
Pin Tumbler Lock: A Shift based Encryption Mechanism for Racetrack Memory

Hongbin Zhang1, Chao Zhang2, Xian Zhang2, Guangyu Sun2, and Jiwu Shu1

1Department of Computer Science and Technology, Tsinghua University, 100084, China
1Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

2Center for Energy-efficient Computing and Applications, Peking University, Beijing, 100871, China
(zhanghb10@mails.tsinghua.edu.cn, {zhang.chao, zhang.xian, gsun}@pku.edu.cn, shujw@tsinghua.edu.cn)

Abstract— As various non-volatile memory (NVM) technolo-
gies have been adopted in different levels of memory hierarchy,
the security issue of protecting information retained in NVM af-
ter power-off has become a new challenge, which results in exten-
sive research on data encryption for NVM. Previous encryption
approaches, however, have some limitations, such as high design
complexity and non-trivial timing and energy overhead. Recently,
an emerging NVM called racetrack memory (RM) has been wide-
ly investigated because of its advantages of ultra-high storage den-
sity and fast read/write speed. Besides these well-known advan-
tages, we observe that the tape-like structure of RM cell and its u-
nique shift operation can also be leveraged to facilitate NVM data
encryption. Base on this observation, we propose an efficient shift
based mechanism, named Pin Tumbler Lock (PTL), which com-
pletes encryption and decryption by shifting racetracks in several
nanoseconds. Experimental results demonstrate that our design
can achieve the same security strength of AES-128 with 3.1% per-
formance overhead and 3.7% energy overhead and 1.56% storage
cost and 1.6% area cost.

I. INTRODUCTION

Due to the well-known problem of Memory Wall, com-

puter architects are searching out for alternatives of tradi-

tional SRAM/DRAM memory technologies to bridge the in-

creasing gap between computing throughput and bandwidth of

memory hierarchy. To this end, various non-volatile memo-

ry(NVM) technologies, such as PCM, RRAM, STT-RAM and

FeRAM[11], have been extensively investigated because they

have advantages of high storage density, low standby power,

and fast access speed. In order to improve storage density,

many digital product manufacturers are using NVM as embed-

ded memory in cell phones, digital camera, pad and laptops

etc. With widely adoption of these NVMs in different levels of

memory hierarchy, a new security vulnerability has emerged.

Simply speaking, information is retained in NVM long after

the system is powered off. It enables an attacker with physical

access to the system to retrieve sensitive information.

To overcome this problem, various encryption approaches

for emerging NVMs have been proposed recently. There are

several approaches that directly use AES to encrypt data before

being stored in memory[5]. However, the AES process on crit-

ical path induces non-trivial timing overhead. The i-NVMM

method encrypts the main memory incrementally according to

the facts that the working set of application is much smaller

than its resident set[9]. And only non-working part of resident

set is encrypted to mitigate timing overhead. However, a crit-

ical problem of this mechanism is that sensitive information

in working set of the application is not protected. Zhang et
al proposed a PAD-XOR method to encrypt the main memo-

ry, which can provide run-time protection to all data in main

memory with moderate timing and power overhead[14]. But

this scheme focuses on PCM based main memory and it intro-

duces extra sub-PAD tables for encryption.

Recently, a new type of emerging NVM, racetrack memo-

ry (RM) has attracted attention of researchers. Previous re-

search has demonstrated that it can achieve ultra-high densi-

ty by integrating multiple domains in a tape-like namowire

as demonstrated in Figure 1. In addition, RM provides fast

read/write access speed comparable to SRAM and can be used

as cache and memory. As a type of NVM, RM also faces the

challenge of data encryption. However, the encryption timing

overhead of existing approaches is much higher than normal

data access latency. Fortunately we observe that the tape-like

structure of RM cell and its unique shift operation can also

be leveraged to facilitate NVM data encryption. Base on this

observation, we propose an efficient shift based mechanism,

named Pin Tumbler Lock (PTL), which completes encryption

and decryption by shifting racetracks in several nanoseconds.

At the same time, the sufficient security strength is achieved

with moderate design overhead.

The major contribution of this can be summarized as follow,

• To the best of knowledge, this is the first work that lever-

ages the RM structure and shifting operations for NVM

data encryption.

• Both encryption and decryption is completed with 4-stage

Feistel Network and shift operations. AES software or

hardware is avoided so that both design complexity and

overhead is significantly reduced.

