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Abstract
Recently, the Intel Xeon Phi coprocessor has received in-
creasing attention in high performance computing due to its
simple programming model and highly parallel architecture.
In this paper, we implement sparse matrix vector multiplica-
tion (SpMV) for scale-free matrices on the Xeon Phi archi-
tecture and optimize its performance. Scale-free sparse ma-
trices are widely used in various application domains, such
as in the study of social networks, gene networks and web
graphs. We propose a novel SpMV format called vector-
ized hybrid COO+CSR (VHCC). Our SpMV implementa-
tion employs 2D jagged partitioning, tiling and vectorized
prefix sum computations to improve hardware resource uti-
lization, and thus overall performance. As the achieved per-
formance depends on the number of vertical panels, we also
develop a performance tuning method to guide its selection.
Experimental results demonstrate that our SpMV implemen-
tation achieves an average 3⇥ speedup over Intel MKL for a
wide range of scale-free matrices.

1. Introduction
Sparse matrix-vector multiplication (SpMV) is a critical ker-
nel that finds applications in many high performance com-
puting (HPC) domains including structural mechanics, fluid
dynamics, social network analysis and data mining. Many
algorithms use SpMV iteratively for their computation. For
example, the conjugate gradient method [16] uses SpMV to
solve a system of linear equations, whereas the PageRank
algorithm [14] uses SpMV to determine the ranks of web
pages. SpMV computation is a performance bottleneck for
many of these algorithms [10, 20, 21]. However, efficient
implementation of the SpMV kernel remains a challenging
task due to its irregular memory access behavior.

In this paper, we focus on optimizing SpMV for scale-
free sparse matrices for the Xeon Phi architecture. Scale-free
sparse matrices arise in many practical applications, such as
in the study of web links, social networks and transportation
networks [2]. Unlike sparse matrices from engineering ap-
plications, which are more regular in nature (i.e. the number

of non-zeros in each row is similar), a sparse matrix that ex-
hibits scale-free properties is highly irregular. It has many
rows with very few non-zeros but has only a few rows with a
large number of non-zeros. As such, SpMV computation on
such matrices is particularly challenging due to the highly ir-
regular distribution of non-zeros. Many existing implemen-
tations such as Intel MKL perform well for regular matrices,
but are inefficient for scale-free sparse matrices. Previous
works have also studied partitioning algorithms for scale-
free SpMV computation on distributed memory comput-
ers [6, 13]. However, such partitioning schemes are expen-
sive and do not scale well for applications that require on-
line analysis, e.g. dynamically changing web graphs. More
importantly, these implementations are not designed for the
Intel Xeon Phi architecture.

In this work, we present an efficient scale-free SpMV
implementation named VHCC for Intel Xeon Phi. VHCC
makes use of a vector format that is designed for efficient
vector processing and load balancing. Furthermore, we em-
ploy a 2D jagged partitioning method together with tiling
in order to improve the cache locality and reduce the over-
head of expensive gather and scatter operations. We also
employ efficient prefix sum computations using SIMD and
masked operations that are specially supported by the Xeon
Phi hardware. The optimal panel number in the 2D jagged
partitioning method varies for different matrices due to their
differences in non-zero distribution. Therefore, we develop a
performance tuning technique to guide its selection. Exper-
iments indicate that our SpMV implementation achieves an
average 3⇥ speedup over Intel MKL for scale-free matrices,
and the performance tuning method achieves within 10% of
the optimal configuration.

The remainder of the paper is organized as follows. In
Section 2, we present background details on Intel Xeon Phi
and scale-free sparse matrices. We also discuss the bottle-
necks that these matrices face during SpMV computation.
Section 3 presents our implementation for computing scale-
free SpMV on Xeon Phi, as well as our proposed perfor-
mance tuning method. Experiment results are then presented
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in Section 4. Section 5 discusses prior research which is re-
lated to ours, and Section 6 concludes the paper.

2. Background and Motivation
2.1 The Intel Xeon Phi Coprocessor
The Intel Xeon Phi coprocessor is based on the Intel Many
Integrated Core (MIC) Architecture. In this paper, we use
the Xeon Phi 5110P coprocessor which integrates 60 cores
on the same package, each running at 1.05GHz. Up to 4
hardware threads per core are supported, and a maximum
limit of 240 threads can be scheduled on the coprocessor.
The MIMD (Multiple Instructions, Multiple Data) execution
model allows different workloads to be assigned to differ-
ent threads. The amount of off-chip memory that is available
on the coprocessor is 8GB. There are 8 memory controllers
which support 16 GDDR5 channels, and altogether they op-
erate at a peak theoretical bandwidth of 320GB/s. Every core
in the processor contains a local 64KB L1 cache, equally di-
vided between the instruction and data caches, and a 512KB
L2 unified cache. All the 512KB L2 caches on the 60 cores
are fully coherent via the tag directories, and are intercon-
nected by a 512-bit wide bidirectional ring bus. When an L2
cache miss occurs on a core, requests will be forwarded to
other cores via the ring network. L2 cache miss penalty is
on the order of hundreds of cycles, thus optimizing the data
locality for L2 cache is important for Xeon Phi.

