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Abstract 
Recently there has been growing interest in using Recon-
figurable Logic (RL) for computation because of the sig-
nificant performance gains that they can provide over 
traditional architectures on many classes of workloads. 
While there is a rich body of prior work proposing a va-
riety of reconfigurable systems, we believe there hasn’t 
been an attempt to clearly identify the architectural tra-
deoff spaces for an RL compute engine and to clearly 
separate architectural choices from implementation ones.  
 
In this paper, we propose a taxonomy of architectural 
choices for RL computing. The taxonomy covers a mul-
ti-dimensional tradeoff space involving choices on opera-
tions, data types, states, sequencing, and communication 
primitives, and provides architects with a systematic 
framework for making decisions on these choices. We 
highlight the implementation and programmability con-
sequences of such decisions, and wherever appropriate, 
punctuate the descriptions with examples of prior work 
that have made specific choices. Finally, we demonstrate 
how our proposed taxonomy is general enough to be hie-
rarchically composed into a multi-level framework cap-
turing the architectural design space of complex systems 
based on RL, such as heterogeneous systems comprising 
of traditional CPUs augmented with RL engines. 

 

1. Introduction 
The evolution of computer architecture in the past decade 
witnessed the saturation of single-thread performance 
scaling and the rapid rise of multi-core processors in an 
attempt to make use of the exponentially increasing tran-
sistors afforded by Moore’s Law. Unfortunately, not all 
applications scale easily with increasing core counts. 
Consequently, some vendors have started integrating 
custom fixed-function logic blocks next to gener-
al-purpose processors to accelerate specific algorithms. 
Though accelerators could be designed with some limited 
flexibility in mind, their extensibility is still limited to 
what hardware designers envisioned at design time. This 
limits such architectures’ agility in responding to emerg-
ing workloads. More importantly, architectures designed 
around arrays of fixed-function accelerators do not en-
courage programmer innovation to the extent that gener-
al-purpose processors have done in the past few decades 
of computing. 

  There is a middle ground between general purpose 
processors and full custom ASICs, namely, Reconfigura-
ble Logic (RL) architectures such as FPGAs. RL archi-
tectures are composed of logic circuits that can be confi-
gured in the field to perform a variety of logic functions. 
While RL architectures are inherently less area and power 
efficient than fixed-function logic, they possess certain 
unique traits that allow them to efficiently execute a 
number of applications that are not amenable to mul-
ti-threading or vectorization. These traits include the abil-
ity to support workloads exhibiting immense fine-grained 
but irregular parallelism, the ability to perform custom 
bit-level manipulations, abundant configurable local sto-
rage structures and high-bandwidth on-chip networks to 
transfer data locally between pipeline stages at a fine 
granularity. Several applications have been shown to 
achieve tremendous speedups over CPU execution when 
ported to Reconfigurable Logic fabrics [1-3]. 
  RL, particularly FPGAs, have traditionally been used 
either for prototyping ASICs or for replacing ASICs in 
low-volume deployments. An FPGA’s LUT-based archi-
tecture allows for extremely fine-grained bit-level opera-
tions, which is useful for logic replacement. However, 
LUTs are often inefficient for expressing datapaths for 
algorithmic computation which usually involve coars-
er-granularity data operations. Coarser-grain RL archi-
tectures such as MATRIX[4] and PipeRench[5] have been 
proposed to address these inefficiencies.  
  These are just a few examples in a rich body of litera-
ture on reconfigurable architectures. In defining each of 
these architectures, designers would have made decisions 
on a variety of architectural, microarchitectural and im-
plementation choices. We believe there hasn’t been an 
effort to systematically identify the architectural tradeoff 
spaces within which such decisions can be made, with a 
clear emphasis on separating architectural choices from 
microarchitectural or implementation ones. Examples of 
architectural choices for an RL engine include defining the 
state elements and operations supported by atomic 
processing blocks (PBs) in the RL fabric, the control 
model used to sequence operations within each PB and 
the inter-PB communication semantics.  

