instruction but is evaluated using a Finite-State Ma-
chine (FSM) controlled by distinct set of con-
trol-evaluation operations exposed to the programmer by
the architecture. The inputs for these operations are a
subset of the state of the PB – condition registers, ALU
condition codes/flags, bit extractions from data registers,
bits from input wires arriving at the PB, miscellaneous
status bits, etc. The programmer is allowed to express
control computations with an architecturally-defined set of
operations. An example for this FSM-sequencing could be
a switch processor that decides which instruction to ex-
ecute based on a function of a subset of header bits in
incoming data packets. These functions could be eva-
luated using hardware optimized for such computations
instead of using the datapath. This kind of architectural
separation of control and data paths results in far more
efficient PBs than traditional PC-based sequencing.

2.4 Communication and Interconnection
How PBs communicate and coordinate with each other to
execute a complete workload is a major decision in RL
architectures. In this section we cover three main ap-
proaches: clock-based communication, message passing
(blocking or non-blocking), and shared memory.

2.4.1 Clock-based communication
The first approach, used classically by FPGAs, is to use
physical clocks to coordinate communication between PBs.
In this scenario control of all communicating PBs and the
interconnection network between them is coordinated by
clock edges. All PBs use a clock edge as a signal to read
data in, operate on that data, and produce new data out.
Because of this, the maximum clock rate of the entire
system is determined by the rate-limiting step in the
communication graph of the workload. Devices may pro-
vide separate physical clock domains so that the limiting
effect can be minimized.

2.4.2 Message Passing
While clock-based communication is a good choice for

logic replacement of ASIC, direct message passing be-
tween multiple PBs is desirable for RL fabrics used for
computation because of its high efficiency. Synchroniza-
tion between the sender and receiver PBs during message
passing can have multiple choices depending on applica-
tion characteristics and the underlying physical intercon-
nection network.

While interconnection network topology could have
innumerable options, whether it is latency sensitive [7] or

289

not is important for message passing implementation. In a
latency-sensitive network, the latency from any source to
destination is statically deterministic. One example would
be if each PB is only connected with its nearest-neighbor
PBs with fixed latency. In a latency-insensitive network,
PBs can be connected via an on-chip network (OCN) that
directs messages (often divided into packets, and possibly
further into flits). Latency through the network is a func-
tion of the dynamic load on shared network resources. This
dynamic variability means that PBs cannot make syn-
chronous assumptions about the amount of time that data
will take to transfer from producer to consumer. Therefore,
communication cannot be statically scheduled onto a la-
tency-insensitive network at compile time. Instead,
non-blocking or blocking communication mechanism can
be used on latency-insensitive network with dynamic
network delay.

Active-polling and interrupt are the most commonly
used non-blocking communication. Using active-polling,
the sender PB will use dedicated instructions to periodi-
cally check for the availability of the channel (e.g.
through a busy loop) and send the message at earliest
available time slot, while the receiver PB will use also
dedicated instructions to periodically check for the arrival
of the message. The PB FSMs must be given access to the
empty/full state of the network interface FIFOs to detect
when production or consumption is allowed. This can
degrade efficiency for sequential PC-based PBs since
active-polling loops which repeatedly issue instructions to
query FIFO status are power-inefficient.

Another option for non-blocking communication is to
use interrupts. The sender/receiver PB is interrupted from
its current task upon the availability of the channel or a
message. At this point, the PB enters an interrupt service
routine to finish the communication action before return-
ing to its original task. Interrupt-handling usually con-
sumes additional energy to switch back-and-forth be-
tween the main thread and the interrupt service routine.

For frequent communications, a blocking mechanism
can be used, where the sender/receiver PB would be
blocked on the producing/consuming instruction until that
message is actually sent/received. Typically, blocking
communication is used on some latency-insensitive in-
terconnection with FIFOs to buffer the messages. Block-
ing communication can be more energy-efficient for fre-
quent message-passing if the waiting PB avoids expen-
sive stages like instruction fetching and decoding.

The control flows of certain compute-intensive appli-
cations (e.g. some signal processing applications) are
fairly simple. For such applications, a designer can (at
least theoretically) statically schedule and map the appli-
cation onto a latency-sensitive network carefully and effi-
ciently. A well-designed compiler can also statically
schedule, place and route the Control/Data Flow Graph
onto the underlying latency-sensitive interconnection
using sophisticated algorithms[8]. Through static sche-
duling, these compute-intensive applications can be
mapped onto target architectures efficiently with minimal
bubbles, leading to high performance and energy effi-
ciency.