One of the major features of Xeon Phi is the wide 512-
bit vector processing unit (VPU) present on each of the
cores, effectively doubling the 256-bit vector width of the
latest Intel Xeon CPUs. In addition, new SIMD (Single In-
struction, Multiple Data) instructions including scatter and
gather, swizzle, maskable operations, and fused multiply-
add (FMA) operations are supported. To achieve high per-
formance on Xeon Phi, it is crucial to utilize the VPUs ef-
fectively. The Xeon Phi is capable of yielding peak double
precision performance of ⇠1TFlops. Compared to alterna-
tive coprocessor architectures such as that of GPUs, Xeon
Phi features low cost atomic operations that can be used for
efficient parallel algorithm implementations.

2.2 Scale-Free Sparse Matrices
The occurrence of sparse matrices or equivalently, networks
exhibiting scale-free nature in practical settings, is attributed
to a self-organizing behavior called preferential attachment
which has attracted a lot of studies [2]. Figure 1 shows the
differences between regular and scale-free matrices in terms
of the distribution of the non-zeros per row of a matrix. The
plots are logarithmic in both axes; the horizontal axis de-
notes the number of non-zeros per row and the vertical axis
denotes the number of rows having that specified number of
non-zeros. Figure 1a demonstrates a matrix from the engi-
neering sciences (e.g. constructed using FEM). Such matri-
ces tend to have multi-modal distributions and their struc-
tures are more regular in nature. We will call these matri-

(a) FEM/cantilever (b) Stanford

(c) mouse gene (d) R-MAT(18, 16)

Figure 1: Comparison of regular and irregular (scale-free)
matrices. x-axis: non-zeros per row, y-axis: frequency.

ces “regular matrices”. In contrast, matrices such as those
derived from web graphs (see Fig. 1b) and networks (see
Fig. 1c) tend to exhibit scale-free properties. These matrices
are termed “irregular matrices” or “scale-free matrices”. As
a comparison, Fig. 1d shows the distribution of the non-zeros
per row of a scale-free sparse matrix generated from a Kro-
necker graph model [7]. In this recursively defined model,
two key parameters, s and e, define a scale-free R-MAT(s,
e) matrix. For a given s and e, a square matrix with dimen-
sions 2s ⇥ 2s and an average number of non-zeros per row
(e) is obtained. One can easily see that Fig. 1b and Fig. 1c
look very similar to Fig. 1d, whereas there is no resemblance
at all between the regular matrix in Fig. 1a and the R-MAT
in Fig. 1d.

2.3 Performance Bottlenecks of Intel MKL’s SpMV
The coordinate (COO) and compressed sparse row (CSR)
are two commonly used SpMV formats that are provided by
Intel MKL [1]. COO stores both the row and column indices
of all the non-zeros. On the other hand, CSR does not store
the row indices; instead, it stores a pointer to the start of
each row. Because of this, CSR uses less memory bandwidth
and thus performs better than COO. In this paper, we will
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Figure 2: Performance of MKL CSR SpMV for regular and
scale-free matrices.
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profiling
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Figure 3: Performance of MKL: (a) CPI (b) vectorization intensity (c) estimated latency impact (d) L1 cache hit rate.

use Intel MKL’s CSR format (denoted as MKL) for all our
performance comparisons.

Figure 2 compares the performance of MKL for both
regular and the scale-free matrices. As we can see, MKL
works well for regular matrices, but not for most of the scale-
free matrices. Specifically, MKL achieved 11.3 Gflops on
average for regular matrices but only 2.6 Gflops for scale-
free matrices. MKL performed better for the last two scale-
free matrices compared with the other scale-free matrices.
The reason is because these two matrices are denser than
the other scale-free sparse matrices. In spite of this, we will
show later that a higher performance can be achieved for
these two matrices using our VHCC implementation.

We use the Intel VTune profiler [11] to analyze the per-
formance bottlenecks of the MKL implementation in details.
We first collect the average clocks per instruction (CPI) for
each of the matrices as shown in Fig. 3a. The ideal CPI
is 4 [11]. However, the achieved average CPI of MKL for
scale-free matrices is about 13, indicating that MKL is inef-
ficient for scale-free matrices, and that there exists a large
room for improvement. To achieve high performance on
Xeon Phi, it is also crucial to use the VPU effectively [11].
We examine the vector utilization efficiency of MKL in
Fig. 3b. The vectorization intensity metric is defined as the
average number of active elements per VPU instruction ex-
ecuted. The maximum value for vectorization intensity is 8
for double-precision elements. However, the average vector-
ization intensity achieved by MKL for scale-free matrices is
only about 3.4, which is less than half of the ideal value.

