
Hi-fi Playback: Tolerating Position Errors in Shift Operations of Racetrack Memory

Chao Zhang1, Guangyu Sun1,2, Xian Zhang1, Weiqi Zhang1, Weisheng Zhao3, Tao Wang1,2, Yun Liang1,2,
Yongpan Liu4, Yu Wang4, and Jiwu Shu5

1Center for Energy-efficient Computing and Applications, Peking University, Beijing, 100871, China
2Collaborative Innovation Center of High Performance Computing, NUDT, Changsha 410073, China

3Spintronics Interdisciplinary Center, Beihang University, 100191, China
4Department of Electrical Engineering, Tsinghua University, 100084, China

5Department of Computer Science and Technology, Tsinghua University, 100084, China
{zhang.chao, gsun, zhang.xian, zhangweiqi, wangtao, ericlyun} @pku.edu.cn

weisheng.zhao@u-psud.fr, ypliu26@gmail.com, {yu-wang, shujw} @tsinghua.edu.cn

Abstract
Racetrack memory is an emerging non-volatile memory

based on spintronic domain wall technology. It can achieve
ultra-high storage density. Also, its read/write speed is com-
parable to that of SRAM. Due to the tape-like structure of
its storage cell, a “shift” operation is introduced to access
racetrack memory. Thus, prior research mainly focused on
minimizing shift latency/energy of racetrack memory while
leveraging its ultra-high storage density. Yet the reliability
issue of a shift operation, however, is not well addressed. In
fact, racetrack memory suffers from unsuccessful shift due to
domain misalignment. Such a problem is called “position
error” in this work. It can significantly reduce mean-time-
to-failure (MTTF) of racetrack memory to an intolerable lev-
el. Even worse, conventional error correction codes (ECCs),
which are designed for “bit errors”, cannot protect racetrack
memory from the position errors.

In this work, we investigate the position error model of a
shift operation and categorize position errors into two types:

“stop-in-middle” error and “out-of-step” error. To eliminate
the stop-in-middle error, we propose a technique called sub-
threshold shift (STS) to perform a more reliable shift in two
stages. To detect and recover the out-of-step error, a protec-
tion mechanism called position error correction code (p-ECC)
is proposed. We first describe how to design a p-ECC for dif-
ferent protection strength and analyze corresponding design
overhead. Then, we further propose how to reduce area cost
of p-ECC by leveraging the “overhead region” in a racetrack
memory stripe. With these protection mechanisms, we intro-
duce a position-error-aware shift architecture. Experimental
results demonstrate that, after using our techniques, the over-
all MTTF of racetrack memory is improved from 1.33µs to
more than 69 years, with only 0.2% performance degradation.
Trade-off among reliability, area, performance, and energy is
also explored with comprehensive discussion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ISCA ’15, June 13 - 17, 2015, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3402-0/15/06 $15.00
http://dx.doi.org/10.1145/2749469.2750388

1. Introduction
Rapid advances of computing systems and applications make
demands of enlarging capacity of on-chip memory. On the
one hand, as the number of cores in both CMPs and GPUs
keeps increasing, more data are expected to be cached on chip
to leverage their locality. On the other hand, the prosperity
of high-throughput computing applications also requires im-
provement of on-chip memory hierarchy to bridge an increas-
ing bandwidth gap between processing elements and off-chip
memory. However, the traditional SRAM technology cannot
fully satisfy the demand due to its low scalability, high leakage
power consumption, and vulnerability to soft errors. Conse-
quently, various emerging technologies, such as STT-RAM,
RRAM, and FBDRAM, have been extensively researched as
potential alternatives of SRAM [45, 24, 35, 20, 37, 38, 40].

Racetrack memory, which is also known as domain wall
memory (DMW), has attracted great attention of researchers
because of its ultra-high storage density. Racetrack memory is
a type of non-volatile memory based on spintronic technology.
Compared to the other spintronic memory technologies (e.g.
STT-RAM), racetrack memory provides even higher storage
density by integrating multiple bits (domains) in a tape-like
nanowire [26]. Previous research has demonstrated that its
storage density is up to 10× higher than that of STT-RAM [46].
To access all domains on the same nanowire, one or several
access ports are uniformly distributed along the nanowire
and shared by domains. For those domains aligned to access
ports, data in them can be read similar to STT-RAM cells.
Thus, when these bits are accessed, racetrack memory can
achieve high performance comparable to STT-RAM [46, 44,
43], which makes it a promising candidate for on-chip memory
design. However, to access other bits on the nanowire, the
“shift” operations are required to move those bits to the nearest
access ports.

Obviously, a shift operation induces extra timing and energy
overhead. Thus, prior research on racetrack memory mainly
focused on mitigating the shift overhead while leveraging its
ultra-high storage density. For example, “block swapping” and
“head management” techniques are proposed to reduce shift
intensity when racetrack memory is employed as caches in
generic processors [39, 44]. With these techniques, a racetrack
memory based cache could achieve about 83% area reduction,
25% performance improvement, and 62% energy reduction
compared with STT-RAM based counterpart. Venkatesan et
al. proposed a racetrack memory based cache architecture for
GPGPU with a shift aware promotion buffer. It could improve

694

GPGPU performance by 12% and reduce energy consumption
by 70% over SRAM based cache hierarchy [43]. Without
doubt, previous work has demonstrated that we can benefit
from ultra-high storage density of racetrack memory even with
extra shift latency and energy.

1.0E-06
1.0E-04
1.0E-02
1.0E+00
1.0E+02
1.0E+04
1.0E+06
1.0E+08
1.0E+10

M
e
a

n
 t

im
e

to
 f

a
il

u
re

 (
s)

Position error rate per racetrack memory stripe

1000 years

10 years

1 month

1 day

1 min

Figure 1: MTTF of a racetrack memory LLC [43] against differ-
ent error rates.

Though several approaches have been proposed to mitigate
its timing and energy overhead, the reliability issue of a shift
operation is not well addressed yet. Simply speaking, there
lack mechanisms to ensure that domains are correctly shifted
to be aligned with access ports. Different from conventional
“bit errors”, an unreliable shift may result in a new type of error
called “position error”. Thus, although data stored in domain-
s are unchanged, incorrect bits may be read from racetrack
memory due to position errors. Also, a write operation may
fail to update data because of position errors. Overall, position
errors can have significant impact on the reliability of a race-
track memory design. As shown in Figure 1, for a racetrack
memory cache in previous work [43], the position error rate
needs to be at least lower than 10−19 to satisfy a requirement
of 10-year mean-time-to-failure (MTTF) [25]. Unfortunately,
a typical position error rate is in the range of 10−4 ∼ 10−5 for
different shift operations (more details in Section 3).

Even worse, conventional error correction codes (ECCs)
proposed for transient bit errors cannot detect and correct
such position errors efficiently. Since bit errors and position
errors can be considered as orthogonal to each other, we need
dedicated mechanisms for detection and correction of position
errors, together with those for transient bit errors. Because of
the tape-like structure of a racetrack memory cell, the case is
analogous to that of a traditional cassette tape. When designing
a hi-fi cassette deck, we mitigate noises caused by magnetic
head sensing flaw (bit errors) and imperfect pitch caused by
tape speed fluctuation (position errors), independently.

To mitigate the problem of position errors, we first investi-
gate the position error model of a shift operation. Then, we
propose techniques and architecture modification to tolerate
position errors. The main contribution of this work can be
summarized as follows:
• Based on a quantitative error model, we categorize position

errors into two types, which are called “stop-in-middle”
error and “out-of-step” error.

• To eliminate the stop-in-middle error, we propose a tech-
nique called sub-threshold shift (STS) to complete a more
reliable shift in two stages.

• To detect and recover the out-of-step error, a protection
mechanism based on position error correction code (p-ECC)

is further proposed to provide different protection strength.
With an analysis of p-ECC design cost, we trade laten-
cy/energy for storage density by leveraging domains in
“overhead region” to store p-ECCs.
• Based on these techniques, we present a position-error-

aware shift architecture to meet the reliability requirement.
• Experimental results demonstrate that, after using these

techniques, a practical racetrack memory design with suf-
ficient reliability can be achieved with moderate design
cost.
The rest of this paper is organized as follows. In Section 2,

we introduce background of racetrack memory technology. In
Section 3, a detailed position error model is presented. In addi-
tion, we argue that conventional ECCs for transient bit errors
cannot handle position errors efficiently. Then, two techniques
called STS and p-ECC are proposed in Section 4. Based on
them, we introduce our position-error-aware shift architec-
ture in 5. Experimental results are presented and discussed in
Section 6, followed by related work and conclusions.

2. Background
In this section, we first introduce the basics of racetrack

memory, including the cell structure, read/write operations,
and the shift operation. We then briefly review metrics and
requirements for memory reliability.