• A clear attack model is presented and we prove that our

scheme can achieve the same or even higher security

strength as prior works using AES algorithm.

• Our encryption mechanism is compatible with RM design

for different levels of a memory hierarchy.

• Comprehensive evaluation is provided to show that our

work achieves less timing/energy/storage overhead than

existing approaches.

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

4B-3

354



Fig. 1. Cell of Racetrack Memory

Fig. 2. Pin Tumbler Lock. (a) With no key. (b) With wrong key. (c) With

right key. (d) Unlocked.[1]

II. BACKGROUND AND MOTIVATION

A. Racetrack Memory background

Racetrack memory is an emerging non-volatile memory

based on spintronic domain wall technology. A racetrack

memory array contains multiple tape-like cells and their ac-

cess ports. A racetrack cell is illustrated in Figure 1. It is a

magnetic nanowire, containing multiple domains isolated by

domain walls. The magnetization direction (arrows) of a do-

main is programmed to store either bit 1 or bit 0. The port can

only read/write the domain aligned to it. Thus, besides read

and write operations, a unique shift operation is introduced to

move a domain to an access port before being accessed.

Read operation can be performed by comparing the resis-

tance between Bit-line(BL) and Bit-line-bar(BLB), after turn-

ing on read-word-line (RWL). Write operation can be per-

formed by selectively turning on write-word-line (WWL).

Shift operations are based on a phenomenon called spin-

momentum transfer caused by shift current. The shift current

pulse is supplied by the transistors attached to the ends of the

stripe, controlled by shift-line (SL). All domain walls move in

the same direction with the same speed [15].

B. Pin Tumbler Lock

Pin tumbler lock is widely used in our daily life[1]. Like

Figure 2 shows, without a key in the lock, the driver pins (blue)

are pushed downwards, preventing the plug (yellow) from ro-

tating. When an incorrect key is inserted into the lock, the key

pins (red) and driver pins (blue) do not align with the shear

line; therefore, it does not allow the plug (yellow) to rotate.

Only the correct key can drive the pins and align the gaps be-

tween the key pins (red) and driver pins (blue) align with the

edge of the plug(yellow), and unlock the lock through rotating.

Normally, a data block is distributed on multiple racetrack

stripes to enable multiple bit access in parallel. As shown in

Figure 3, a 128-bit data block is stored on 128 stripes. In a

conventional RM design, all bits of the same block are stored in

the same position of each stripe, as shown in Figure 3(a). Thus,

we just need to apply the same shift command to each stripe for

each read/write operation. However, after all data are stored,

Fig. 3. Demonstration of shift based encryption scheme.(a)Before

encryption.(b)After encryption.

Fig. 4. Three-stage Feistel Network.

if we apply variant shift steps to these stripes on purpose, as

shown in Figure 3(b), these bits are hidden in stripes just like

using a pin tumbler lock. Without knowing the shift pattern of

each stripe, the attacker cannot access the data directly. Like

Figure 3 showed. Just like the Pin tumbler lock is locked, only

the right shift key can restore the data.

Since shift operations across multiple racetracks can be op-

erated in a few cycles in parallel, the encryption can be oper-

ated in ultrashort latency than software based methods or ex-

isting hardware based approaches. If shift currents of different

amplitudes are applied to different row according to the lin-

ear current-velocity relationship of shift operation, all shifts

can even be done in one cycle[10]. Which means the encryp-

tion can be completed with higher efficiency than conventional

methods. With appropriate design, the shift based encryption

method can provide security strength no less than AES-128

with less time and power consuming.

C. Random Number Generator

The random number generator(RNG) plays an importan-

t role in modern encryption system. RNG is a type of cir-

cuit which can generate random numbers using the physical

random source (e.g. the electric noise[8]) or cryptography al-

gorithm(e.g. the Feistel Network[6, 14, 7]). For the Feistel

Network(FN), it can also transform a data into a pseudo ran-

dom number and the transformation is invertible. In addition,

with enough number of FN rounds, an adversary cannot distin-

guish the output of FN from the truly random numbers without

acquiring enough plain-cipher queries[6]. Figure 4 shows the

logic for a three stage FN. FN is widely used including in the

Data Encryption Standard (DES).

With only shift based encryption, the schematic is not se-

mantically security and data with strong patterns will be easily

decrypted. For example, data with all ”0” or all ”1” will be the

same after being shifted. So, before the shift operation, we use

a four stage FN to transform data into random numbers.

