
Liang Y, Wang S. Performance-centric optimization for racetrack memory based register file on GPUs. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 31(1): 36–49 Jan. 2016. DOI 10.1007/s11390-016-1610-1

Performance-Centric Optimization for Racetrack Memory Based

Register File on GPUs

Yun Liang ∗, Member, CCF, ACM, IEEE, and Shuo Wang

Center for Energy-Efficient Computing and Applications (CECA), School of Electrical Engineering and Computer

Sciences, Peking University, Beijing 100871, China

E-mail: {ericlyun, shvowang}@pku.edu.cn

Received September 9, 2015; revised December 3, 2015.

Abstract The key to high performance for GPU architecture lies in its massive threading capability to drive a large number

of cores and enable execution overlapping among threads. However, in reality, the number of threads that can simultaneously

execute is often limited by the size of the register file on GPUs. The traditional SRAM-based register file takes up so large

amount of chip area that it cannot scale to meet the increasing demand of GPU applications. Racetrack memory (RM) is a

promising technology for designing large capacity register file on GPUs due to its high data storage density. However, without

careful deployment of RM-based register file, the lengthy shift operations of RM may hurt the performance. In this paper,

we explore RM for designing high-performance register file for GPU architecture. High storage density RM helps to improve

the thread level parallelism (TLP), but if the bits of the registers are not aligned to the ports, shift operations are required

to move the bits to the access ports before they are accessed, and thus the read/write operations are delayed. We develop an

optimization framework for RM-based register file on GPUs, which employs three different optimization techniques at the

application, compilation, and architecture level, respectively. More clearly, we optimize the TLP at the application level,

design a register mapping algorithm at the compilation level, and design a preshifting mechanism at the architecture level.

Collectively, these optimizations help to determine the TLP without causing cache and register file resource contention and

reduce the shift operation overhead. Experimental results using a variety of representative workloads demonstrate that our

optimization framework achieves up to 29% (21% on average) performance improvement.

Keywords register file, racetrack memory, GPU

1 Introduction

Modern GPUs employ a large number of simple, in-

order cores, delivering several TeraFLOPs peak perfor-

mance. Traditionally, GPUs are mainly used for super-

computers. More recently, GPUs have penetrated mo-

bile embedded system markets. The system-on-chip

(SoC) that integrates GPUs with CPUs, memory con-

trollers, and other application-specific accelerators are

available for mobile and embedded devices. The ma-

jor SoCs with integrated GPUs available in the mar-

ket include NVIDIA Tegra series with low power GPU,

Qualcomm’s Snapdragon series with Adreno GPU, and

Samsung’s Exynos series with ARM Mali GPU.

The key to high performance of GPU architecture

lies in the massive threading to enable fast context

switch between threads and hide the latency of func-

tion unit and memory access. This massive threading

design requires large on-chip storage support[1-7]. The

majority of on-chip storage area in modern GPUs is

allocated for register file. For example, on NVIDIA

Fermi (e.g., GTX480), each streaming multiprocessor

(SM) contains 128 KB register file, which is much larger

than the 16 KB L1 cache and 48 KB shared memory.

The hardware resources on GPUs include 1) regi-

sters, 2) shared memory, 3) and threads and thread

blocks. A GPU kernel will launch as many threads

Regular Paper

Special Section on Computer Architecture and Systems with Emerging Technologies

This work was supported by the National Natural Science Foundation of China under Grant No. 61300005.

A preliminary version of the paper was accepted by the 21st Asia and South Pacific Design Automation Conference (ASP-DAC
2016).

∗Corresponding Author

©2016 Springer Science +Business Media, LLC & Science Press, China

Yun Liang et al.: Performance-Centric Optimization for Racetrack Memory Based Register File on GPUs 37

concurrently as possible until one or more dimensions

of resource are exhausted. In this paper, we de-

fine thread level parallelism (TLP) as the number of

thread blocks that can execute simultaneously on GPU.