2.1. Basics of Racetrack Memory

A racetrack memory cell is composed of a tape-like stripe and
several access transistors. A typical cell structure [43] is illus-
trated in Figure 2 (a). The racetrack memory stripe is made of
magnetic material. It contains a lot of domains (white blocks)
isolated by domain walls (dark bricks). The magnetization
direction (arrows) of a domain is programmed to store either
bit ‘1’ or bit ‘0’. Several transistors are connected to the stripe
to perform read, write, and shift operations, respectively. They
are called read access port.

Read Operation. Similar to STT-RAM, bit value in a do-
main is sensed out according to its magnetization direction.
As shown in Figure 2 (a), a read-only port is attached to a refer-
ence domain with a pinned magnetization direction. Together
with the domain aligned under it, the reference domain forms
a sandwich structure magnetic tunneling junction (MTJ). MTJ
has a low resistance (bit ‘0’) when these two domains have
parallel magnetization directions and has a high resistance
(bit ‘1’) when they have opposite directions. As shown in Fig-
ure 2 (a), the read port is controlled by a transistor connected
to read word line (RWL). Since the read port can only read the
bit in the aligned domain, a shift operation is needed before it
reads other domains.

Shift Operation. Shift operations are based on a phe-
nomenon called spin-momentum transfer caused by shift cur-
rent, which is supplied by two transistors attached to both ends
of the racetrack memory stripe. The driving current density
needs to reach a threshold to enable movement of these domain
walls. Because the spin-momentum is transferred from elec-
trons, domain walls move opposite to the direction of current
along the racetrack memory stripe in most magnetic materials.

695

Read/Write

Port

BL

WWL

GND

RWL

SL

BLB

SLRWL

… …

Read-Only

Port

Flat

Region

Notch

Region

Flat

Region

NotchWall

(a)

(b) (c)

… …

Overhead

region

Figure 2: A racetrack memory cell: (a) physical layout, (b) de-
tails of notch, (c) architecture abstract.

Note that all domain walls move in the same direction with
the same speed [?, 47].

In order to align domains in the racetrack memory stripe
with the access ports after a shift operation, the stripe is etched
with successive notches to pin the domain walls, as illustrated
in Figure 2 (b). A notch region, which is affected by the notch,
has much larger resistance to the shift speed compared with the
flat region. Thus, a notch region works like a speed bump to
pin a domain wall after the driving current is disabled. Ideally,
domain walls should be pinned in proper notch regions to
complete a successful shift operation.

In this work, the shift distance is denoted by “steps”. For
example, if all domain walls are shifted to right and stop
in their neighbor notch regions, we refer it as a 1-step shift.
Obviously, the maximum shift distance is determined by stripe
length, domain length, and the number of access ports. In order
to avoid data loss due to shift operations, extra domains are
needed. When the maximum shift distance is m-step, m extra
domains are added. These extra domains form an overhead
region, which is also shown in Figure 2 (a) and (c).

Shift-based Write Operation. A write operation can be
completed by a shift operation. Figure 2 (a) also shows
a read/write access port. Compared to a read-only port, a
read/write port requires one more transistor and two more ref-
erence domains with opposite pinned magnetization directions.
Thus, we only need to control this extra transistor so that a
proper bit is shifted from a reference domain into the domain
to be updated. Note that a conventional write like STT-RAM
is also feasible for racetrack memory. But it requires a larger
transistor, due to larger current for write.

Number of Access Ports. Normally, access ports are dis-
tributed along the racetrack strip uniformly. For a fixed length
racetrack memory stripe, the maximum shift distance is re-
duced with more access ports. However, adding extra ports
may induce area overhead. More details can be found in the
next section.

The architecture level abstract view of a racetrack memory
cell can be is illustrated in Figure 2(c). In the rest of this paper,
we will use it for discussion.

2.2. Reliability of Memory

Memory errors may result in silent data corruption (SDC),
where a system generates erroneous outputs without attention,
or a detected unrecoverable errors (DUE) [25]. Both of them
reflect the reliability of the memory. They can be expressed us-
ing failures in time (FIT), number of failures in a billion (109)

hours, or mean time to failure (MTTF), which is inversely re-
lated to FIT (11,415 FIT is equivalent to 10-year MTTF) [25].
IBM targets 1000-year SDC and 10-year DUE for its power4
systems [8]. In this work, we use these two numbers as a
reference goal of the reliable racetrack memory design.

Error correction codes (ECC) such as parity check and
extended hamming code (a.k.a. SECDED) are widely used in
cache system of modern processors to tolerate memory errors.
Parity check and ECC rely on the value of bits in their coding
block to detect and correct the bit error [29]. Some processors
employ parity check protection for L1 cache [1, 2, 22]. And
the majority of processors use ECC to protect the last level
cache, such as AMD K8 [1], UltraSPARC IV[2], Itanium
2 [22], Power4 [7], Alpha [19], and Intel Pentium 4 [3].

3. Position Error
In this section, the position error is modeled. In addition,
we explain why conventional ECC cannot detect and correct
position errors efficiently.

3.1. Error Modeling

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0

?

Notch

Region
Domain wall

(a)

(b)

(c)

(d)

Figure 3: Illustration of position errors: (a) initial state before
shifting, (b) a shift operation without errors, (c) a shift opera-
tion with a “stop-in-middle” error, (d) a shift operation with an
“out-of-step” error.

We first define two types of position errors that may happen
in a shift operation. In Figure 3 (a), all domain walls are in
their initial state before being shifted. In order to access the
domain containing bit ’1’, we need to shift all domain walls
one step to the right. After a correct shift operation without
any errors, the domains are in a state shown in Figure 3 (b).
All domain walls are pinned in the notch regions. The domain
containing bit ’1’ is ready to be read with the access port.

In Figure 3 (c), a position error happens because the domain
walls are not pinned into notch regions. Such a position error
is called "stop-in-middle" error in this work. In other words,
the domain is not aligned properly to the access port. Thus,
the value read out is uncertain, as highlighted in Figure 3 (c).
A different type of error is illustrated in Figure 3 (d). In this
scenario, all domain walls are stopped in notch regions after
the shift operation. However, domains are over-shifted by one
step. As shown in the figure, the domain containing bit ’1’ has
passed the access port and an incorrect domain is accessed.
Such a position error is called "out-of-step" error. Since the
domain is over-shifted for one step, it is also defined as “+1

696

1.0E+00

1.0E+03

1.0E+06

1.0E+09

1.0E+12

1.0E+15

1.0E+18

1.0E+21

1.0E+24

(-2,-1) -1 (-1,0) 0 (0,+1) 1 (+1,+2)

P
o

si
ti

o
n

 e
rr

o
r

*
 1

0
2

5

Step of position error

1-step shift

(a)

(-2,-1) -1 (-1,0) 0 (0,+1) 1 (+1,+2)
Step of position error

4-step shift

(b)

0

0.5

1

1.5

2

2.5

3

(-2,-1) -1 (-1,0) 0 (0,+1) 1 (+1,+2)

P
D

F

Step of position error

7-step shift

(c)

Figure 4: Probability distribution and its density function of position errors.

step" error. Similarly, a “±n step" error means that domain
walls are over-shifted/under-shifted for n steps.

(1+α2) dq
dt = 1

2 γ∆(HK sin2ψ−πHT)+αγ∆(HA− V q
MSd)+(1+αβ)u

(1+α2) dψ

dt =− 1
2 αγ(HK sin2ψ−πHT)+ γ(HA− V q

MSd)−
β−α

∆
u

(1)
The behavior of domains in a shift operation can be quantita-

tively modelled by Equation (1). It describes a one dimension
model for the domain wall motion in in-plane racetrack memo-
ry [14]. Term q and ψ represent the position and the tilt angle
of a domain wall, while dq

dt and dψ

dt represent their time deriva-
tives, respectively. Parameters α , β , and γ are the Gilbert
damping constant, non-adiabatic spin transfer torque term,
and the gyromagnetic ratio, respectively. The u represents
the spin transfer torque, which is proportional to shift current
density. HK is the anisotropy field. HT and HA are the applied
transverse field and lengthwise magnetic field. Both are zero
in practical application. Ms is the saturation magnetization.

The critical parameters used in the equation are introduced
in Table 1, which includes domain wall width (∆), pinning
potential depth (V), pinning potential width (d), and flat region
width (L). Shift current density J is calculated as a proper
current density to drive domain walls. We select J as 2J0 to
minimize the error rate. The threshold shift current density J0
is the minimum current density to move domain walls out of
notch region [14]. If J is too small, the rate of under-shifted
position errors increases. On the contrary, if it is too large, the
rate of over-shifted position errors increases.