In this paper, we attempt to establish a systematic 
architectural framework within which these choices can be 
made. The framework is in the form of a taxonomy of 
Reconfigurable Logic architectures, which we use to 
identify the tradeoff spaces, enumerate the architectural 
choices therein, and discuss the implications of these 
choices on programmability and implementation cost. 
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2. Reconfigurable Logic Compute 
Architecture 

The computation model of Reconfigurable Logic archi-
tecture is quite different from that on a traditional 
von-Neumann processor. To appreciate the range of arc-
hitectural choices involved in defining such a computa-
tion model, consider the workload example presented in 
Figure 1, a Finite Impulse Response (FIR) filter. At-
tempting to construct an RL architecture that can effi-
ciently execute this workload reveals a number of choic-
es. 
  The first architectural choice is whether a PB contains 
internal state to store constant parameters (W in the ex-
ample) or intermediate results. 
  The second choice involves the manner in which a PB 
gets its input data (X in this example) – does it have au-
tonomous access to the system memory, or does an ex-
ternal agent (e.g. a CPU core) feed the required data to the 
PB? 
  The third choice involves the sequencing of different 
operations mapped onto a PB. If the four multiplications in 
this example are mapped onto a single PB, should each 
multiplication start based on a program counter in the PB, 
or a finite-state machine based on the arrival of data? 
  The fourth architectural choice is the semantics of the 
interconnection network used by different PBs to com-
municate with each other – What is the interconnection 
topology? Do they use channels or shared buffers to 
communicate? 
  The choices illustrated using this simple example in 
fact reflect fundamental architectural choices that define 
an RL architecture, namely, context-availability, memo-
ry-accessibility, sequencing model within a PB and the 
communication model between multiple PBs. The set of 
alternatives for each of these choices are shown in Figure 
2. Defining an RL architecture involves selecting a set of 
these options. Each option naturally has implementation 
ramifications, as well as performance implications for 
workloads mapped onto the architecture. The example RL 
architecture shown in Figure 1(c) makes a set of choices 
that makes it an effective architecture to map our example 

FIR filter workload onto. The fabric has 4 Processing 
Blocks (PBs) connected with mesh interconnection is 
shown Figure 1(c). Communication between adjacent 
PBs in this example RL fabric takes a single cycle, which 
is much shorter than communication between multi-cores 
which typically takes thousands of cycles. All the load 
operations can be mapped onto PB0 since memory opera-
tion is probably to be serialized somewhere. The loaded 
data can be passed to PB1 for multiplication with con-
stant W[j] saved in its local storage, and the result is pipe-
lined to PB3 for the accumulation. The store operation of 
the final result is mapped onto PB2. 
  In the remainder of this section, we explore each of 
these architectural choices in detail and discuss tradeoffs 
associated with the possible options for each choice. 

2.1 Local State 
Programmer-visible state is typically pragmatically di-
vided into small and fast local state and large and slow 
remote state. Local state is maintained in the set of archi-
tectural registers, and its remote state is the contents of 
main memory. It is reasonable to consider whether a PB 
contains programmer-visible local state or not. A PB 
without local state is simple to build and manage. If the PB 
is used for independent computations that do not require 
intermediate data to be maintained between executions, 
the need for maintaining local state inside the unit is ob-
viated. However, if intermediate data does need to be 
transferred across computations (for example, the accu-
mulated sum in an RL-based accumulator), a PB without 
local state has to return the intermediate data to an exter-
nal agent (e.g. a CPU core or a global memory location), 
which needs to be sent back to the PB as a parameter for 
the next computation. 
  With support for local state, intermediate data can be 
saved inside the PB; this reduces data transfer cost in and 
out of the unit. For example, if a PB is being used for 
Regular Expression matching, having local state obviates 
the need to provide the regular expression for each chunk 
of the string being processed. The disadvantage of main-
taining local state is that the state must be preserved 
(saved and restored) across context switches. 