2.4.3 Shared Memory
Although direct message passing is desirable for its
high-performance and low-power, there still might be a
need for shared memory communication between PBs.
The problem is to what extent it is supported. At one ex-
treme, an architecture may only allow a few PBs to access
memory at all. (Perhaps a pipeline is created between
loading PBs, operating PBs, and storing PBs). Less re-
strictive is to statically partition memory regions between
PBs. This allows all PBs to perform memory operations,
but only on disjoint sections suitable for scratchpads. At
the other extreme, if every PB can read and write the
same memory region independently, then some sort of
coherence mechanism is required to remove harmful data
races. As with a cache coherence protocol, this can result
in traffic in an on-chip network similar to the traffic gen-
erated by direct PB-to-PB messaging.

3. Hierarchical Architecture Frame-
work

The set of architectural choices presented in Section 2 can
be composed into a multi-level hierarchical framework
that can be used to define complex RL systems, including
hybrid CPU/RL systems, with a different set of architec-
tural choices at each level. In fact, many existing RL (and
hybrid CPU/RL) architectures can be mapped and studied
using this framework.
 Figure 3(a) shows Tartan[9], an existing hierarchical
RL fabric that we use as an illustrative example. The top
level of the system consists of a CPU core (not shown in
the figure) and a Reconfigurable Fabric (RF). They use
non-blocking communication (both active-polling and
interrupts) and shared memory to communicate with each
other. The RF consists of multiple homogenous Page
Clusters connected by a latency-insensitive dynam-
ic-routed packet-switched on-chip network. Blocking
message passing is used between Page Clusters where
communication is sporadic and unpredictable. A Page
Cluster consists of multiple homogenous Pages connected
by island-style FPGA interconnection while a Page is
made up of multiple Strips connected by a partial crossbar.
A Strip is made up of multiple Processing Elements (PEs,
not shown in the figure). Each PE has its own register file
and ALU configured statically. It can access the memory
directly with very limited bandwidth. Communication
between Pages/Strips/PEs is statically scheduled message
passing with lower low-latency and energy consumption.

Figure 3(b) shows a visualization of the Tartan archi-
tecture using our hierarchical architectural framework.
Figure 3(c) explains the icons we have chosen for the
decisions from Figure 2.

The definition of control for a non-leaf PB in the hie-
rarchy isn’t straightforward. A non-leaf PB will be con-
figured to accelerate a specific task before its execution.
This reconfiguration and execution process is similar to
the instruction fetching and execution in a traditional
processor. Instructions in a non-leaf PB are encoded with
instruction sequences of all child-PBs and are much
longer than typical CPU instructions. The execution time

290

Figure 3. Tartan: An Example for Hierarchical RL Archi-
tecture and its Architecture Description

is also much longer and typically non-deterministic in
advance, somewhat like (very complex) micro-coded
CISC instructions. In Tartan, the entire RF fetches and
executes a new instruction (entire configuration) when
switching to a new application. Another example for se-
quencing a non-leaf PB is Tabula[10], where the whole
reconfigurable array can sequence rapidly between dif-
ferent configurations each cycle.

Using the proposed architecture framework, we visual-
ize 6 other typical reconfigurable systems shown in Fig-
ure 4.

With Internal Context � Without Internal Context �
With Memory Access � Without Memory Access �

PC Sequencing� FSM Sequencing�
No Sequencing� Non-Blocking Message Passing �

Blocking Message Passing� Static Scheduling �
Clock-based Communication � Shared Memory��

�

(a) MIT RAW[11]

(b) TRIPS[12]

(c) MorphoSys[13]

(d) ADRES[14]

(e) PRISC[15]

(f) FAP [16]
�������	
���������������������������������������

��������������������������

(a) Tartan Architecture. Source: [9].

Tartan Chip ��

Reconfigurable Fabric

���
CPU Core ���

Page Cluster ��

Page ��

Stripe ��

PE ���

RAW Chip ��

RAW Tile ��

RAW PB ��� RAW Switch ���

TRIPS Chip ��

TRIPS Proc. ��

Execution Unit ���

MorphoSys Chip ��

Reconfig. Proc. Array�� Main Proc. ���

Reconfig. Cell ���

ADRES Chip ��

Function Unit ��� Reconfig. Cell ���

PRISC Chip ��

Programmable

Function Unit�
Function Unit ���

LUT ���

FAP System ��

FPGA � Host Proc.���

DSP ��� CLB ���

(b) Description for Tartan Architecture using Proposed
Framework

(c) The Meaning of Icons in Architecture Description

291

4. Concluding Remarks
Reconfigurable Logic fabrics show tremendous potential
in serving as compute platforms for a variety of applica-
tions. While there has been a significant amount of prior
research quantitatively establishing the performance po-
tential of RL, this paper attempted to take a first step to-
wards proposing a hierarchical architectural framework
for describing and understanding the multiple dimensions
of architectural decisions that need to be made while de-
signing an effective CPU/RL platform. Our framework
classifies architectures by availability of local and remote
state, PB sequencing, communication schemes between
multiple PBs, and access to shared memory. Furthermore,
these choices are expanded into a tree-based hierarchy
which gives insight into complex hierarchical RL systems.
We believe this insight will aid architects in conveying
their ideas to low-level programmers and compilers for
efficient workload mapping.