Furthermore, because SpMV is inherently memory bound,
its overall performance critically depends on the perfor-
mance of the memory hierarchy. Therefore, we also inves-
tigate the average latency of memory accesses. The pro-
filer does not give the average latency per memory access
directly, but provides the estimated latency impact (ELI)
metric. ELI provides a rough estimate of the average miss
penalty (in cycles) per L1 cache miss [11], and can be used to
gauge L2 cache performance. Figure 3c shows that for most
matrices, the ELI is much higher than the ideal value (145)
recommended by Intel. This indicates that the L2 cache hit
ratio is low, resulting in long delays to fetch data from main
memory instead of from cache. Similarly, in Fig. 3d, we ob-

serve that the L1 cache hit rates are generally lower than
the ideal value. In summary, MKL suffers from low vector-
ization intensity and poor cache performance for scale-free
matrices. In the next section, we will describe an implemen-
tation that remedies these problems.

3. SpMV Implementation
We provide details of our scale-free SpMV implementation
(y = y+A·x) on Intel Xeon Phi. We first devise a new vector
format by grouping non-zeros in a sparse matrix into vectors
of 8 elements. This enables efficient vector processing and
load balancing. Then, we use 2D jagged partitioning and
tiling to improve cache locality. We also employ an efficient
prefix sum operation for computation and implement it using
SIMD instructions. Finally, we develop a performance auto-
tuning method to guide the selection of panel number.

3.1 Vector Format, 2D Jagged Partitioning and Tiling
The vector processing unit (VPU) is a key architectural fea-
ture of the Intel Xeon Phi coprocessor. To effectively utilize
this resource, we devise a vector format, VHCC (Vector-
ized Hybrid COO+CSR), which groups non-zeros together
so that the VPU can be efficiently used. As we will see in
the experiments later, this improves vectorization intensity
by reducing the empty slots in a vector operation. As shown
in Fig. 4a, VHCC first arranges the non-zeros contiguously
and then equally divides them among a number of vertical
panels. The non-zeros in each vertical panel are then further
partitioned equally into a number of blocks that are layout
vertically in that panel. This 2D jagged partitioning scheme
effectively partitions a sparse matrix into jagged blocks so
that the number of non-zeros in each block is the same. We
then map each thread in the coprocessor to one block. The
non-zero elements in each block are further grouped into
vectors of 8 elements. Each element contains a tuple with
two data – the double-precision floating-point value of the
non-zero, and the column index of the non-zero. We also use
a vec ptr array to keep track of the vectors that contain ele-
ments across multiple rows, and a row idx array to store the
corresponding row indices in order to identify the correct
position in the output array to write to. The vector format
of VHCC combines the benefits of both COO and CSR for-
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Figure 4: 2D jagged partitioning and the vector format.

mats. On one hand, being similar to COO allows us to par-
tition the workload equally among the threads. On the other
hand, being similar to CSR allows us to save storage space
as most row indices need not be stored.

The 2D jagged partitioning scheme used by VHCC serves
two purposes. First, it ensures a balanced workload by divid-
ing the non-zeros equally among all the threads. Secondly,
it helps to improve L2 cache hit rates. A low L2 cache hit
ratio will pose a serious challenge for SpMV, and this is es-
pecially true for scale-free sparse matrices. The L2 cache
miss penalty on Xeon Phi is high as it involves a sequence
of requests to the tag directories and memory controllers. It
has been shown that the L2 cache miss penalty on Xeon Phi
can be an order of magnitude larger than that of multicore
CPUs [12]. Therefore, the vertical panels are designed to
improve the temporal locality for the x vector as each panel
requires an adjacent block of rows in the input vector. This
helps to reduce the possibility that elements in x are evicted
from the cache by conflicting accesses when they are visited
again. The blocks within each panel, on the other hand, help
to improve the cache locality of the output y vector.

Apart from 2D jagged partitioning, within each block, we
also perform tiling in order to improve the L1 cache locality.
Tiling is depicted in Fig. 4a by the gray r by c tile. The
optimal tile size corresponds to the L1 data cache size of
32KB. Through empirical evaluation, we picked the optimal
sizes for r and c (see Section 4.1.1). Altogether, both 2D
jagged partitioning and tiling balance the cost of gathering
from x and the cost of scattering to y.

3.2 SIMD Segmented Prefix Sum
Our VHCC entails tightly packing the non-zero values into
vectors so that they can be efficiently operated on by the
vector processing units. Because of the fact that the packed
non-zero values may cross row boundaries (i.e. when groups
of values are from different rows), we have implemented
a SIMD segmented prefix sum operation using Intel In-

trinsics [11] to calculate the values that are to be written
out to the y vector. Figure 4b shows the basic structure of
the segmented prefix sum that is used in our SpMV ker-
nel. This operation can be implemented with 3 vector addi-
tions. The efficiency of this implementation is made possible
by the enhanced SIMD capabilities supported on Xeon Phi,
such as the swizzle ( mm512 swizzle pd) and masked add
( mm512 mask add pd) operations.