4B-3

355



Fig. 5. The structure of secure racetrack on-chip memory.

III. PTL ENCRYPTION MECHANISM DESIGN

In this section, the detailed shift based encryption mecha-

nism will be discussed. In general, the architecture of PTL

encryption is shown in Figure 5. It is composed of racetrack

on-chip memory, volatile memory, FN encryption module and

other peripheral circuits. The racetrack on-chip memory is

divided into regions, each region has a shift key which is s-

tored in volatile memory. The volatile memory can be SRAM,

DRAM. All the shift keys are generated from randomizer when

the system is initialized. When the system is powered off, shift

keys will disappear and the user data on the RM is protect-

ed. The keys of FN are also stored in volatile memory. As

FN needs only several keys, the storage cost can be ignored.

The other part of the architecture will be introduced in latter

sections.

A. Attack Model

In this work, a reasonable attack model is based on the fol-

lowing assumptions to facilitate the attack.

• The attacker has the right to write specific data into RM

as a normal user. These data can be used in later attack.

• Racetrack memory can be physically obtained by attacker

either during runtime execution or after power-off.

• Racetrack memory can be plugged into an attack system

which can scan out all cipher-data for attack.

With these conditions, the goal of the attacker is to find out

sensitive plain-data from cipher-data retained in RM memory

using statistical or computing methods. It can be proved that

statistical method cannot work. The details can be found in

section IV-E. The basic flow of computation attack is as fol-

lows,

• Step1 The attacker write specific data into racetrack

memory in specific physical address.

• Step2 The attacker physically get the racetrack memory

after the system is powered-off.

• Step3 The attacker scan all the cipher-data from the race-

track memory and crack the plain-data through statistical

or mathematical method. Detailed mathematical descrip-

tion can be found in section IV-E.

Fig. 6. (a)Region with 128bit shift key(key-width is 1). (b)Region with

256bit shift key(key-width is 2). (c)Region with 384bit shift key(key-width is

3).

B. Encryption Region and Shift Key

Many researchers has made sufficient work on RM and a

quantitative modeling is introduced[12]. Our design is pro-

posed based on this model. We define an encryption region

as a basic unit which explain how the shift based encryption

scheme works. As shown in figure 2, the encryption region

has 128 racetracks and each racetrack has 64 bit. This region

has 1KB capacity in total and data is stored in stripe across

multiple racetracks. Each stripe has 16bytes which is defined

an encryption word. The plain data will be encrypted or de-

crypted when its racetracks shift forward or back. We define

the shift pattern as shift key and the key length of each race-

track is key-width. If key-width is 1, the racetrack has two shift

option: standby or shift one bit to right. So the total possibility

of cipher data is 2128.

Shift keys are created by Randomizer as system is initial-

ized. Shift key determines how racetrack shift its domain wall-

s during data encryption. With different key-width, the region

has different key length and security strength. Like the Figure

6 shows, the second region has shift key with 256 bits and each

racetrack has 2 of it(key-width is 2), then it has 4 shift options:

shift one bit to left, standby, shift one bit to right, shift two bits

to right. The third region has shift key with 384 bits and each

racetrack has 3 of it(key-width is 3), then it has 8 shift option-

s: from shifting 3 bits to left, to shifting 4 bits to right. The

yellow part of the region is redundant space to accommodate

the bits shifted out of the racetrack, which will be discussed in

section IV-D.

C. Redundant Domain Wall

The RM region needs extra redundant domain walls to con-

tain the bits shifted out. For the region which has 128bit key,

it need one stripe redundant bits on right. Like figure 3 shows.

For the region which has 256-bit key, it need three stripe re-

dundant bits, one of them on left and two of them on right.

The overhead of redundant bits will be mentioned in section V.

What should be pointed out is, the redundant bits should

be filled will data randomly during the system initialization.

Because if these bits are filled with data with regular pattern

when they leave factory, such as all ”0” or all ”1”, the attacker

has chance to crack out the shift key by the pattern of redundant

data after encryption.

D. Read and Write operation

As shown in Figure 5. All encryption components are in-

cluded in memory controller. In order to improve the perfor-

mance of encryption and decryption, the access of shift key and

4B-3

356



shift operation are all performed in logic firmware. When data

is read from or written into the memory, the key address and

the data address are decoded at the same time. Detailed Initial-

ization, read, write and shutdown procedures are described as

follows,

• Initialization During the initialization when system is

power-on, shift keys of all regions and global FN keys are

generated from randomizer and stored in volatile memo-

ry. The redundant domain walls are writen with random

data. And all the regions are locked with shift keys.