2.2 Remote State 
The majority of persistent state that a software application 
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maintains during its execution resides in main memory. A 
reconfigurable PB in the system may or may not be given 
the ability to directly access the main memory hierarchy. 
Without access to this remote state, input and output data 
for operations mapped onto this PB will have to be expli-
citly transferred to and from the unit by an agent such as a 
CPU core. This behavior is similar to that of a functional 
unit inside a CPU core, which relies on the core’s 
load/store modules to access the system memory hierarchy. 
Many existing integrated RL systems follow this approach 
since it is easy to implement. 
  The alternative would be to allow the reconfigurable PB 
to access the system memory autonomously. The data 
access patterns from the RL could vary from application to 
application, which is why it could be beneficial to allow 
PBs in RL to handle them autonomously and indepen-
dently of the CPU. Prior research on this issue has pointed 
out the importance of providing this capability to an RL[6]. 
A secondary advantage of memory access is that the ad-
dress calculations can also take advantage of the RL fabric, 
and the local storage in the RL fabric can be exploited to 
buffer requests from memory independently from a pro-
cessor. 

2.3 Control 
Internal control within each PB in a reconfigurable archi-
tecture can be achieved using a traditional von-Neumann 
model, where a Program Counter (PC) is used to index and 
read the instruction store and fetch a sequence of instruc-
tions for execution. 
  While this PC-based sequencing model is very general 
and effective at expressing single-threaded control, it is 
ill-suited to capture the more complex Finite State Ma-
chine (FSM)-like behavior of PBs in a reconfigurable 
architecture. In a PC-based architecture, determination of 
the next FSM state must be achieved either with a cas-
cading sequence of if-else clauses or an indirect-branching 
mechanism – both of which are inefficient in a dynamic 
environment with fine-grained messages traversing along 
numerous input and output channels. However, the gene-
rality of this control model coupled with the depth of un-
derstanding of the model that architects have accumulated 
over decades makes it a viable choice for certain RL ar-
chitectures. 

The control model used by Configurable Logic Blocks 
(CLBs) on FPGAs stands in stark contrast to the sequential 
PC-based model. A CLB typically consists of a small 
number of Look-Up Tables (LUTs), registers and a set of 
configurable multiplexors (MUXes). Each operation of a 
CLB could be defined as the composition of a set of reg-
ister reads, a set of input-wire reads, a set of LUT lookups, 
a set of register writes and a set of output-wire writes. 
Unlike a von-Neumann CPU, a CLB is first configured 
before usage, during which the contents of the LUTs and 
the configuration of the MUXes are set. These configura-
tions are not altered during the execution of the algorithm. 
The entire CLB can, in a sense, be viewed as executing the 
same “operation” all the time, but the parameters of the 
operation depend on input data and local state. Thus, the 
sequencing model for a CLB is a trivial no-sequencing 

model where the same operation executes repeatedly. 
It is possible to design medium-grain PBs that alleviate 

some of the limitations of the von-Neumann sequencing 
model described earlier by drawing inspiration from CLBs. 
The key idea is to separate data computation from control 
(next state) computation based on the intuition that archi-
tectural structures that are optimal for data transformations 
may be distinct from structures that are optimal for control 
computation. 

Consider a PB with a set of operations stored in an in-
struction memory, but for which the next state is not set by 
an instruction but is evaluated using a Finite-State Ma-
chine (FSM) controlled by distinct set of con-
trol-evaluation operations exposed to the programmer by 
the architecture. The inputs for these operations are a 
subset of the state of the PB – condition registers, ALU 
condition codes/flags, bit extractions from data registers, 
bits from input wires arriving at the PB, miscellaneous 
status bits, etc. The programmer is allowed to express 
control computations with an architecturally-defined set of 
operations. An example for this FSM-sequencing could be 
a switch processor that decides which instruction to ex-
ecute based on a function of a subset of header bits in 
incoming data packets. These functions could be eva-
luated using hardware optimized for such computations 
instead of using the datapath. This kind of architectural 
separation of control and data paths results in far more 
efficient PBs than traditional PC-based sequencing. 