Though GPUs are featured with large register file, in

reality, we find that the TLP is often limited by the

capacity of register file. Table 1 gives the characteri-

stics of some representative applications from Parboil

and Rodinia benchmark suites on a Fermi-like archi-

tecture. The setting of the GPU architecture is shown

in Table 2. The maximum number of threads that

can simultaneously execute on this architecture is 1 536

threads per SM. However, for these applications, there

exists a big gap between the achieved TLP and the

maximum TLP. For example, one thread block of ap-

plication hotspot requires 15 360 registers. Given 32 768

registers budget (Table 2), only two thread blocks can

run simultaneously. This leads to a very low occupancy

as 2×256
1 536 = 33%, where the occupancy is defined as the

ratio of simultaneously active threads to the maximum

number of threads supported on one SM.

Table 1. Kernel Description

Application Source Block Size Number of Registers per Thread TLP Occupancy (%) Register Utilization (%)

hotspot Rodinia 256 60 2 33 93.75

b+tree Rodinia 256 30 4 67 93.75

histo final Parboil 512 41 1 33 64.06

histo main Parboil 768 22 1 50 51.56

mri-gridding Parboil 256 40 3 50 93.75

Table 2. GPGPU-Sim Configuration

Number of
compute

15

units (SM)

SM configuration 32 cores, 700 MHz

Resources per SM Max 1 536 threads, Max 8 thread blocks,
48 KB shared memory, 128 KB 16-bank
register file (32 768 registers)

Scheduler 2 warp schedulers per SM, round-robin
policy

L1 data cache 16/32 KB, 4-way associativity, 128 B
block, LRU replacement policy, 32
MSHR entries

L2 unified cache 768 KB size

To deal with the increasingly complex GPU appli-

cations, new register file design with high capacity is

urgently required. Designing the register file using high

storage density emerging memory for GPUs is a promis-

ing solution[8-9]. Recently, racetrack memory (RM) has

attracted great attention of researchers because of its

ultra-high storage density. By integrating multiple bits

(domains) in a tape-like nanowire[10], racetrack mem-

ory has shown about 28x higher density compared with

SRAM (static random access memory)[9]. Recent study

has also enabled racetrack memory for GPU register

file design[8]. However, prior work primarily focuses on

optimizing energy efficiency, leading to very small per-

formance improvement[8].

In this paper, we explore RM for designing high-

performance register file for GPU architecture. High

storage density RM helps to enlarge the register file ca-

pacity. This allows the GPU applications to run more

threads in parallel. However, RM-based design presents

a new challenge in the form of shifting overhead. More

clearly, for RM, one or several access ports are uni-

formly distributed along the nanowire and shared by all

the domains. When the domains aligned to the ports

are accessed, bits in them can be read immediately.

However, to access other bits on the nanowire, the shift

operations are required to move those bits to the nea-

rest access ports. Obviously, a shift operation induces

extra timing and energy overhead.

To mitigate the shift operation overhead problem,

we develop an optimization framework, which employs

three different optimization techniques at the applica-

tion, compilation, and architecture level, respectively.

High storage density RM allows high TLP. However,

high TLP may cause resource contention in cache and

register file. Thus, at the application level, we propose

to adjust the TLP for better performance through pro-

filing. At the compilation level, we design a compile-

time register mapping algorithm, which attempts to put

the registers that are used frequently together close in

the register file to reduce the shift operation overhead.

Finally, at the architecture level, we design a preshift-

ing mechanism to preshift the ports for the idle banks

to further reduce the shift operation overhead.

The key contributions of this paper are as follows.

• Framework. We develop a performance-centric

optimization framework for RM-based register file on

GPUs.

• Techniques. Three optimization techniques at the

application, compilation, and architecture level are de-

veloped.

38 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

• Evaluation. Experiments on a variety of appli-

cations show that compared with SRAM design, our

RM-based register file design improves performance by

21% on average.

2 Background

In this section, we first review the GPU architecture

using NIVIDIA Fermi architecture as an example. We

then introduce the basics of racetrack memory. Finally,

GPU register file designed based on racetrack memory

is presented.