Based on the Equation (1), the time that a domain wall
passes a notch region and a flat region can be approximately
expressed as: {

Tf lat = αL
(2α−β)u

Tnotch = τln(1+ d
δ l),

(2)

where τ = αMsd
V ∆γ

, δ l = udMs(2α−β)
V ∆γ

−L−d. Thus, the theoreti-
cal time to shift a domain wall for N steps can be expressed as
TN =N×(Tnotch+Trest). However, in real scenarios, variation-
s of parameters in Table 1 may cause unintended movement
and result in position errors. Normally, variations of these
parameters come from two sources [23, 9]: (1) process vari-
ations and (2) environmental variations. Their variations are
listed in Table 1.

Considering all these effects, we calculate the possibility
of position errors based on 109 times Monte-Carlo simulation
and its fitting curve, which is similar to the method used
in [34]. In Figure 4, we present a probability distribution
(PDF) of position errors for a single shift operation. Note that
Figure 4 (a) (b) (c) are results for 1-step, 4-step and 7-step
shift distance, respectively. The results for bar x =±i are error

Table 1: Simulation parameters used in the model [14, 16]

Parameters Mean Standard Deviation

Domain wall width ∆̄ = 5.00nm σ∆ = 0.02∆̄

Pinning potential depth V̄ = 1.20J/dm3 σV = 0.02V̄
Pinning potential width d̄ = 45nm σd = 0.05d̄
Flat region width L̄ = 150nm σL = 0.05d̄
Shift current density J = 1.24A/um2 by calculation

rates for ±i out-of-step errors. The other bars represent error
probability for "stop-in-middle" errors. For example, the bar
for x = (+1,+2) means that domain walls are over-shifted
by one step and fail to stop in the notch region. The result
for origin point (x = 0) means the probability of a correct
shift. Asymmetry of +/-k step-errors is because typical driving
current is higher than threshold to facilitate shifting. Two
important observations can be concluded from these results.
• Error rates increase with a longer shift distance.
• Error rates decrease sharply when x > 1. It means that the
±1 out-of-step errors, (−1,0), and (0,+1) “stop-in-middle”
errors are the critical problem to be handled.
Our model uses a conservative estimation of process vari-

ations; the error rate can be even higher in real cases. In
addition, we focus on in-plane material in this work. Using
perpendicular material can reduce the size of domain but may
increase error rate at the same time [48].

3.2. Position Error vs Bit-Error ECC

We explain why conventional ECC designed for bit errors
cannot work efficiently for position errors in this part. To be
simplified, we note conventional ECC designed for bit errors
as “b-ECC” in this work. We take single-error correction
and double-error detection (SECDED) b-ECC protecting a
64-Byte data in on-chip memories as an example.

First, b-ECC is designed to detect unintended changes of
data bits. When a position error happens, if the misaligned
bit has same value as correct bit, ECC cannot detect it timely.
For one case where multiple bits of one 64-Byte data are
stored in one racetrack memory stripe, if a ±1-step position
error happens, all the bits are shifted ±1-step. Thus b-ECC
actually check another data instead of this one, and cannot
detect the error. For the other case where only one bit of the
data is located on each stripe (i.e. 512 stripes are need to
store the data), b-ECC cannot detect the error unless the bit
read out is different from the correct one. They both result in
accumulation of multiple position errors on different stripes
and fail b-ECC.

Second, even if ECC detects that misaligned bit is incorrect,
it cannot decide the direction and steps of shit errors for certain.
Thus, we have to refresh all data in stripes to refill the correct

697

data (if possible). However, such a refresh method induces
thousands of extra shift operations, since all bits in the 512
racetrack memory stripes have to be read out. Unfortunately,
the possibility that a second position error happens during the
correction process is outstanding. For an 8-bit racetrack mem-
ory stripe, the possibility is about 0.17. And the MTTF after
using “b-ECC” is 20ms, which is far from the reliability goal.
It means that b-ECC may fail to work during the correction
process. Thus, we propose a dedicated protection mechanism
for position errors.

4. Position Error Correction Mechanisms
In this section, we first propose a technique called STS to
eliminate almost all stop-in-middle errors. Then, we further
propose p-ECC to detect and correct out-of-step (or step) er-
rors.

4.1. STS: Sub-threshold Shift

We can find from Equation (1) that domain wall can only move
in the flat region but stop in the notch region, when the driving
current density J is reduced under J0. In fact, when the driving
current is close to J0, it takes too long time for a domain wall
to move out a notch region. In this work, such type of shift
operation is called “sub-threshold shift” (STS).

Based on this observation, we propose a two-stage shift
operation, which is described as follows:
• Stage-1 For a N-step distance shift operation, a pulse of

high driving current density (2J0) is applied. The pulse
width is calculated from Equation (2) as an ideal shift.
• Stage-2 After stage-1, an extra pulse of driving current is

applied to make a sub-threshold shift. The pulse width is
set as 1ns.
According to Equation (1)(2), a driving pulse of 0.8ns is

long enough to ensure that domain walls are moved out of
flat regions and enter notch regions. Considering process
variations, the pulse width is set to 1ns. Note that domain
walls may move out notch regions if some notches are not
etched successfully during fabrication. In fact, such rare mal-
function racetrack stripes can be disabled during chip testing
techniques, which is beyond the scope of this paper.

After applying STS technique, the stop-in-middle errors are
almost eliminated. Compared to results in Figure 4, the proba-
bility of out-of-step errors, however, is increased significantly.
The probability of out-of-step position errors is listed in Ta-
ble 2. It is easy to understand that some stop-in-middle errors
are transferred into out-of-step errors. For example, for those
stop-in-middle errors happen in the flat region represented
with (+1,+2), they are turned into +2-step error after using
STS technique. Note that a negative driving current can also
be applied to eliminate stop-in-middle errors. For the same
example, the only difference is that those stop-in-middle errors
are turned into +1-step errors. In order to simplify discussion,
we assume that a positive STS is applied in the rest of this
work.

STS induces fixed overhead in a single shift operation (any
distance), which is the extra cycles used in stage-2. Accord-
ing to the model, the latency for stage-2 is 1ns. The latency
for stage-1 can be estimated as 0.4ns for value used in Ta-
ble 1. Thus, the latency to shift N steps a time by STS is

Table 2: Probability of out-of-step position error

Distance ±k Step Error Rate
k = 1 k = 2 k ≥ 3

1 4.55×10−5 1.37×10−21 too small
2 9.95×10−5 1.19×10−20 too small
3 2.07×10−4 5.59×10−20 too small
4 3.76×10−4 1.80×10−19 too small
5 5.94×10−4 4.47×10−19 too small
6 8.43×10−4 9.96×10−18 too small
7 1.10×10−3 7.57×10−15 too small

d0.4/0.5Ne+2 cycles, if clock frequency is 2GHz. It needs 3
cycles to shift 1 step, and 8 cycles for a 7-step shift. Thus, a
rule of thumb is that larger steps are preferred to amortize the
overhead induced by STS. The hardware modification to shift
controller is introduced in Section 5.

4.2. p-ECC Design

After using STS technique, the out-of-step errors become the
main obstacle of achieving reliable shift operations. In order
to mitigate this problem, we further propose position error
correction codes (p-ECC). In this section, we use a racetrack
memory stripe with eight data domains as an example. We first
introduce basic idea of p-ECC with a simple case to detect
a 1-step error. Then, we present a practical p-ECC design
that can detect 2-step errors and correct 1-step errors. At last,
we propose to leverage the overhead region in the racetrack
memory stripe to reduce p-ECC’s area cost.

(a) 0 0 1 0 0 0 0 0

(b)

(d)

(c)

0 0 1 0 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1 0 1

0 0 1 0 0 0 0 0 1 0 1 0 0

1

1

0

Data segment 1 Data segment 2

Figure 5: SED p-ECC. (a) original racetrack memory stripe, (b)
adding p-ECC codes, (c) illustration of a correct shift, (d) illus-
tration of detecting 1-step error.

4.2.1. Single Step Error Detection (SED)
As shown in Figure 5 (a), a racetrack memory stripe without

any protection is used as a baseline. It has eight data domains
and an overhead region of three domains. The total length
of this racetrack memory stripe is 11 bits. We introduce a
new term called “data segment”. It is defined as the group
of domains that can be accessed by a single read/write access
port. The length of a segment is denoted by Lseg in the rest of
this work. In this example, there are two 4-bit data segments
in one stripe.

In Figure 5 (b), five extra domains have been added to store
p-ECC bits for 1-step error detection. The value of these p-
ECC bits are set to ‘10101’ (from left to right). In order to
access the p-ECC, an extra access port is added to the stripe.
As shown in Figure 5 (c), we can find that this port is aligned
to the fifth domain, counting from the right end of this stripe.