To allow this operation to support computing prefix sums
for groups of elements, 3 masks have to be precomputed to
disable adders so that elements belonging to different rows
are not summed together. As an illustration, consider a vec-
tor v where each of its element v0 to v7 contains the product
of the values from the matrix and the input vector. Further-
more, assume that the vector contains elements that are from
different rows and are grouped into three groups (v0, v1, v2),
(v3, v4), (v5, v6, v7), and each group corresponds to ele-
ments from different rows. Figure 4c shows the final struc-
ture that is used to calculate the prefix sum in this example.
The purpose of the three precomputed masks, mask1, mask2
and mask3 is to turn off the appropriate adders associated
with each mask as shown in Fig. 4c. Note that four adders
are associated with each mask. mask1 would be set to the
binary value 10101010 if all adders were turned on. Given
the grouping in the example above, the three precomputed
masks would have the binary values 10000010, 11000100,
and 00010000, respectively. The result of the segmented pre-
fix sum is [(v0, v0 + v1, v0 + v1 + v2), (v3, v3 + v4), (v5,
v5 + v6, v5 + v6 + v7)]. End-of-row values such as the third
element v0+v1+v2 are then written out to the output vector.

3.3 Putting It All Together
Algorithm 1 presents the detailed implementation of our
SpMV kernel. Each thread on Xeon Phi performs compu-
tation for a range of vectors specified from startvec to end-
vec. The double-precision values (val vec), column indices
(col vec), and input (x vec) are read from the arrays val arr,
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Algorithm 1 VHCC kernel (y = Ax+ y) for Xeon Phi.
1: v  startvec

2: (pidx, ridx, vidx) load initial values for thread i

3: last row  load value for thread i

4: overflow row  load value for thread i

5: set tmp y to array for current panel of thread i

6: while v < endvec do
7: col vec load(&col idx[vidx])
8: val vec load(&val arr[vidx])
9: x vec gather(&x[0], col vec)

10: res vec res vec+ val vec⇥ x vec

11: if v = vec ptr[pidx] then
12: mask1,2,3,4 load(&mask arr[ridx⇥ 4])
13: res vec prefix sum(res vec, masks1,2,3)
14: row vec load(&row idx[ridx])
15: scatter(&tmp y[0], res vec, row vec)
16: pidx pidx+ 1
17: ridx ridx+ popcnt(mask4)
18: else
19: res vec[0] reduce add(res vec)
20: end if
21: v  v + 1
22: vidx vidx+ 8
23: end while
24: barrier wait()
25: atomic{tmp y[last row] tmp y[last row]+

tmp y[overflow row]}
26: sum tmp y arrays from all panels

col idx and x respectively (lines 7-9). These are then used
to compute the res vec vector. When a vector contains ele-
ments that cross rows, the first branch is taken (lines 12-17)
and the segmented prefix sum is computed (line 13). Other-
wise, a sum reduction operation (line 19), equivalent to hav-
ing all adders turned on, is used to sum up all the elements in
the vector, and the result is placed in the first element of the
result vector for the next iteration of computation. The last
mask, mask4, is used to indicate which elements in the vec-
tor are the last elements of a row. The operation popcnt can
then be used to count the number of elements in mask4 and
is used to advance the ridx pointer accordingly (line 17).
The counters v and vidx are then updated for the next itera-
tion.

As mentioned earlier, the row idx array stores the row in-
dices of the corresponding result to be written to output ar-
ray. Recall that each thread processes a horizontal block that
is jagged. Hence, there may exist rows that are shared by ad-
jacent threads. The tmp y array contains additional slots that
are used locally by each thread to store the intermediate sum
for the last row in each block. This intermediate sum is then
atomically added to the corresponding element (last row) in
the output array after a barrier operation (lines 24-25).

3.4 Auto-Tuning for the Number of Panels
For a m ⇥ n scale-free matrix, the number of panels in the
2D jagged partitioning technique affects the performance of
VHCC. In this section, we develop a performance tuning
technique to guide the selection of the panel number. Recall
that the matrix is first partitioned into panels and each panel

is further divided into blocks. Let N

P

be the number of
panels, N

B

be the number of blocks, and N

T

be the number
of threads (where N

T

= N

B

⇥ N

P

). N
P

affects the L2
cache locality of the input vector (x) accesses. When there
are more panels, access to the input vector is segmented
across the panels and hence the data locality of accessing
the x vector is improved. On the other hand, if there are more
panels, the number of temporary arrays required for storing
the intermediate output vectors increases, and thus the cost
of the final reduction or merge phase will increase.