• Read operation Step1. The region shift back using shift

key and then read the cipher text out. Step2. Input the

cipher data to FN and get the plain data. Step3. Shift

forward racetracks using shift key.

• Write operation Step1. The region shift back using shift

key. At the same time, input plain data to FN and get

cipher data. Step2. Write the cipher text into the region.

Step3. Shift forward racetracks using shift key.

• Normal shutdown When the system is powered off nor-

mally, user has two options:

Option1. If user wants to keep data in RM for later use,

the stored shift keys and FN keys should be encrypted

using AES algorithm and stored in RM too. But note that

this encryption is not the responsibility of our work.

Option2. If the user do not want to keep data in NVM, no

extra operations are needed. All keys in volatile memory

disappear after power-off.

E. Security Proof

In this section, we will prove the equivalent security strength

of our design to that of AES-128. In brief words, we will prove

the following three statements: (1) our design is immune to ac-

tive attack (2) our design is immune to statistical attack (3) our

design achieve equivalent security strength of AES-128 under

computational attack.

As mentioned above, the attacker can scan the memory con-

tent after power-off, in which he has inserted ”flag data” to

perform the active attack. Note that all the shift-keys in the

volatile memory has disappeared. The attacker cannot infer

the shift states of the regions containing users’ data. In other

words, the shift-key of every region are ”isolated” in our design

because of the independence of process to generate shift-key.

In addition, the attacker cannot break the ciphertext by match-

ing. For example, he can compare the ciphertext of his inserted

data and user’s target data. If the ciphertexts are the same, we

can conclude they are the same data. This is infeasible because

even for the same data in different addresses, they are encrypt-

ed as different ciphertexts.

Now the attacker has to focus on the content of the tar-

get region. We remark that the attacker cannot break our de-

sign by statistical attack. Since our plaintext and shift states

are both random and independent, every bit in the ciphertex-

t is random and independent. For simplicity, let us focus on

the first two bits C1,i, C2,i in the i-th column of the region.

We denote the original plaintext as {Pij}. In the ciphertex-

t, there are four combinations of C1,i, C2,i: (C1,i, C2,i) =
(P1,i, P2,i), (P1,i−1, P2,i−1), (P1,i−1, P2,1), (P1,1, P2,i−1).
Note that when i = 1, Pj,i−1 denotes the waste bit which

is random. According to our assumption, Pi,j and Pi′,j′ are

random and independent. Thus, for all the four combination-

s, C1,i, C2,i are random and independent. It is quite similar to

prove that this property holds for any two bits in the ciphertext.

As a consequence, the attacker has to use computational at-

tack. To restore one region to the states before the encryp-

tion, the attacker should at least make 2k trials, where k repre-

sents the number of stripes in the region. This is because that

without enough query pairs, the attacker cannot distinguish the

ciphertext from the truly random number when the round of

Feistel network is larger than 4[6]. To obtain the query pairs,

the attacker has to try to restore the shift states. Otherwise,

using brute force to break the Feistel Network will cost more

computation (i.e. 2r∗k trials, r stands for the round of Feistel

network). In conclusion, 2k trials are needed to break our de-

sign, which means the security strength for our design is 2k .

If we set the number of stripes in one region more than 128,

our design can achieve equivalent security strength as that of

AES-128.

IV. EXPERIMENTAL RESULTS

In this section, the experimental setup is first introduced.

Then, we compare our design with other approaches. At last,

we provide a detailed sensitivity analysis with various config-

urations, including region size, key length. Under different

configuration, the storage cost, energy cost and performance

of our encryption mechanism are discussed.

A. Experiment setup

We evaluate the PTL encryption mechanism with a full sys-

tem cycle accurate simulator gem5[3]. With Gem5, many new

style memory can be simulated using its parameters. We sim-

ulate racetrack on-chip memory by modifying the read, write

and shift latency and power consumption parameters[13]. The

detailed configurations of evaluation system is described in Ta-

ble 1.

For workload, we select 13 workloads from Parsec3

benchmarks[2]. The benchmark programm domain include fi-

nancial analysis, computer vision, physical modeling, future

media, content-based search, etc., which representative main

aspect of computer application at present.