698

Since the values in these p-ECC domains are not changed
during normal accesses to racetrack memory, only a read port
is needed to reduce area overhead. More details can be found
in subsection 4.2.3 about design overhead of p-ECC.

The detection of 1-step error using p-ECC is analogous to
the parity check in traditional bit-error detection. After adding
the SED p-ECC, 1-step error can be detected as follows:
• When domains are successfully shifted by even-step dis-

tance in any direction, the p-ECC bit read out should be
equal to that read out before shift operation. If a 1-step error
happens, the p-ECC bit read out is reversed.

• When domains are successfully shifted by odd-step distance
in any direction, the p-ECC bit read out is reversed. If a
1-step error happens, the p-ECC bit read out is unchanged.
The example illustrated in Figure 5 demonstrates how p-

ECC works. In order to read the only bit ‘1’ in the stripe,
all domains are shift to the right by one step. If domains are
correctly shifted, bit ‘0’ is read out from the p-ECC, shown as
Figure 5 (c). However, if domains are over-shifted by one step
(e.g. +1-step error happens), shown as Figure 5 (d), bit ‘1’ is
read out from p-ECC and a 1-step error is detected.

The SED p-ECC cannot correct the error because it is im-
possible to differentiate a +1-step error from a −1-step error.
Due to the high error rate of 1-step error, such a SED protec-
tion is not enough. In the next subsection, we extend p-ECC
to single step error correction and double steps error detec-
tion (SECDED).
4.2.2. p-ECC Design for SECDED
In order to correct ±1-step errors, we first need to add an

extra "guard" domain on both ends of the racetrack memory
stripe. They prevent data loss when a 1-step error happens
in either direction. These two guard domains are illustrated
in Figure 6 (a). Then, we add extra domains to hold p-ECC
bits for SECDED, as shown in Figure 6 (b). At the same time,
extra read ports are needed to access these p-ECC bits during
detection and correction. Since we are targeting SECDED,
there are four potential states after a shift operation: (1) suc-
cess, (2) +1-step error, (3) −1-step error, and ±2-step error.
Thus, we need to add two read ports to read out two p-ECC
bits simultaneously, which are also illustrated in Figure 6 (b).

In the worst case, domains are shifted (Lseg− 1)-step dis-
tance and a 2-step error happens at the same time. Thus, the
total length of p-ECC is set as Lseg +5. It ensures that, even
in the worst cases, those two read ports can still access valid
p-ECC bits. For the example in Figure 6, the worst cases for
shifting to both directions are illustrated in Figure 6 (c) and
(d), respectively. Thus, we need 9 = 4+5 domains for p-ECC.

These p-ECC bits are redrawn in Figure 6(e) in a cyclic style.
When a shift to left direction happens, p-ECC bits change in
clockwise according to the shift distance. When domains shift
to right, they change in counter-clockwise accordingly. An
example in Figure 6 is described as follows:
• All domains are in their initial states in Figure 6 (a).
• When domains are successfully shifted to the right by 4k,

4k + 1, 4k + 2, and 4k + 3 steps, two bits read out from
p-ECC should be ‘11’, ‘10’, ’00’, and ’01’ respectively.

• Based on these cyclic codes, both +1-step and −1-step
errors can be identified. For example, when domains are
supposed to be shifted by 4k steps, a +1-step error is detect-

(b) 0 1 1 0 0 1 11 0 0 0 0 0 0 1

(c) 1 0 0 1 1 0 00 0 0 0 0 0 1 0 1

(d) 0 0 0 0 1 0 11 0 0 1 1 00

00

01

(a) 1 0 0 0 0 0 0 1
Guard

domain

0 1

0 1

(e)

Figure 6: SECDEC P-ECC. (a) original racetrack memory
stripe, (b) adding extra domains to protect the over-shift da-
ta lost, (c) worst case when domains are shifted left, (d) worst
case when domains are shifted right, (e) cyclic code organiza-
tion.

ed if ‘10’ are read out from p-ECC.
• After ±1-step errors are detected, they can be corrected by

shifting domains back by 1 step, accordingly.
• However, when 2-step errors happen, we only detect them

but cannot correct them. It is because we cannot differenti-
ate +2-step errors from −2-step errors.
Compared to SED p-ECC, SECDED p-ECC requires more

extra domain walls and read ports. In the next subsection, we
will analytically discuss the overhead for correcting m-step
position errors.
4.2.3. Correcting M-step Position Errors with p-ECC
Similar to the cyclic coding method for SECDED, we can

further extend p-ECC to provide higher protection strength.
It is analytically described as follows. In order to correct
m-step (m < Lseg−1) position errors: (1) 2m extra domains
are needed to guard data loss in worst cases; (2) the length
of p-ECC is calculated as Lseg−1+2m; (3) m+1 extra read
ports are needed. At the same time, the p-ECC can also detect
(m+1)-step errors. However, the p-ECC induces overhead to
area, latency, and energy consumption of a racetrack memory
design.

Area overhead. Besides the extra domains added for p-
ECC, adding extra read ports also impact area of racetrack
memory. The racetrack memory stripe is stacked on transis-
tors used for access ports. When there are only a few access
ports, the total area of a racetrack memory stripe is mainly
determined by the number of domains. Thus, the area over-
head of adding one more read port is moderate (mainly from
peripheral circuitry). However, if there are too many access
ports, the total area is determined by the transistors. Thus,
more overhead is introduced. In Figure 7, the area overhead
of adding read ports is drawn with a 64-bit racetrack memory
stripe based on previous models [43, 39] as an example.

系列1
1 2 3 4 5 6 7 8 9 10 11

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20A
v

er
a

g
e

a
re

a
 p

er
 d

a
ta

b
it

 (
F

2
/b

)

The number of R-only ports added to a 64-bit racetrack memory stripe

R/W = 0

R/W = 2

R/W = 4

R/W = 6

R/W = 8

Figure 7: Overhead of adding read ports.

699

Latency/energy overhead. After using p-ECC, extra laten-
cy is induced in shift operation mainly due to two reasons.
First, domain moving velocity is reduced due to longer stripes
holding more domains. Second, extra latency is needed for
error detection. Note that error detection of p-ECC may be pro-
cessed at the same time with conventional ECC for read/write
errors. Due to page limitation, it is not discussed in this pa-
per. Similarly, extra energy consumption is caused by p-ECC.
Detailed results can be found in evaluation section.

Apparently, overhead of p-ECC is closely related to the
segment length Lseg. For example, when there is only one
segment, the area overhead induced by p-ECC is more than
100%. In order to correct position errors for racetrack memory
with long segment, we further propose a modified correction
mechanism called p-ECC-O, which is introduced in the next
subsection.
4.2.4. p-ECC-O: Leveraging Overhead Region
In previous approaches of p-ECC, bits in overhead region

are not cared. In fact, if we carefully control bits stored in
overhead region, these bits can also be employed for detection
and correction of position errors. This is the basic idea of
p-ECC-O. As shown in Figure 8, we add one write port at the
end of each racetrack memory stripe. Then, we can control bits
in overhead region with a "shift-and-write" operation. Note
that one drawback is that shift can only be operated step by
step because we need to write overhead region bit by bit.

11 0 0(a) 1 0 0 0 0 0 0 1 1 1010 01

(c) 0 1 1 0 0 1 0 0 0 1100 00

(b) 0 0 0 0 0 1 0 1 0 0101 1000 1 0

10 1 0

Figure 8: P-ECC (a) original racetrack memory stripe, (b) ex-
tra domains to protect the over-shift data lost. (c) worst case
when domains are shifted left.

We still use the same example of 8-bit racetrack memory
as an example to explain p-ECC-O. As shown in Figure 8, in
order to achieve SECDED, we add four extra domains to each
end of racetrack memory stripe. In addition, two ports are
added to each end. As shown in Figure 8 (a), domains are in
their left-most state. p-ECC in two overhead regions are also
shown in this Figure. Similar to p-ECC in last subsections,
cyclic codes are used.

When domains are shifted to right, p-ECC bits in right
overhead region are read out for position error detection and
correction. At the same time, cyclic codes are shifted into left
overhead region, as shown in Figure 8 (b). With protection
of p-ECC in the right overhead region, we can ensure that
these bits are correctly shifted into the left overhead region.
Thus, when domains are shifted to left, these p-ECC bits in
left overhead region can be used for position error detection
and correction. Since, we add four extra domains in each end,
we can still read out valid p-ECC bits even in the worst case
(Figure 8 (c)).

Different from original p-ECC, design overhead of p-ECC-

O is only determined by position errors to be corrected. If
we want to correct m-step errors, we need to add 2(m+ 1)
extra domains in each end of the racetrack memory stripe.
In addition, we need to add m more read ports than original
p-ECC. It is easy to find that p-ECC-O can achieve lower
overhead than original p-ECC, when the segment length is
large. The detailed storage overhead is analyzed in Section 6.3.