The main idea behind our auto-tuning procedure is to
extract parameters from an idealized model of our scale-
free SpMV kernel and use it to estimate N

P

for a given
irregular matrix. The computation shown in Algorithm 1 can
be divided into two phases, the actual computation phase
(lines 1-25) and the merge phase (line 26). Thus, the total
execution time of each thread can be estimated by

T

B

= T

Comp

+ T

Merge

, (1)

where T

B

is the total time taken by a thread to perform the
overall SpMV computation on a given block with nnz

B

non-
zeros, T

Comp

is the time used for the computation phase, and
T

Merge

is the amount of time required to perform a final re-
duction on the intermediate output arrays. Here, we assume
that each block takes a similar amount of time because of the
workload balancing achieved by VHCC. The time required
for the computation phase is given by

T

Comp

= {T int

C,r

+ T

dbl

C,r

+ T

gather

+ T

SpMV

}
⇥nnz

B

+ p⇥ (T int

C,r

+ T

dbl

C,rw

).
(2)

This expression includes the time to read the column in-
dex from col idx (T int

C,r

) and a double-precision value from
val arr (T dbl

C,r

). T
gather

is the time required to gather a value
from the x vector, the exact form of which will be described
later. T

SpMV

represents the time for the actual arithmetic
computation; it can be set to zero if we are only interested
in the lower bound of T

Comp

. For a block with dimensions
p by q, the last term in Eq. 2 represents the time required
to read a row index and write a double to the tmp y array
which has length p = ↵m/N

B

. Table 1 provides a summary
of the parameters and their values used in our model. These
values are obtained using microbenchmarks described in [9]
and the values obtained by us are also similar to theirs. The
time to modify a value is typically twice that of an equivalent
read access because it includes both read and write accesses.

To derive T

gather

, we make use of the properties of a
scale-free matrix. In a scale-free matrix, the distribution of
the non-zeros per row follows a power-law distribution [2],
and because of its scale-free nature, we can assume that the
distribution of non-zeros in a p ⇥ q block also follows the
power-law,

Pr[K = k] = f(k) =
k

��

P
q

j=1 j
��

, (3)

140



for 1  k  q. For every matrix, � is obtained by fitting
the actual non-zero distribution to the power law. Since the
non-zeros nnz

B

are distributed according to this distribution
for a given k, the average stride between the non-zeros can
be computed as stride = q/(nnz

B

⇥ f(k)). To determine
the gather time for a given stride, we introduce a function
h(stride) that models the gather time as a function of the
stride,

h(stride) =

(
�T

dbl

L,r

+ �

stride⇥(Tdbl
G,r�T

dbl
L,r)

�

, stride  �,

�T

dbl

G,r

, stride > �,

(4)
where the time to perform a gather from main memory and
from L2 cache are given by T

dbl

G,r

and T

dbl

L,r

, respectively.
When the stride is less than the threshold �, the gather time
is a linear function of the stride. The threshold depends on
the size of the L2 cache, and is set to 65536 (equivalent to
512KB). Parameters ↵ and � are derived using R-MAT ma-
trices, which will be described later. The average gather time
can therefore be computed using the expectation operator
(E

K

[·]) with respect to the random variable K,

T

gather

= E
K

[h(stride)]. (5)

The merge phase performs a reduction of all the inter-
mediate tmp y output arrays, and the time required for this
phase modeled as

T

Merge

=
m

N

T

(N
p

⇥ T

dbl

M,r

+ T

dbl

M,rw

). (6)

T

dbl

M,r

and T

dbl

M,rw

denote the time to read or read-and-write
a double-precision element to main memory (see Table 1).
We make a distinction between the computation and merge
phases for reading a double-precision value because they
incur different overheads in the different phases.

In our auto-tuning procedure, we use a lookup table that
has been pre-built offline from R-MAT(s, e) by varying the
scale (s) and edge factor (e) of the matrix. The lookup table
contains (s, e,↵,�) tuples, where ↵ and � are derived by
fitting to the model described in Eqs. 1–6. This table needs to
be built once offline and can be reused subsequently. When
given a real-world sparse matrix, we obtain (↵, �) from the
lookup table using the nearest (s, e) tuple, and use it to
predict the best N

P

value. In Section 4.2, we will evaluate
this auto-tuning method using real-world matrices.

4. Evaluation
All experiments are conducted on an Intel Xeon Phi 5110P
coprocessor. We use ten real-world scale-free sparse ma-
trices from the University of Florida sparse matrix collec-
tion [8] as listed in Table 2. These scale-free matrices are
from different application domains; many of them represent
web graphs, gene networks, or citation networks. We com-
pare the performance of VHCC with Intel MKL’s CSR im-
plementation (denoted as MKL) found in Intel Math Kernel

Table 1: Description of parameters and their values used in
the performance model.

Parameter Description Value
T

B

Time taken by a block to complete both
SpMV phases

n.a.

T

Comp

Total time for SpMV computation phase n.a.
T

Merge

Total time for SpMV merge phase n.a.
T

int

C,r

Time to read a column or row index (integer)
from main memory in the computation phase

6ns

T

dbl

C,r

Time to read a double-precision value from
main memory in the computation phase

12ns

T

dbl

C,rw

Time to modify a double-precision value in
main memory in the computation phase

24ns

T

gather

Time to gather an element from the x vector n.a.
T

SpMV

Time to perform SpMV arithmetic opera-
tions

n.a.