References
[1] M. D. Galanis, G. Dimitroulakos, and C. E. Goutis,

"Speedups and Energy Reductions From Mapping
DSP Applications on an Embedded Reconfigurable
System," Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 15, pp. 1362-1366, 2007.

[2] G. Zhang, P. Leong, C. Ho, K. Tsoi, C. Cheung, D.-U.
Lee, R. Cheung, and W. Luk, "Reconfigurable
acceleration for monte carlo based financial
simulation," in IEEE International Conference on
Field-Programmable Technology, 2005, pp. 215-222.

[3] C. Liang and X. Huang, "Mapping Parallel FFT
Algorithm onto SmartCell Coarse-Grained
Reconfigurable Architecture," in Proceedings of the
2009 20th IEEE International Conference on
Application-specific Systems, Architectures and
Processors, 2009, pp. 231-234.

[4] E. Mirsky and A. DeHon, "MATRIX: a reconfigurable
computing architecture with configurable
instruction distribution and deployable resources,"
in Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines, 1996.

[5] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M.
Moe, and R. Taylor, "PipeRench: A Reconfigurable
Architecture and Compiler," IEEE Computer, vol. 33,
pp. 70-77, 2000.

[6] J. Carrillo and P. Chow, "The effect of reconfigurable
units in superscalar processors," in Proceedings of
the International Symposium on Field
Programmable Gate Arrays, 2001, pp. 141-150.

[7] K. E. Fleming, M. Adler, M. Pellauer, A. Parashar, A.
Mithal, and J. Emer, "Leveraging latency-insensitivity
to ease multiple FPGA design," in FPGA '12
Proceedings of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays, pp.
175-184.

[8] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R.

Lauwereins, "Exploiting loop-level parallelism on
coarse-grained reconfigurable architectures using
modulo scheduling," in Design, Automation and Test
in Europe Conference and Exhibition, 2003, pp.
296-301.

[9] M. Mishra, T. J. Callahan, T. Chelcea, G.
Venkataramani, M. Budiu, and S. C. Goldstein,
"Tartan: Evaluating Spatial Computation For Whole
Program Execution," in International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2006, pp. 163-174.

[10] T. R. Halfhil, "Tabula's Time machine Rapidly
Reconfigurable Chips Will Challenge Conventional
FPGAs," Microprocessor Report, 2010.

[11] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W.
Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J.
Babb, S. Amarasinghe, and A. Agarwal, "Baring it all
to Software: Raw Machines," IEEE Computer, pp.
86-93, 1997.

[12] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C. K.
Kim, D. Burger, S. W. Keckler, and C. R. Moore,
"Exploiting ILP, TLP, and DLP Using Polymorphism in
the TRIPS Architecture," in 30th Annual
International Symposium on Computer Architecture
(ISCA), 2003, pp. 422-433.

[13] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N.
Bagherzadeh, and E. M. Chaves Filho, "MorphoSys:
An Integrated Reconfigurable System for
Data-Parallel Computation-Intensive Applications,"
IEEE Transactions on Computers, vol. 2000, pp. 465 -
481, 2000.

[14] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R.
Lauwereins, "ADRES: An Architecture with Tightly
Coupled VLIW Processor and Coarse-Grained
Recon�gurable Matrix," in 13th International
Conference Field Programmable Logic and
Application, 2003, pp. 61-70.

[15] R. Razdan and M. D. Smith, "A high-performance
microarchitecture with hardware programmable
functional units," in Proceedings of the 27th annual
international symposium on Microarchitecture, 1994,
pp. 172 - 180.

[16] L. Liu, N. Oliver, C. Bhushan, Q. Wang, A. Chen,
W.Shen, Z. Yu, A. Sheiman, I.McCallum, J. Grecco, H.
Mitchel, D. Liu, and P. Gupta, "High-performance,
energy-efficient platforms using in-socket fpga
accelerators," in FPGA' 09: Proceeding of the
ACM/SIGDA international symposium on Field
programmable gate arrays, 2009, pp. 261-264.

292