However, due to bit by bit "shift-and-write", p-ECC-O in-
duces higher overhead to shift latency. As addressed in Sec-
tion 4.1, after using STS to eliminate "stop-in-middle" error,
a long distance shift is preferred to amortize extra latency
for STS. Including the p-ECC latency overhead, the latency
for a single 7-step shift is 9 cycles, compared to 28 cycles
for 7 times 1-step shift operations. We can find that original
shift achieves better shift performance than p-ECC-O. Thus,
shift performance is traded for storage density by p-ECC-O
technique. We can draw similar conclusion for overhead of
energy consumption because of a similar reason. Consequent-
ly, p-ECC should be applied when we run latency-sensitive
but capacity-insensitive applications. On the contrary, p-ECC-
O is preferred when we run capacity-sensitive but latency-
insensitive applications. More results about the trade-off can
be found in Section 6.4.

4.3. p-ECC Initialization

In previous subsections, we have discussed how to detect
and correct position errors with pre-programmed p-ECC in a
racetrack memory stripe. The process of the pre-programming
is called p-ECC initialization in this work. Apparently, an
initialization is required after a racetrack memory is fabricated.
In addition, it is also needed whenever a racetrack memory
has to be flushed when uncorrectable errors happen or the
system is crashed. Since position errors may also happen
during initialization, extra effort is needed to ensure correct
p-ECC is programmed into racetrack memory.

A straightforward method is to “program-and-test” iterative-
ly. We take the case in Figure 6 as an example to describe this
process as follows:

• Step-1 p-ECC bits are written into the racetrack memory
stripe from the left most port sequentially.

• Step-2 These p-ECC bits are shifted step by step to the
right till they reach the right most two read ports for p-ECC
detection. During the shift process, p-ECC bits are read out
for testing by all ports along the stripe. If any unexpected
bits are detected, the initialization process restarts.

• Step-3 These bits are shifted to the left most port step by
step, and the a similar test in Step-2 is performed during
shifting.

• Step-4 Step-2 and Step-3 are repeated for enough rounds to
ensure that p-ECC bits are correctly programmed.

For a racetrack memory stripe with 64 data domains, eight
access ports, the error rate of initializing a SECDED p-ECC
can be reduced to lower than 10−100 after one iteration. The
expected latency of completing this initialization process is
about 1200 cycles. Thus, the total initialization time for a
128MB racetrack memory should be less than 20ms.

700

5. Position Error Aware Shift Architecture

In this section, we first introduce how to extend a shift con-
troller to support STS and p-ECC. Then, we define a concept
called “safe distance" and propose a shift architecture under
constraint of safe distance.

5.1. Error Aware Shift Controller

The overview of an error aware shift controller is shown in
Figure 9. Those light-color blocks represent common com-
ponents required for any racetrack memory design. Those
dark-color blocks are extra components needed for position
error detection/correction.

Position bits……

……

…

…

…

…

Racetrack Memory Array

Read

Write

Shift

Data

Column decoder

R
o

w
 d

ec
o

d
er

Data

Address

Two-stage

logic

Shift

driver

VH

VL

Timer

Distance

Voltage

division
Driven pulse

Counter Intervals>

IntervalSequenceDistance

logic

=

+

=

…

Position bit

result

Position bit

result

Head

position

Controller

Head

position

registers

p-ECC

detection

Adapter

confirm

enable

position

update

current

Distance

STS Driver
Read/Write

Driver

Read/Write/

Shift pulses

Figure 9: Overview of error aware shift controller.

“STS driver" in the figure enables sub-threshold shift. Two-
stage logic and voltage division circuit are key designs in the
driver. The two stage-logic sets the timer according to its input
shift distance. The logic generates pulses according to timer
duration, and selects high/low voltages to shift domains with
different current density. Shift voltage is mainly controlled by
a voltage division circuit or charge-pump [28].

The component “p-ECC detection" is responsible for posi-
tion error detection. A customized cyclic adder is needed to
generate expected p-ECC bits based on current p-ECC bits and
the shift distance. We need add extra XOR gates for p-ECC
bits comparison. Comparison results will be feed back to the
controller. Any mismatch results in a detected error. Then, it
will generate an extra shift for error correction, accordingly.

The “adapter" in Figure 9 is used to optimize a shift opera-
tion under a certain constraint of MTTF. Details are introduced
in the next two subsections.

5.2. Safe Shift Distance

As introduced in our error model, the error rate of a shift
operation is also related to its shift distance. In Table 2, the
second column lists the 1-step error rates for different shift
distances, after applying SECDED p-ECC. In this example,
the segment length is set to eight. Thus, the distance of a
single shift operation varies from 1-step to 7-step. Given a
design goal of MTTF and using a specific p-ECC, we need to
limit the longest (maximum) distance that can be performed
by a single shift operation. This is called safe shift distance
(or safe distance for simplicity) in this work.

Since MTTF is a statistical value, the safe shift distance
is not only determined by the error rates but also related to
shift intensity. Statistically, if the average shift intensity (shift
operations per second) is denoted by Imean, the error rate of
one shift operation should not exceed 1/(TMT T F×Imean) in the
worst case. With given error rate, the MTTF target determines
the safe distance of a racetrack memory design. For the 64-
bit racetrack memory stripe used in previous example, the
relationship between safe distance and average shift intensity
is listed in Table 3 (a).

Table 3: (a) safe distance vs. shift intensity. (b) safe shift
sequences of a 7-step shift.

Dsa f e Error rate Intensity

1 1.37E-21 4.53G
2 1.19E-20 518M
3 5.59E-20 111M
4 1.80E-19 34.3M
5 4.47E-19 13.9M
6 9.96E-18 621K
7 7.57E-15 0.82K

Interval Sequence Lat.

2445260 7 9
76 4,3 13
26 3,2,2 16
12 2,2,2,1 19
9 2,2,1,1,1 22
6 2,1,1,1,1,1 25
3 1,1,1,1,1,1,1 28

Apparently, if the distance of a shift operation exceeds the
safe distance, it has to be completed with a sequence of multi-
ple shift operations. Given a safe distance Dsa f e, the optimal
shift sequence for a request of Dreq distance is calculated in a
flow described in Algorithm 1.

Algorithm 1: Select shift sequence for a long distance.
Input :Required shift distance Dre f , a safe error rate Psa f e
Output :Safe shift sequence S = {D0, ...,Dk}
Find out all possible shift sequences for Dre f ;
for each sequence do

calculate overall error rate of the sequence, p;
calculate overall latency of the sequence, l;

end
Output the sequence that has smallest latency when p < Psa f e.

In real cases, it is difficult to estimate average shift inten-
sity of a racetrack memory because it varies significantly for
different applications. A conservative solution is to estimate
the safe distance using highest access frequency of a racetrack
memory. For example, a 128MB racetrack memory used in
Section 6 can support up to 83M accesses per second. Thus,
the safe distance is set to 3 steps conservatively. In order to
provide a better estiamtion, we further propose an adaptive
shift architecture in the next subsection.

701

5.3. Adaptive Shift Architecture

Instead of using the safe distance of worst case all the time,
we can calculate run-time shift intensity to select a proper safe
distance for each shift operation. To simplify the discussion,
we assume that the racetrack memory services only one request
at one time. For a shift operation, the interval between it and
the last shift operation is denoted by Tinter. Then, the run-time
shift intensity can be calculated as 1/Tinter, which is used to
select the safe distance for the current shift operation. Note
that if multiple requests are serviced simultaneously by an
interleaving techniques, we only need to increase run-time
intensity accordingly.

Having the run-time safe distance, we can select a proper
shift sequence for any distance shift operations. For any shift
distance, we need to record the relationship between a shift
sequence and its interval threshold. Such a relationship for a
7-step shift operation is illustrated in Table 3. For example,
if the interval is only 3 cycles, this shift operation has be to
completed in seven times of 1-step shift. These relationships
for all shift distances are stored in “Adapter" as a table. A
counter is used to trace the interval. These components are
also illustrated in Figure 9. Since only one global table and
one counter is needed, the overhead is trivial.

The p-ECC considering safe distance is denoted as “p-ECC-
S” to simplify discussion in this work. Two approaches in this
subsection and the last one are labeled as “p-ECC-S adaptive”
and “p-ECC-S worst” in next evaluation section, respectively.

6. Evaluation
In this section, we evaluate the impact of our techniques on
reliability, area, performance, and energy of racetrack memory.

6.1. Experiments Setup

A full system simulator gem5 [6] is employed for performance
simulation. Its cache model is extended to support racetrack
memory, and to report detailed shift statistics. Given error
rates for different shift operations, we track run-time errors
that may happen during simulation of different workloads.
Both silent data corruption (SDC) and detected unrecoverable
errors (DUE) MTTF can be calculated based on error numbers
and simulated execution time.