T

dbl

G,r

Time to gather a double-precision value
from main memory

320ns

T

dbl

L,r

Time to gather a double-precision value
from L2 cache

12ns

T

dbl

M,r

Time to read a double-precision value from
main memory in the merge phase

21ns

T

dbl

M,rw

Time to modify a double-precision value in
main memory in the merge phase

42ns

↵, � Parameters to be fit using R-MAT matrices n.a.

Table 2: List of sparse matrices used for evaluation. Columns
are: the dimensions, total no. of non-zeros (nnz), average
(avg) and maximum (max) non-zeros per row.

Matrix row ⇥ col nnz avg max
Stanford 282K⇥282K 2.3M 8.2 38606
IMDB 428K⇥896K 3.8M 8.8 1334
wiki-Talk 2.4M⇥2.4M 5.0M 2.1 100022
web-Google 916K⇥916K 5.1M 5.6 456
connectus 5K⇥395K 1.1M 2202 120065
NotreDame actors 392K⇥128K 1.5M 3.7 646
citationCiteseer 268K⇥268K 2.3M 8.6 1318
soc-sign-epinions 132K⇥132K 841K 6.4 2070
human gene2 14K⇥14K 18M 1260 7229
mouse gene 45K⇥45K 29M 642 8032

Library 11.1. The metric Gflops is used to measure perfor-
mance and is calculated using 2nnz/t where t is the exe-
cution time of the SpMV kernel in seconds. Higher Gflops
indicates better performance. We also use the Intel VTune
profiler [11] to investigate the execution efficiency.

4.1 Performance Study
We perform three sets of experiments to evaluate our VHCC
SpMV implementation: (a) the effects of 2D jagged par-
titioning and tiling on cache efficiency, (b) improvement
in SIMD vector utilization due to SIMD segmented pre-
fix sum, and (c) workload balance and cycles per instruc-
tion (CPI) comparison. In this section, we first report perfor-
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mance numbers and profiling results using the optimal value
of the panels. The effectiveness of our auto-tuning technique
will be studied in Section 4.2.

4.1.1 Tiling and 2D Jagged Partitioning
Results for tiling are first presented in Fig. 5. Only perfor-
mance numbers for the mouse gene matrix are shown as
all the other matrices have similar results. First, we fix the
row tile size r to 512, and vary the column tile size. Figure
5a shows that in general, performance increases when the
column tile size becomes larger, and does not differ signifi-
cantly after c = 8192. Next, we fix the column tile size c to
8192 and vary the row tile size as shown in Fig. 5b. This
figure shows that the best performance is achieved when
r = 512. Hence, we set r = 512 and c = 8192 as the
default tile size for all subsequent experiments unless stated
otherwise. The tile size of r = 512 and c = 8192 takes up
32 KB if fully utilized, which is the same size as the L1 data
cache size on Xeon Phi.

Whereas tiling is used to improve L1 cache efficiency, 2D
jagged partitioning serves to improve L2 cache efficiency.
Figure 6 shows the result of varying the number of vertical
panels (N

P

) for two representative matrices. Unlike tiling,
we observe that the effects of 2D jagged partitioning is more
pronounced. Furthermore, the optimal number of panels de-
pends on a given matrix. For connectus, the best perfor-
mance is achieved when there are 40 panels, whereas for
Stanford, only 4 panels are required. As we can see, the op-
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Figure 5: Performance tuning for the tile size (mouse gene)

0

2

4

6

8

10

0 20 40 60

G
flo
ps

#panels

(a) connectus

0

1

2

3

4

0 20 40 60

G
flo
ps

#panels

(b) Stanford

Figure 6: Performance tuning for the number of vertical
panels (N

P

) in 2D jagged partitioning
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Figure 7: Time breakdown when number of panels is varied
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Figure 8: Impact of tiling and 2D jagged partitioning

timal value for N
P

can vary substantially, and we attribute
this to two reasons. The first reason is that L2 cache effi-
ciency is sensitive to N

P

because cache miss penalties are
high on Xeon Phi and a cache miss would involve a series
of requests to the tag directories and memory controllers.
Secondly, there exists a tradeoff between improving SpMV
computation time due to better cache efficiency, and incur-
ring overhead for merging additional intermediate arrays.

The tradeoff can be seen in Fig. 7, which shows the break-
down of the time between the two phases of SpMV compu-
tation – the computation phase and the merge phase. The
figure shows that for connectus, SpMV computation time
is considerably reduced when the number of panels is in-
creased. On the other hand, having more panels does not im-
prove the performance for Stanford. This is because having
more panels will require additional intermediate arrays and
as a result, the merge phase will become more expensive. To
determine the best tradeoff, our auto-tuning procedure can
be used to select a good panel number for a given scale-free
matrix (see Section 4.2).