We make the evaluation using a 128M RM on-chip memory

as L3 cache. It is composed of basic region, which has 128

racetracks and each racetrack has 64 bits. The key-width is 1

and key length is 128bit. We compared results of four exper-

iments with different encryption designs, in respect of perfor-

mance, energy, storage and area overhead. The baseline is a

system without data encryption (labeled as None Enc). The

second system encrypts data with AES-128 through software

(labeled as AES-Enc)[4]. The third system employs PAD-

XOR based encryption scheme in Zhang’s work (labeled as

4B-3

357



TABLE I

THE DETAILED CONFIGURATIONS OF EVALUATION SYSTEM.

Unit Configurations

CPU 4 single Alpha cores,

2GHz, 1-way issue

L1 split I/D, 32KB/32KB,

2-way, 64B,LRU, private,

R/W: 1/1-cycle, 0.074/0.074nJ, 23.4mW

L2 1MB shared by 2 cores, 4-way,

64B, LRU, R/W lat.: 7/7-cycle,

R/W E: 0.407/0.386-nJ, 681.5mW

L3 16-way, 64B, shared, LRU,

RM,128MB, R/W/S:24/24/4-cycle,

0.956/0.952/1.331-nJ, 948.4mW

Mem. Dual Channel DDR3, 1600MHz,

100-cycle, 38.10nJ, 12.8GB/s.

Fig. 7. Normalized Performance Overhead.

RandPad)[14]. The forth system employs our PTL based en-

cryption scheme, together with a 4-stage FN. Note that we

do not include i-NVMM approach because it cannot achieve

a run-time protection to all data in memory.

B. Comparison of Experimental Results

1) Performance Evaluation: We compare the performance

overhead caused by different encryption scheme in Figure 7.

All results are normalized to baseline without using any en-

cryption techniques. Obviously, all the encryption scheme

have impact on latency of read and write.

For the case of AES, many benchmarks has obvious per-

formance overhead. Especially the ones which have intensive

memory access such as canneal, facesim, streamcluster and

vips degrade the performance heavily, the highest one reach up

to 64%. The average performance overhead is 16.7%. For the

case of RandPad, the situation is better and the highest over-

head is 40%. The average is 10.4%. For the case of PTL, it

is obvious that it has little performance overhead that no one

exceeds 12%. The average overhead is 3.1%.

The PTL has evident better performance than AES and

RandPad because PTL complete the encryption and decryp-

tion operation in just several FN transformation and shift cy-

cles, other than calculating cipher data using large amount of

cycles(eg. AES use 32 cycles[4, 5]).

Fig. 8. Normalized Performance Overhead of Different PTL key-width.

Fig. 9. Normalized Energy Overhead.

2) Performance Evaluation of Key-width: AS we mention

in section III-A, the region can use longer shift key to strength-

en their security. In Figure 8, PTL-1, PTL-2, PTL-3 mean that

key-width is 1,2,3 respectively. And so their key length is 128,

256, 384 respectively.

It obvious that, the longer the key is, the more the program-

m will degrade the performance. It is easy to understand that

the longer the shift keys each racetrack has, the more racetrack

length it need to shift during encryption and decryption opera-

tion. For some programm which has intensive memory access,

the performance degrade is more obvious. On average, the per-

formance overhead are 3.1%, 4.1% and 6.2% for PTL-1, PTL-

2 and PTL-3 respectively, which is moderate and acceptable to

users.

What should be pointed out is, this evaluation is based on

the hypothesis that multiple key bits in one racetrack is shifted

one bye one in every single cycle. As is mentioned before, if

shift currents of different amplitude are applied to each race-

track according to the linear current-velocity relationship of

shift operation, all shifts can be done in one cycle[10]. If this

mechanism is adopted, the performance of PTL has further s-

pace to enhance.

3) Energy Evaluation: We compare energy overhead

caused by encryption in Figure 9. All results are normalized to

baseline without using any encryption techniques. It is obvious

that AES scheme has most heavy energy overhead, RandPad

are moderate and PTL has the least energy overhead.

AES has the most heavy energy cost, several memory inten-

sive benchmarks such as canneal and streamcluster are most

4B-3

358



TABLE II

THE STORAGE AND AREA COST EVALUATION FOR 128MB CACHE.