The area and read/write/shift latency/energy for an ideal
racetrack memory is estimated from a circuit level model [46].
To evaluate area, timing, and energy overhead of error correc-
tion, we implement RTL codes for extra hardware and synthe-
size them with 45nm technology node. Then, these number
are applied on ideal racetrack memory model for comparison.

The detailed configuration of the simulated system is listed
in Table 4. For the last level cache (LLC) design, there are
three options of memory technologies: SRAM, STT-RAM,
and racetrack memory. The process technology node is 45n-
m for all memories. LLC area is kept similar for different
technologies. Paramters for SRAM and STT-RAM LLCs are
obtained from NVSim [12].

Racetrack memory device parameters are set by Table 1.
Data mapping is same to previous work [43]: A 64B cache line
is interleaved onto 512 stripes. Each stripe has 64 data domains
divided into eight segments (i.e. eight read/write ports) by

default. Note that the shift latency and energy numbers in
Table 4 are for 1-step shift distance. Baseline has same number
of ports as that using p-ECC (O/S). The benchmarks come
from PARSEC [5] suite. It provides multi-threading programs
for all domain from desktop to server applications [5].

Table 4: The detailed configurations of evaluation system.

Unit Configurations

CPU 4 single Alpha cores, 2GHz, 1-way issue

L1
split I/D, 32KB/32KB, 2-way, 64B,LRU,

private, R/W: 1/1-cycle, 0.074/0.074nJ, 23.4mW

L2
1MB shared by 2 cores, 4-way, 64B, LRU

R/W lat.: 7/7-cycle, R/W E: 0.407/0.386-nJ, 681.5mW

L3

16-way, 64B, share, LRU
SRAM STT-RAM RM

4MB, R/W:
24/22-cycle,

0.802/0.761-nJ
2673.5mW

32MB, R/W:
27/41-cycle,

1.056/2.093-nJ
862.2mW

128MB, R/W/S:
24/24/4-cycle,

0.956/0.952/1.331-nJ
948.4mW

Mem. Dual Channel DDR3, 1600MHz, 100-cycle, 38.10nJ, 12.8GB/s.

6.2. Reliability Evaluation

Figure 10 shows the SDC MTTF performance with different
protection mechanisms. The baseline is only 1.33µs. The
basic SED p-ECC can easily improve the SDC MTTF to
3.56×105s (about 10 hours). And SECDED p-ECC(-O) can
further improve it to more than 1000 years, which can ful-
fill the reliability target [8]. Since the position error aware
shift architecture further improves the reliability, p-ECC-S can
achieve SDC MTTF target. Thus we will only focus on DUE
MTTF as the reliability metric in the rest of this section.

1.0E-07

1.0E-04

1.0E-01

1.0E+02

1.0E+05

1.0E+08

M
T

T
F

 (
s)

Baseline SED p-ECC SECDED p-ECC

Figure 10: SDC MTTF under different protection.

The DUE MTTF performance is shown in Figure 11. Be-
cause the SED p-ECC can only detect the position error with-
out correction, the risk of DUE is high (MTTF is small). After
using SECDED p-ECC, the DUE MTTF is increased to about
105 seconds (about 1 day) on average. But it’s not good e-
nough. Thus, the safe distance is critical for a reliable shift
operation. As shown in Figure 11, the DUE MTTF after
p-ECC-S worst approach is increased to about 1.68× 1010s
(532-year). Even though the adaptive approach (i.e. p-ECC-S
adaptive), reduces it to about 2.18×109s (i.e. 69-year), it still
satisfies the 10-year DUE MTTF target [8].

To prove feasibility of p-ECC-S and p-ECC-O, we further
evaluate DUE MTTF of racetrack memory with various con-
figurations in Figure 12, under the same error rate. The data
length (number of data domains) of a stripe varies from 32 to
128. For a fixed data length, the number and size of a segment

702

1.0E-07

1.0E-03

1.0E+01

1.0E+05

1.0E+09

1.0E+13

M
T

T
F

 (
s)

SED p-ECC SECDED p-ECC SECDED p-ECC-O SECDED p-ECC-S worst SECDED p-ECC-S adaptive

10 years

Figure 11: DUE MTTF under different protection.

also change for different configurations (e.g. 16×2, 8×8 in
the figure). Note that the effect of adding more ports can be
estimated by increasing the segment number. Both methods
shows enough protection strength. For p-ECC-S, MTTF in-
creases as the segment length is reduced. Simply speaking, it
is because the average shift distance decreases with segment
length. With the constraint of safe distance, p-ECC-S always
works with different segment lengths. For p-ECC-O, MTTF
is almost kept same for different configurations because the
maximum shift distance is always limited to 1-step. That’s
why both methods provide same protection when Lseg = 2.
Note that p-ECC-O achieves the highest DUE MTTF, paying
cost in time/energy performance to use the overhead region.
In following subsections, we will explore their tradeoff among
performance, energy and reliability.

1.0E+06

1.0E+08

1.0E+10

1.0E+12

16x2 8x4 4x8 2x16 32x2 16x4 8x8 4x16 2x32 64x2 32x4 16x8 8x16 4x32 2x64

M
T

T
F

 (
s)

Segment number x Segment length

p-ECC-S adaptive p-ECC-O

32 bits 64 bits 128 bits

10 years

Figure 12: Sensitivity analysis of MTTF.

6.3. Area Evaluation

Overhead of position error detection/correction is induced by
extra domains to save p-ECC codes and control logic. Table 5
lists the overhead with the default configuration (Lseg = 8).
The time cost of detection and correction for p-ECC are about
0.3ns and 1.3ns. The capacity overhead from extra domains
is 17.6%. And the controller is small enough. The p-ECC-S
adaptive case costs more to detect/correct errors and has more
complex control, but achieves better time performance.

Table 5: Design overhead of position error protection

Detection/stripe Correction/stripe Area
Approaches Time Energy Time Energy Cell Controller

(ns) (pJ) (ns) (pJ) (%) (um2)

STS 0.82 1.31 0.82 1.31 N/A 1.94
p-ECC 0.34 3.73 1.34 6.16 17.6 54.0

p-ECC-O 0.34 3.74 1.34 9.90 15.7 54.0
p-ECC-S worst 0.38 3.75 1.35 6.17 17.6 54.3
p-ECC-S adaptive 0.61 3.86 1.37 6.19 17.6 109.4

In Figure 13, using the LLC as an example, we compare
the impact of our techniques on average area per bit for vari-
ous configurations. Note that the area of controller and other
peripheral circuitry is also counted. Baseline is for racetrack
memory without any protection. We didn’t include p-ECC
and "p-ECC-S worst" since they have same cell area overhead

as "p-ECC-S adaptive". When the segment length is smal-
l (Lseg < 8), area overhead is trivial for both p-ECC-S and
p-ECC-O. p-ECC-O becomes more efficient for a large seg-
ment length (Lseg ≥ 16). However, it induces more overhead
in performance and energy, which is discussed in the next
subsection.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

16x2 8x4 4x8 2x16 32x2 16x4 8x8 4x16 2x32 64x2 32x4 16x8 8x16 4x32 2x64

A
v
e
.
a
re

a
 p

er
 d

a
ta

 b
it

 (
F

2
/b

)

Segment number x Segment length

Baseline p-ECC-S adaptive p-ECC-O

32 bits 64 bits 128 bits

Figure 13: Sensitivity analysis for area overhead.

6.4. Performance and Energy Evaluation

Total shift latency for different workloads are compared in
Figure 14 with different protection techniques. The baseline
is a racetrack memory without any protection, which has no
constrain on maximum shift distance. Compared with the p-
baseline, p-ECC-O method introduces about 2× latency over-
head due to 1-step maximum shift distance. After considering
safe distance, "p-ECC-S worst" reduces latency overhead to
23%. And it is further reduced to 23% after using "p-ECC-S
adaptive".

0

0.5

1

1.5

2

2.5

N
o

rm
a

li
ze

d
 l

a
te

n
cy

Baseline p-ECC-O p-ECC-S adaptive p-ECC-S worst

Figure 14: Relative shift latency of racetrack memory.

For the LLC with different configurations, we compare
average shift latency in Figure 15. When the segment length is
small, “p-ECC-S adaptive" and p-ECC-O induce trivial extra
shift latency. When the segment is long, however, "p-ECC-S
adaptive" becomes more efficient because shift distance is
relaxed according to access intensity.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

16x2 8x4 4x8 2x16 32x2 16x4 8x8 4x16 2x32 64x2 32x4 16x8 8x16 4x32 2x64

N
o

rm
a

li
ze

d
 l

a
te

n
cy

Segment number x Segment length

p-ECC-S adaptive

p-ECC-O
32 bits 64 bits 128 bits

Figure 15: Sensitivity analysis of shift latency.