Figure 8 shows the performance impact of VHCC when
tiling and 2D jagged partitioning are disabled.
‘VHCC (opt.)’ indicates that both techniques are used,
whereas ‘w/o tiling’ indicates that the tiling technique is not
used. ‘w/o 2D jagged partitioning’ indicates that 2D jagged
partitioning is not used, and instead, the matrix is divided
into equi-sized 2D blocks. The figure shows that, on aver-

142



0%
20%
40%
60%
80%

100%

L1
 h

it 
ra

te

VHCC MKL

(a) L1 hit rate

L1 hit rate
Est. latency impact

VHCC MKL VHCC MKL
Stanford 89% 61.10% Stanford 132 223
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Figure 9: Profiling of cache efficiency

age, tiling improves performance by 1.1⇥. For 2D jagged
partitioning, performance is improved by 4.4⇥ on average.
This result is not surprising considering that tiling mainly
improves L1 data locality, whereas 2D jagged partitioning
improves L2 cache locality and hence has a greater impact
on the overall performance.

Figure 9 shows profiling results on the memory hierar-
chies gathered using hardware counters. Figure 9a shows the
L1 cache hit rates and the estimated latency impact of VHCC
compared to MKL. The L1 cache hit rates are improved by
7%-194% relative to MKL, and they typically reach around
90%. Figure 9b shows that the estimated latency impact is
reduced as well for most matrices. More importantly, the es-
timated latency impact is now in the ideal range (< 145) for
most matrices. These results show that the 2D jagged par-
titioning and tiling methods used in VHCC are in general
cache effective for scale-free matrices.

4.1.2 SIMD Segmented Prefix Sum
Our SIMD segmented prefix sum method aims to improve
vectorization efficiency. To study the impact of this method,
we replace the SIMD segmented prefix sum with normal C
code (denoted as w/o SIMD prefix-sum), and compare its per-
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Figure 10: SIMD vector utilization: (a) performance impact
of SIMD segmented prefix sum, (b) vectorization intensity
comparison between VHCC and MKL

formance with the optimized VHCC with SIMD segmented
prefix sum. Figure 10a shows the comparison with and with-
out SIMD segmented prefix sum. We find that overall per-
formance was increased by up to 14.3%. Figure 10b shows
a comparison of the vectorization intensity between VHCC
and MKL. On average, VHCC achieves a vectorization in-
tensity that is 1.4 times higher than that of MKL. This in-
dicates that the SIMD segmented prefix sum uses the VPU
more effectively. The ideal vectorization intensity is often
difficult to achieve because of the loop and counter over-
heads.

4.1.3 Workload Balance and CPI Comparison
Next, we look at the workload balancing and performance
scalability characteristics of VHCC. In general, because
VHCC inherits the benefits of both COO and CSR and em-
ploys equal division of non-zeros, we expect the workload to
be balanced across threads. Figure 11a illustrates the relative
standard deviation of execution time of all threads on Xeon
Phi for the different matrices. Except for connectus which
is a highly irregular matrix, all other matrices have very
low workload difference among threads. The average rela-
tive standard deviation is smaller than 2.0%. This shows that
VHCC is effective in workload balancing for scale-free ma-
trices. Figure 11b shows a comparison of the cycles per in-
struction (CPI) metric between VHCC and MKL. As shown,
VHCC significantly reduces the cycles per instruction (CPI)
by 42.5% on average relative to MKL. In addition, for most
matrices, the CPI is within or close to the ideal CPI range.
All of the techniques we have described so far contributed
to the reduced CPI values.

4.2 Overall Performance and Effectiveness of the
Auto-Tuning Procedure

Figure 12 compares the performance of auto-tuned VHCC
and MKL using R-MAT matrices, whereas Fig. 13 shows
the performance of auto-tuned VHCC and MKL using the
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Figure 11: (a) Relative standard deviation of execution time
of each thread, (b) comparison of cycles-per-instruction
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Figure 12: Performance comparison between VHCC and
MKL using R-MAT scale-free matrices
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Figure 13: Performance comparison between VHCC and
MKL using real-world scale-free matrices.

real-world matrices. The optimal performance denoted by
“VHCC (optimal)” is derived using exhaustive tuning. Ta-
ble 3 summarizes the speedups for real-world matrices.
Results in the table show that both the auto-tuned VHCC
and optimal VHCC achieve an average speedup of 3⇥
over MKL. Figure 14 depicts the effectiveness of the auto-
tuning procedure on the real-world matrices. On average, it
achieves 98% of the optimal performance.

Finally, even though VHCC is designed specifically for
scale-free matrices, we also test the performance of VHCC
on regular matrices. Figure 15 shows the performance com-
parison between VHCC and MKL for regular matrices. For
some matrices, VHCC performs better than MKL, while for
others, MKL is better. On average, VHCC achieves simi-
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Figure 14: Auto-tuned performance as a percentage of the
optimal performance for real-world matrices.

Table 3: Speedups achieved by exhaustive-tuned (Opt.) and
auto-tuned VHCC over MKL.