Region Key Key Key Key Storage Redun. Area
Size Num. width length Storage Cost(%) Area Cost(%)

1KB 128K 1 128 2MB 1.56 2MB 1.6
2KB 64K 1 256 2MB 1.56 2MB 1.6
4KB 32K 1 512 2MB 1.56 2MB 1.6

1KB 128K 2 256 4MB 3.12 6MB 4.7
2KB 64K 2 512 4MB 3.12 6MB 4.7
4KB 32K 2 1024 4MB 3.12 6MB 4.7

1KB 128K 3 384 6MB 4.68 14MB 10.9
2KB 64K 3 768 6MB 4.68 14MB 10.9
4KB 32K 3 1536 6MB 4.68 14MB 10.9

TABLE III

THE STORAGE AND AREA COST EVALUATION FOR 4GB MAIN MEMORY.

Region Key Key Key Key Storage Redun. Area
Size Num. width length Storage Cost(%) Area Cost(%)

1KB 4M 1 128 64MB 1.56 64MB 1.6
2KB 2M 1 256 64MB 1.56 64MB 1.6
4KB 1M 1 512 64MB 1.56 64MB 1.6

1KB 4M 2 256 128MB 3.12 192MB 4.7
2KB 2M 2 512 128MB 3.12 192MB 4.7
4KB 1M 2 1024 128MB 3.12 192MB 4.7

1KB 4M 3 384 192MB 4.68 448MB 10.9
2KB 2M 3 768 192MB 4.68 448MB 10.9
4KB 1M 3 1536 192MB 4.68 448MB 10.9

obvious ones. The highest is around 50%. On average, the en-

ergy cost overhead of AES is 13%. For the case of RandPad,

the situation is better. On average, the energy cost overhead

of RandPad is 7.8%. PTL is the best one. The average energy

cost is 3.7%.

4) Storage Cost Evaluation: RM can be used in each hier-

archy of storage structure. Though we use RM based cache as a

case study, our PTL encryption method can be applied to other

memory architectures such as main memory or even storage.

So, we evaluate the key’s storage cost of 128MB cache and

4GB RM main memory respectively. We compose different

regions with different number of racetracks and each racetrack

has 64 bit. As all the regions in cache or memory has the same

FN 4-stage keys, we neglect the storage cost of these 4 keys.

The result is like Table 2 and Table 3 show.

For both 128MB cache and 4GB main memory, we find that

with the same key-width, different region size has the same

volatile storage cost. With the same region size, larger key-

width means longer key length, which means larger volatile

storage cost. For the region has 128bit key length, which is

proved in section 3 that has the same security strength with

AES-128, has the storage cost of 1.56%. Which is acceptable

in modern system.

5) Redundant Area Cost Evaluation: We also evaluate the

area cost caused by redundant bits which accommodate the

shifted bits in racetrack, for both 128MB cache and 4GB main

memory respectively. The result like Table 2 and Table 3 show.

For both 128MB cache and 4GB main memory, we find that

with the same key-width, different region size has the same

redundant bits ratio. Under the same region size, the larger

key-width the region has, the larger the area cost is. For the

128bit key, the area cost of 1.6%. Which is acceptable.

V. CONCLUSIONS

Racetrack memory is extractive because of its high densi-

ty and comparable read/write speed with SRAM, and non-

volatility. However, one obstacle of using racetrack as cache or

memory is the security vulnerability that data retain in memory

long after the power off. We propose a shift based encryption

scheme named PTL, which is proved has security strength not

less than AES-128. Experimental results show that PTL is ef-

fective to protect whole data online or off line, accompanied

with acceptable performance, storage and energy cost, outbal-

ance other conventional algorithms.

VI. ACKNOWLEDGEMENTS

This paper is supported by National Natural Science Foun-

dation of China (No. 61572045). This work is also support-

ed by National High Technology Research and Development

Program of China (Grant No. 2013AA013201). The paper

corresponding author is Jiwu Shu.

REFERENCES

[1] https : //en.wikipedia.org/wiki/Pin tumbler lock.

[2] C. Bienia, S. Kumar, J. P. Singh, et al. The parsec benchmark suite: Characterization
and architectural implications. In Proceedings of the 2013 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, pages TR–811–
08. Princeton University, Tech. Rep., 2008.

[3] N. Binkert, B. Beckmann, G. Black, et al. The gem5 simulator. In SIGARCH
Comput. Archit, pages 39(2):1–7, 2011.

[4] T. Kgil, L. Falk, and T. Mudge. Chiplock: support for secure microarchitectures. In
Acm Sigarch Computer Architecture News, pages 134 – 143. ACM, 2005.