In Figure 16, we analyze the impact of position error protec-
tion on full system execution time for different workloads. To
provide a comprehensive comparison, we also present results
of using SRAM LLC, STT-RAM LLC, and an ideal racetrack
memory LLC, shift latency of which is entirely removed. The

703

workloads are mainly divided into two types: (1) capacity
sensitive and (2) capacity insensitive. For capacity insensitive
workloads (small working sets), execution time is reduced
little when the LLC capacity is increased after using racetrack
memory. For capacity sensitive workloads, execution time of
using racetrack memory is reduced substantially because of
less miss rate, compared to SRAM and STT-RAM.

0.5
0.6
0.7
0.8
0.9

1
1.1

N
o

rm
a

li
ze

d
 t

im
e

SRAM STT-RAM RM-Ideal
RM w/o p-ECC RM p-ECC-O RM p-ECC-S adaptive
RM p-ECC-S worst

Capacity sensitive Capacity insensitive

Figure 16: Overall execution time.

After using STS and p-ECC, execution time is increased due
to extra shift latency. Fortunately, the overhead is moderate.
As shown in Figure 16, p-ECC-O only increases the execution
time about 2% on average over that without any protection.
The reason is in two folds: (1) some cache accesses do not
need shift operations; (2)shift latency is not always on critical
path. For some latency sensitive workloads (e.g. streamcluter),
however, the overhead caused by error correction may even
offset the benefits of miss rate reduction. On average, “p-ECC-
S worst" and “p-ECC-S adaptive" only cause about 0.5% and
0.2% performance overhead, respectively.

0

5

10

15

N
o
rm

a
li

ze
d

 e
n

er
g
y SRAM STT-RAM RM-Ideal

RM w/o p-ECC RM p-ECC-O RM p-ECC-S adaptive

RM p-ECC-S worst
Capacity

sensitive

Capacity

insensitive

Figure 17: The shift energy of p-ECC.

To address energy overhead caused by position error pro-
tection, we compare LLC dynamic energy in Figure 17. Dy-
namic energy is similar for SRAM, STT-RAM and a racetrack
memory without protection. Obviously, dynamic energy in-
creases significantly after applying position error protection.
The p-ECC-O consumes 46% more dynamic energy than that
without any protection. The “p-ECC-S worst" and “p-ECC-S
adaptive" reduce dynamic energy overhead to 14% and 20%,
respectively.

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li

ze
d

 e
n

er
g
y

SRAM STT-RAM RM-Ideal RM w/o p-ECC

RM p-ECC-O RM p-ECC-S adaptive RM p-ECC-S worst

Capacity sensitive Capacity insensitive

Figure 18: Analysis of energy consumption benefits.

Figure 18 shows impact of error detection on total energy
benefits. The results include dynamic energy for read, write,
error detection, and leakage power for all cache levels, and dy-
namic energy of main memory. The average energy reduction
using STT-RAM L3 cache is 53.1% over SRAM. The energy

reduction for “p-ECC-O" and “p-ECC-S adaptive" are 53.1%
and 54.1%, respectively. Compared to STT-RAM, even con-
sidering energy overhead for error detection, we can still gain
benefits of using racetrack memory because of less accesses
to main memory.

7. Related Work
Recent research on error correction code (ECC) focuses on

how to reduce the overhead, such as VS-ECC [4], CPPC [21],
little-space ECC [31], etc. The work explores trade-off be-
tween reliability and area/performance/energy. [36, 15, 41, 18].
Besides conventional ECC for transient errors, other approach-
es have also attracted attention. For example, acoustic wave
detector based architecture [42] and light weight error detec-
tion method for GPU [17] have been proposed recently. In
addition, software based methods are also efficient to detect
[30, 10] and recovery [13, 11] different errors.

As different non-volatile memory technologies emerge, the
detection and correction of errors in NVM are well addressed
recently. Seong et al. proposed Tri-level cell of PCM and
SAFER for stuck-at errors to achieve reliable memory sys-
tem [34, 33]. Schechter et al proposed ECP to replace ECC
for resistive memory, in order to handle permanent errors [32].
Qureshi et al proposed adaptive ECC to reduce the overhead
of error correction for PCM [27].

However, since the shift operation is unique to racetrack
memory, detection and correction of position errors are not
covered in previous research yet. Thus, we model and define
the position errors, and propose corresponding error correction
mechanism.

8. Conclusions
Racetrack memory is attractive because of its ultra-high densi-
ty, fast access speed, and non-volatility. However, one obstacle
of using racetrack memory is that position errors happen dur-
ing shift operation. Our model demonstrates that the raw po-
sition error rate is unacceptable (upto 0.1% for a 7-step shift)
for modern memory design requirement. Unfortunately, con-
ventional ECC designed for bit errors cannot work efficiently
for position error, which leads to significant degradation of
reliability. To overcome this problem, we first introduce STS
technique to convert stop-in-middle errors into out-of-step
errors. Then,we further propose p-ECC to mitigate out-of-
step position errors. We explore trade-off between reliability
and design overhead with various p-ECC architectures. Ex-
perimental results show that we can improve SDC MTTF of
racetrack memory to more than 1000 years and DUE MTTF to
69 years using position error aware adaptive shift architecture
(p-ECC-S adaptive). The performance and energy overhead
are only 0.2% and 20%, respectively.

9. Acknowkedgements
This work is supported by National High-tech R&D Pro-
gram of China (No.2013AA013201), NSFC (No.61202072,
No.61471015, No.61373026). This work is also supported by
Huawei Shannon Lab Project and the Importation and Devel-
opment of High-Caliber Talents Project of Beijing Municipal
Institutions under contract YETP0102.

704

References
[1] “Amd eighth-generation processor architecture.” ADVANCED

MICRO DEVICES, October 2001. [Online]. Available: http:
//intel80386.com/amd/k8_architecture.pdf

[2] “Ultrasparc iv processor architecture overview technical whitepaper.”
SUN microsystems, February 2004. [Online]. Available: http:
//laser.cbs.cnrs.fr/IMG/pdf/SUN-usiv-arch.pdf

[3] “Intel pentium 4 processor on 90nm process datasheet.” INTEL,
February 2005. [Online]. Available: http://download.intel.com/design/
Pentium4/datashts/30056103.pdf

[4] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and
S.-L. Lu, “Energy-efficient cache design using variable-strength error-
correcting codes,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture, ser. ISCA ’11. New
York, NY, USA: ACM, 2011, pp. 461–472. [Online]. Available:
http://doi.acm.org/10.1145/2000064.2000118

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” Princeton Uni-
versity, Tech. Rep. TR-811-08, January 2008.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[7] D. Bossen, J. M. Tendler, and K. Reick, “Power4 system design for
high reliability,” Micro, IEEE, vol. 22, no. 2, pp. 16–24, Mar 2002.

[8] D. C. Bossen, “CMOS Soft Errors and Server Design,” IEEE 2002
Reliability Physics Tutorial Notes, Reliability Fundamentals, vol. 121,
pp. 07–1, 2002.

[9] C. Burrowes, A. P. Mihai, D. Ravelosona, J. V. Kim, C. Chappert,
L. Vila, A. Marty, Y. Samson, F. Garcia-Sanchez, L. D. Buda-Prejbeanu,
I. Tudosa, E. E. Fullerton, and J. P. Attane, “Non-adiabatic spin-torques
in narrow magnetic domain walls,” Nat Phys, vol. 6, no. 1, pp. 17–21,
01 2010.

[10] L. Chen and Z. Zhang, “Memguard: A low cost and energy
efficient design to support and enhance memory system reliability,”
in Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ser. ISCA ’14. Piscataway, NJ,
USA: IEEE Press, 2014, pp. 49–60. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2665671.2665683

[11] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An
architectural framework for software recovery of hardware faults,”
in Proceedings of the 37th Annual International Symposium
on Computer Architecture, ser. ISCA ’10. New York, NY,
USA: ACM, 2010, pp. 497–508. [Online]. Available: http:
//doi.acm.org/10.1145/1815961.1816026

[12] X. Dong, C. Xu, Y. Xie, and N. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 31, no. 7, pp. 994–1007, July 2012.

[13] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I.
August, “Encore: Low-cost, fine-grained transient fault recovery,”
in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-44. New York,
NY, USA: ACM, 2011, pp. 398–409. [Online]. Available: http:
//doi.acm.org/10.1145/2155620.2155667

[14] M. Hayashi, “Current driven dynamics of magnetic domain walls in
permalloy nanowires,” Ph.D. dissertation, Stanford University, 2006.