2.4 Communication and Interconnection 
How PBs communicate and coordinate with each other to 
execute a complete workload is a major decision in RL 
architectures. In this section we cover three main ap-
proaches: clock-based communication, message passing 
(blocking or non-blocking), and shared memory. 

2.4.1 Clock-based communication 
The first approach, used classically by FPGAs, is to use 
physical clocks to coordinate communication between PBs. 
In this scenario control of all communicating PBs and the 
interconnection network between them is coordinated by 
clock edges. All PBs use a clock edge as a signal to read 
data in, operate on that data, and produce new data out. 
Because of this, the maximum clock rate of the entire 
system is determined by the rate-limiting step in the 
communication graph of the workload. Devices may pro-
vide separate physical clock domains so that the limiting 
effect can be minimized. 

2.4.2 Message Passing 
While clock-based communication is a good choice for 

logic replacement of ASIC, direct message passing be-
tween multiple PBs is desirable for RL fabrics used for 
computation because of its high efficiency. Synchroniza-
tion between the sender and receiver PBs during message 
passing can have multiple choices depending on applica-
tion characteristics and the underlying physical intercon-
nection network. 

While interconnection network topology could have 
innumerable options, whether it is latency sensitive [7] or 
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not is important for message passing implementation. In a 
latency-sensitive network, the latency from any source to 
destination is statically deterministic. One example would 
be if each PB is only connected with its nearest-neighbor 
PBs with fixed latency. In a latency-insensitive network, 
PBs can be connected via an on-chip network (OCN) that 
directs messages (often divided into packets, and possibly 
further into flits). Latency through the network is a func-
tion of the dynamic load on shared network resources. This 
dynamic variability means that PBs cannot make syn-
chronous assumptions about the amount of time that data 
will take to transfer from producer to consumer. Therefore, 
communication cannot be statically scheduled onto a la-
tency-insensitive network at compile time. Instead, 
non-blocking or blocking communication mechanism can 
be used on latency-insensitive network with dynamic 
network delay. 

Active-polling and interrupt are the most commonly 
used non-blocking communication. Using active-polling, 
the sender PB will use dedicated instructions to periodi-
cally check for the availability of the channel (e.g. 
through a busy loop) and send the message at earliest 
available time slot, while the receiver PB will use also 
dedicated instructions to periodically check for the arrival 
of the message. The PB FSMs must be given access to the 
empty/full state of the network interface FIFOs to detect 
when production or consumption is allowed. This can 
degrade efficiency for sequential PC-based PBs since 
active-polling loops which repeatedly issue instructions to 
query FIFO status are power-inefficient. 

Another option for non-blocking communication is to 
use interrupts. The sender/receiver PB is interrupted from 
its current task upon the availability of the channel or a 
message. At this point, the PB enters an interrupt service 
routine to finish the communication action before return-
ing to its original task. Interrupt-handling usually con-
sumes additional energy to switch back-and-forth be-
tween the main thread and the interrupt service routine.  

For frequent communications, a blocking mechanism 
can be used, where the sender/receiver PB would be 
blocked on the producing/consuming instruction until that 
message is actually sent/received.  Typically, blocking 
communication is used on some latency-insensitive in-
terconnection with FIFOs to buffer the messages. Block-
ing communication can be more energy-efficient for fre-
quent message-passing if the waiting PB avoids expen-
sive stages like instruction fetching and decoding. 

The control flows of certain compute-intensive appli-
cations (e.g. some signal processing applications) are 
fairly simple. For such applications, a designer can (at 
least theoretically) statically schedule and map the appli-
cation onto a latency-sensitive network carefully and effi-
ciently. A well-designed compiler can also statically 
schedule, place and route the Control/Data Flow Graph 
onto the underlying latency-sensitive interconnection 
using sophisticated algorithms[8]. Through static sche-
duling, these compute-intensive applications can be 
mapped onto target architectures efficiently with minimal 
bubbles, leading to high performance and energy effi-
ciency. 