[5] J. Kong and H. Zhou. Improving privacy and lifetime of pcm-based main memory.
In In Dependable Systems and Networks (DSN), page 333C342. IEEE/IFIP, 2010.

[6] J. Patarin. Luby-rackoff: 7 rounds are enough for 2 n (1- ε) security. In Advances
in Cryptology-CRYPTO 2003, pages 513–529. Springer, 2003.

[7] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali.
Enhancing lifetime and security of pcm-based main memory with start-gap wear
leveling. In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 14–23. ACM, 2009.

[8] L. H. H. S. Seong N H, Dong H W. Security refresh: prevent malicious wear-out and
increase durability for phase-change memory with dynamically randomized address
mapping. In International Symposium on Computer Architecture, pages 383–394.
ACM, 2010.

[9] Y. S. Siddhartha Chhabra. i-nvmm: A secure non-volatile main memory system
with icremental encryption. In The 39th International Symposium on Computer
Architecture (ISCA), pages 177–188. ACM, 2011.

[10] T. L. Ssp P, Hayashi M. Magnetic domain-wall racetrack memory. In Science, pages
320(5873):190–192, 2008.

[11] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Sai, M. Jiang, Y. Yan, and H. Yang. A 3us
wakeup time nonvolatile processor based on ferroelectric flip-flops. In European
Solid-State Circuits Conference (ESSCRIC), pages 149–152. IEEE, 2012.

[12] C. Zhang, G. Sun, W. Zhang, et al. Quantitative modeling of racetrack memory,
a tradeoff among area, performance, and power. In Proceedings of 20th Asia and
South Pacific Design Automation Conference (ASP-DAC 2015), pages 100–105,
2015.

[13] C. Zhang, G. Sun, X. Zhang, et al. Hi-fi playback: Tolerating position errors in
shift operations of racetrack memory. In Proceedings of the 42nd ACM/IEEE Inter-
national Symposium on Computer Architecture (ISCA 2015), pages 694–706. IEEE
Press, 2015.

[14] X. Zhang, C. Zhang, G. Sun, J. Di, and T. Zhang. An efficient run-time encryption
scheme for non-volatile main memory. In Proceedings of the 2013 Internation-
al Conference on Compilers, Architectures and Synthesis for Embedded Systems,
page 24. IEEE Press, 2013.

[15] Y. Zhang, W. S. Zhao, D. Ravelosona, et al. Perpendicular-magnetic-anisotropy
cofeb racetrack memory. In Journal of Applied Physics, page 093 925C093 925C5,
2012.

4B-3

359



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /BatangChe
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /CarbonBlock
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /CurlzMT
    /Dotum
    /DotumChe
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /HelveticaNarrow
    /HelveticaNarrowBold
    /HelveticaNarrowBoldLefty
    /HelveticaNarrowBoldOblique
    /HelveticaNarrowLefty
    /HelveticaNarrowOblique
    /Helvetica-Oblique
    /HGGothicE
    /HGGothicM
    /HGGyoshotai
    /HGKyokashotai
    /HGMaruGothicMPRO
    /HGMinchoB
    /HGMinchoE
    /HGPGothicE
    /HGPGothicM
    /HGPGyoshotai
    /HGPKyokashotai
    /HGPMinchoB
    /HGPMinchoE
    /HGPSoeiKakugothicUB
    /HGPSoeiKakupoptai
    /HGPSoeiPresenceEB
    /HGSeikaishotaiPRO
    /HGSGothicE
    /HGSGothicM
    /HGSGyoshotai
    /HGSKyokashotai
    /HGSMinchoB
    /HGSMinchoE
    /HGSoeiKakugothicUB
    /HGSoeiKakupoptai
    /HGSoeiPresenceEB
    /HGSSoeiKakugothicUB
    /HGSSoeiKakupoptai
    /HGSSoeiPresenceEB
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /MingLiU
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Gothic
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MS-UIGothic
    /MVBoli
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Regular
    /NewCenturySchlbk-Bold
    /NewCenturySchlbkBoldCn
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbkBoldLeftie
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewCenturySchlbkRomanCn
    /NewCenturySchlbkRomanLeft
    /NewGulim
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NSimSun
    /OCRAExtended
    /OCRB
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SimHei
    /SimSun
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /UnDotum
    /UnDotum-Bold
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