Matrix Opt. vs MKL Auto-tuned vs. MKL
Stanford 4.0 3.8
IMDB 2.1 2.1
wiki-Talk 1.7 1.7
web-Google 1.6 1.5
connectus 8.9 8.6
NotreDame actors 3.0 3.0
citationCiteseer 2.7 2.7
soc-sign-epinions 4.4 4.4
human gene2 1.4 1.4
mouse gene 1.5 1.3

lar performance to MKL (⇠92% of MKL’s performance) for
regular matrices.

5. Related Work
A large body of work has been published on SpMV com-
putation on modern processors. Im and Yelick studied the
effects of register blocking and cache blocking to improve
SpMV performance on processors with memory hierar-
chies [10]. The OSKI (Optimized Sparse Matrix Kernel In-
terface) library was developed to automatically tune SpMV
kernels on processors with cache-based memory hierar-
chies [19]. Matrix reordering methods such as those in [15]
and [13] were investigated to improve the locality of mem-
ory accesses, thereby increasing cache hit rates. Williams
et al. [21] studied thread blocking for multicore processors
and evaluated its performance on modern multicore archi-
tectures. Graph partitioning methods were also proposed for
SpMV on distributed-memory computers [6, 13]. Apart from
blocking, other techniques have been proposed to improve
performance by reducing memory traffic [4, 20]. There have
also been studies on optimizing SpMV for coprocessors such
as GPUs [3, 5, 18] and Intel Xeon Phi [12, 17]. Saule showed
that register blocking was not a viable technique on Xeon
Phi, whereas Liu and coworkers developed a format called
ESB based on the ELLPACK format [12].
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Figure 15: Performance comparison between VHCC and
MKL using regular matrices.
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In comparison, our proposed VHCC is optimized for
Xeon Phi. It takes into consideration Xeon Phi’s memory
hierarchy and makes use of the wide-vector VPUs. Further-
more, many prior methods are not optimized for scale-free
matrices, and they used exhaustive tuning to select the best
runtime configuration, whereas we have developed an auto-
tuning procedure that works well in practice.

6. Conclusion
In this paper, we develop VHCC for computing SpMV for
scale-free sparse matrices on Intel Xeon Phi. It employs 2D
jagged partitioning and tiling to achieve good cache efficien-
cies and work balancing. We also develop an efficient SIMD
segmented prefix sum implementation that is made possi-
ble by Xeon Phi’s enhanced SIMD capabilities. A perfor-
mance tuning procedure for selecting the number of pan-
els is described. Experimental results demonstrate that our
implementation is able to achieve average speedups of 3⇥
compared to Intel MKL’s CSR kernel. The auto-tuning pro-
cedure is able to achieve performances that is within 10% of
the optimal performance.

Acknowledgment
This work was partially supported by the National Natural
Science Foundation of China (No. 61300005). We are also
grateful to Intel for providing us with a Xeon Phi card. The
first and second authors contributed equally to this work.

References
[1] Intel Math Kernel Library: https://software.intel.com/en-

us/intel-mkl.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, Oct. 1999.

[3] M. M. Baskaran and R. Bordawekar. Optimizing sparse
matrix-vector multiplication on GPUs. Technical report,
RC24704, IBM T. J. Watson, 2009.

[4] M. Belgin, G. Back, and C. J. Ribbens. Pattern-based sparse
matrix representation for memory-efficient SMVM kernels. In
Proceedings of the 23rd international conference on Super-
computing, ICS ’09, pages 100–109, 2009.

[5] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceed-
ings of the Conference on High Performance Computing Net-
working, Storage and Analysis, SC ’09, pages 18:1–18:11,
2009.

[6] E. G. Boman, K. D. Devine, and S. Rajamanickam. Scal-
able matrix computations on large scale-free graphs using 2D
graph partitioning. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Stor-
age and Analysis, SC ’13, pages 50:1–50:12. ACM, 2013.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recur-
sive model for graph mining. In SIAM International Confer-
ence on Data Mining, 2004.

[8] T. A. Davis and Y. Hu. The University of Florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, Dec.
2011. http://www.cise.ufl.edu/research/sparse/matrices/.

[9] J. Fang, A. L. Varbanescu, H. J. Sips, L. Zhang, Y. Che,
and C. Xu. An empirical study of Intel Xeon Phi. CoRR,
abs/1310.5842, 2013.

[10] E.-J. Im. Optimizing the performance of sparse matrix-vector
multiplication. PhD thesis, University of California Berkeley,
2000.

[11] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High-
Performance Programming. Morgan Kaufmann, 2013.

[12] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. Efficient
sparse matrix-vector multiplication on x86-based many-core
processors. In Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing,
ICS ’13, pages 273–282. ACM, 2013.

[13] L. Oliker, X. Li, P. Husbands, and R. Biswas. Effects of
ordering strategies and programming paradigms on sparse
matrix computations. SIAM Rev., 44(3):373–393, Mar. 2002.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Tech. report,
Stanford Digital Library, 1999.

[15] A. Pinar and M. T. Heath. Improving performance of sparse
matrix-vector multiplication. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing, SC ’99, 1999.

[16] Y. Saad. Iterative Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2nd edition, 2003.
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