2.4.3 Shared Memory 
Although direct message passing is desirable for its 
high-performance and low-power, there still might be a 
need for shared memory communication between PBs. 
The problem is to what extent it is supported. At one ex-
treme, an architecture may only allow a few PBs to access 
memory at all. (Perhaps a pipeline is created between 
loading PBs, operating PBs, and storing PBs). Less re-
strictive is to statically partition memory regions between 
PBs. This allows all PBs to perform memory operations, 
but only on disjoint sections suitable for scratchpads. At 
the other extreme, if every PB can read and write the 
same memory region independently, then some sort of 
coherence mechanism is required to remove harmful data 
races. As with a cache coherence protocol, this can result 
in traffic in an on-chip network similar to the traffic gen-
erated by direct PB-to-PB messaging. 

3. Hierarchical Architecture Frame-
work 

The set of architectural choices presented in Section 2 can 
be composed into a multi-level hierarchical framework 
that can be used to define complex RL systems, including 
hybrid CPU/RL systems, with a different set of architec-
tural choices at each level. In fact, many existing RL (and 
hybrid CPU/RL) architectures can be mapped and studied 
using this framework. 
  Figure 3(a) shows Tartan[9], an existing hierarchical 
RL fabric that we use as an illustrative example. The top 
level of the system consists of a CPU core (not shown in 
the figure) and a Reconfigurable Fabric (RF). They use 
non-blocking communication (both active-polling and 
interrupts) and shared memory to communicate with each 
other. The RF consists of multiple homogenous Page 
Clusters connected by a latency-insensitive dynam-
ic-routed packet-switched on-chip network. Blocking 
message passing is used between Page Clusters where 
communication is sporadic and unpredictable. A Page 
Cluster consists of multiple homogenous Pages connected 
by island-style FPGA interconnection while a Page is 
made up of multiple Strips connected by a partial crossbar. 
A Strip is made up of multiple Processing Elements (PEs, 
not shown in the figure). Each PE has its own register file 
and ALU configured statically. It can access the memory 
directly with very limited bandwidth. Communication 
between Pages/Strips/PEs is statically scheduled message 
passing with lower low-latency and energy consumption. 

Figure 3(b) shows a visualization of the Tartan archi-
tecture using our hierarchical architectural framework. 
Figure 3(c) explains the icons we have chosen for the 
decisions from Figure 2. 

The definition of control for a non-leaf PB in the hie-
rarchy isn’t straightforward. A non-leaf PB will be con-
figured to accelerate a specific task before its execution. 
This reconfiguration and execution process is similar to 
the instruction fetching and execution in a traditional 
processor. Instructions in a non-leaf PB are encoded with 
instruction sequences of all child-PBs and are much 
longer than typical CPU instructions. The execution time 
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Figure 3. Tartan: An Example for Hierarchical RL Archi-
tecture and its Architecture Description 

is also much longer and typically non-deterministic in 
advance, somewhat like (very complex) micro-coded 
CISC instructions. In Tartan, the entire RF fetches and 
executes a new instruction (entire configuration) when 
switching to a new application. Another example for se-
quencing a non-leaf PB is Tabula[10], where the whole 
reconfigurable array can sequence rapidly between dif-
ferent configurations each cycle.  

Using the proposed architecture framework, we visual-
ize 6 other typical reconfigurable systems shown in Fig-
ure 4. 
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4. Concluding Remarks 
Reconfigurable Logic fabrics show tremendous potential 
in serving as compute platforms for a variety of applica-
tions. While there has been a significant amount of prior 
research quantitatively establishing the performance po-
tential of RL, this paper attempted to take a first step to-
wards proposing a hierarchical architectural framework 
for describing and understanding the multiple dimensions 
of architectural decisions that need to be made while de-
signing an effective CPU/RL platform. Our framework 
classifies architectures by availability of local and remote 
state, PB sequencing, communication schemes between 
multiple PBs, and access to shared memory. Furthermore, 
these choices are expanded into a tree-based hierarchy 
which gives insight into complex hierarchical RL systems. 
We believe this insight will aid architects in conveying 
their ideas to low-level programmers and compilers for 
efficient workload mapping. 
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