[15] R. Huang and G. E. Suh, “Ivec: Off-chip memory integrity protection
for both security and reliability,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: ACM, 2010, pp. 395–406. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1816015

[16] A. Iyengar and S. Ghosh, “Modeling and analysis of domain wall
dynamics for robust and low-power embedded memory,” in Proceed-
ings of the The 51st Annual Design Automation Conference on Design
Automation Conference. ACM, 2014, pp. 1–6.

[17] H. Jeon and M. Annavaram, “Warped-dmr: Light-weight error detec-
tion for gpgpu,” in Microarchitecture (MICRO), 2012 45th Annual
IEEE/ACM International Symposium on, Dec 2012, pp. 37–47.

[18] X. Jian and R. Kumar, “Adaptive reliability chipkill correct (arcc),” in
High Performance Computer Architecture (HPCA2013), 2013 IEEE
19th International Symposium on, Feb 2013, pp. 270–281.

[19] R. Kessler, “The alpha 21264 microprocessor,” Micro, IEEE, vol. 19,
no. 2, pp. 24–36, Mar 1999.

[20] H. Lee, P. Chen, T. Y. Wu, Y. Chen, C. Wang, P. Tzeng, C. H. Lin,
F. Chen, C. Lien, and M. J. Tsai, “Low power and high speed bipolar
switching with a thin reactive ti buffer layer in robust hfo2 based rram,”
in Electron Devices Meeting, 2008. IEDM 2008. IEEE International,
Dec 2008, pp. 1–4.

[21] M. Manoochehri, M. Annavaram, and M. Dubois, “Cppc: Correctable
parity protected cache,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ser. ISCA ’11.
New York, NY, USA: ACM, 2011, pp. 223–234. [Online]. Available:
http://doi.acm.org/10.1145/2000064.2000091

[22] C. McNairy and D. Soltis, “Itanium 2 processor microarchitecture,”
Micro, IEEE, vol. 23, no. 2, pp. 44–55, March 2003.

[23] I. M. Miron, T. Moore, H. Szambolics, L. D. Buda-Prejbeanu, S. Auf-
fret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, and
G. Gaudin, “Fast current-induced domain-wall motion controlled by
the rashba effect,” Nat Mater, vol. 10, no. 6, pp. 419–423, 06 2011.

[24] A. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. Das, “Ar-
chitecting on-chip interconnects for stacked 3d stt-ram caches in cmps,”
in Computer Architecture (ISCA), 2011 38th Annual International
Symposium on, June 2011, pp. 69–80.

[25] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an
architectural perspective,” in High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on, Feb 2005, pp. 243–
247.

[26] S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall
racetrack memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008.

[27] M. K. Qureshi, “Pay-as-you-go: Low-overhead hard-error correction
for phase change memories,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-44. New York, NY, USA: ACM, 2011, pp. 318–328.
[Online]. Available: http://doi.acm.org/10.1145/2155620.2155658

[28] A. Raychowdhury, B. Geuskens, J. Kulkarni, J. Tschanz, K. Bowman,
T. Karnik, S.-L. Lu, V. De, and M. Khellah, “Pvt-and-aging adap-
tive wordline boosting for 8t sram power reduction,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International, Feb 2010, pp. 352–353.

[29] W. Ryan and S. Lin, Channel Codes: Classical and Modern.
Cambridge University Press, 2009. [Online]. Available: http:
//books.google.com/books?id=0gwqxBU_t-QC

[30] S. K. Sastry Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V.
Adve, “mswat: Low-cost hardware fault detection and diagnosis for
multicore systems,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: ACM, 2009, pp. 122–132. [Online]. Available:
http://doi.acm.org/10.1145/1669112.1669129

[31] Y. Sazeides, E. Özer, D. Kershaw, P. Nikolaou, M. Kleanthous,
and J. Abella, “Implicit-storing and redundant-encoding-of-attribute
information in error-correction-codes,” in Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-46. New York, NY, USA: ACM, 2013, pp. 160–171.
[Online]. Available: http://doi.acm.org/10.1145/2540708.2540723

[32] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ecp, not
ecc, for hard failures in resistive memories,” in Proceedings of the
37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010, pp. 141–152. [Online].
Available: http://doi.acm.org/10.1145/1815961.1815980

[33] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee,
“Safer: Stuck-at-fault error recovery for memories,” in Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’43. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 115–124. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2010.46

[34] N. H. Seong, S. Yeo, and H.-H. S. Lee, “Tri-level-cell phase
change memory: Toward an efficient and reliable memory system,”
in Proceedings of the 40th Annual International Symposium
on Computer Architecture, ser. ISCA ’13. New York, NY,
USA: ACM, 2013, pp. 440–451. [Online]. Available: http:
//doi.acm.org/10.1145/2485922.2485960

[35] S.-S. Sheu, M.-F. Chang, K.-F. Lin, C.-W. Wu, Y.-S. Chen, P.-F. Chiu,
C.-C. Kuo, Y.-S. Yang, P.-C. Chiang, W.-P. Lin, C.-H. Lin, H.-Y. Lee,
P.-Y. Gu, S.-M. Wang, F. Chen, K.-L. Su, C.-H. Lien, K.-H. Cheng,
H.-T. Wu, T.-K. Ku, M.-J. Kao, and M.-J. Tsai, “A 4mb embedded
slc resistive-ram macro with 7.2ns read-write random-access time and
160ns mlc-access capability,” in Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2011 IEEE International, Feb 2011, pp.
200–202.

705

[36] J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient
die-stacked dram caches,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ser. ISCA ’13.
New York, NY, USA: ACM, 2013, pp. 416–427. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485958

[37] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. Stan, “Re-
laxing non-volatility for fast and energy-efficient stt-ram caches,” in
High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, Feb 2011, pp. 50–61.

[38] G. Sun, C. Xu, and Y. Xie, “Modeling and design exploration of fbdram
as on-chip memory,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, March 2012, pp. 1507–1512.

[39] Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design for
ultra high density and low power consumption,” in Design Automation
Conference (DAC), 2013 50th ACM / EDAC / IEEE, May 2013, pp.
1–6.

[40] S. Tang, A. Keshavarzi, D. Somasekhar, F. Paillet, M. Khellah, Y. Ye,
S. Lu, and V. De, “Floating-body dynamic random access memory
with purge line,” May 11 2006, uS Patent App. 11/289,621. [Online].
Available: http://www.google.com/patents/US20060098482

[41] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis,
and N. P. Jouppi, “Lot-ecc: Localized and tiered reliability
mechanisms for commodity memory systems,” in Proceedings
of the 39th Annual International Symposium on Computer
Architecture, ser. ISCA ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 285–296. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337159.2337192

[42] G. Upasani, X. Vera, and A. González, “Avoiding core’s due &
sdc via acoustic wave detectors and tailored error containment
and recovery,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 37–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665682

[43] R. Venkatesan, S. Ramasubramanian, S. Venkataramani, K. Roy, and
A. Raghunathan, “Stag: Spintronic-tape architecture for gpgpu cache
hierarchies,” in Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on, June 2014, pp. 253–264.

[44] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury,
K. Roy, and A. Raghunathan, “Tapecache: A high density, energy
efficient cache based on domain wall memory,” in Proceedings of the
2012 ACM/IEEE International Symposium on Low Power Electronics
and Design, ser. ISLPED ’12. New York, NY, USA: ACM, 2012, pp.
185–190.

[45] Z. Wang, D. Jimenez, C. Xu, G. Sun, and Y. Xie, “Adaptive placement
and migration policy for an stt-ram-based hybrid cache,” in High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE 20th International
Symposium on, Feb 2014, pp. 13–24.

[46] C. Zhang, G. Sun, W. Zhang, F. Mi, H. Li, and W. Zhao, “Quantitative
modeling of racetrack memory, a tradeoff among area, performance,
and power,” in Design Automation Conference (ASP-DAC), 2015 20th
Asia and South Pacific. IEEE, 2015, pp. 100–105.

[47] Y. Zhang, W. Zhao, D. Ravelosona, J.-O. Klein, J. Kim, and C. Chap-
pert, “Perpendicular-magnetic-anisotropy cofeb racetrack memory,”
Journal of Applied Physics, vol. 111, no. 9, pp. 093 925–093 925–5,
May 2012.

[48] W. Zhao, Y. Zhang, H.-P. Trinh, J.-O. Klein, C. Chappert, R. Mantovan,
A. Lamperti, R. Cowburn, T. Trypiniotis, M. Klaui, J. Heinen, B. Ocker,
and D. Ravelosona, “Magnetic domain-wall racetrack memory for high
density and fast data storage,” in Solid-State and Integrated Circuit
Technology (ICSICT), 2012 IEEE 11th International Conference on,
Oct 2012, pp. 1–4.

706