2.1 GPU Architecture

Modern GPUs achieve high throughput thanks to

the massive threading feature. When an application is

launched on a GPU, hundreds or thousands of threads

can execute simultaneously. To support such a high

thread level parallelism, GPU has multiple streaming

multiprocessors (SMs) working in parallel. Each SM

contains an instruction cache, warp scheduler, L1 data

cache, register file, shared memory, and 32 small cores,

called streaming processors (SPs), as shown in Fig.1.

Within an SM, threads are often grouped as a warp,

which usually contains 32 threads. At any given clock

cycle, a warp that is ready for execution, is selected

and then issued to SPs by the warp scheduler. The SPs

in an SM work in the single instruction multiple data

(SIMD) fashion and they share the on-chip memory re-

sources including register file, shared memory and L1

data cache on an SM.

Warp is the thread scheduling unit. If a warp is

stalled due to the long latency operation (e.g., memory

operation), then the warp scheduler will switch the exe-

cution to other ready warps to hide the overhead. In

order to fully hide the stall overhead caused by the long

latency operations, GPU applications tend to launch

as many threads as possible. However, the capacity of

register file is limited, which constrains the TLP on the

GPU. Furthermore, due to the chip area, power and en-

ergy constraints, it is very difficult to enlarge the regi-

ster file using the current SRAM-based technology.

2.2 Basics of Racetrack Memory

Racetrack memory is an emerging non-volatile

memory, which is also known as spintronic domain wall

memory. Recently, it is becoming increasingly popu-

lar due to its high storage density[10-12] and low en-

ergy consumption. Compared with SRAM, racetrack

Port 0

Port 1

Warp 2, R2

Warp 1, R3

Warp 0, R4

Bank 0

Warp 3, R5

Warp 2, R6

Warp 1, R7

Warp 0, R0

Warp 3, R1

Warp 0, R8

Warp 3, R9

Warp 1, R2

Warp 0, R3

Warp 3, R4

Warp 2, R5

Warp 1, R6

Warp 0, R7

Warp 3, R0

Warp 2, R1

Warp 3, R8

Warp 2, R9

Bank N

Empty

Warp 3, R5

Write Buffer 0 Write Buffer N

Warp 3, R3

Warp 2, R1

Warp 1, R3

Warp 3, R5

Warp 3, R6

Warp 2, R1

Read Queue Read Queue

Region 0

Region 1

Port 0

Port 1

CUDA Kernel
A

Scheduler

Cluster Cluster

Blocks

SP SFU

Register File

L1 Cache

LSU

Warp Scheduler

SM SM

SM SM

SM SM

SM SM

⊲⊲⊲ ⊲⊲⊲ ⊲⊲⊲

⊲ ⊲ ⊲
⊲ ⊲ ⊲

Fig.1. Architecture of GPU with an RM-based register file.

Yun Liang et al.: Performance-Centric Optimization for Racetrack Memory Based Register File on GPUs 39

memory (RM) could achieve about 28x storage density

while keeping comparable access speed[9]. Moreover,

read and write operation could achieve about 2x and

5x energy reduction respectively[11]. In the following,

we will present the details of the basic operations of

racetrack memory.

Read and Write Operations. Analogous to accessing

the head of hard disk, one access head in RM can access

multiple bits. However, RM needs to shift the bit to the

head if the bit is not aligned to the port. RM stores mul-

tiple bits in tape-like magnetic nanowires called cells. A

cell is made of a nanowire (holding successive domains)

to save bits and several access ports to access them,

as shown in Fig.2. The “white bricks” represent the

domains and those separations are domain walls used

to isolate successive domains. Each access head has

two transistors T1 and T2, as outlined by the red dash

boxes. T1 is used to read. The magnetization direction

of each domain represents the value of the stored bit.

If the direction is anti-parallel to the reference domain

(grey bricks) in the access port, the value is “1”; else

it will be “0”. T2 is used to write bits into a domain.

When T2 is on, a crosswise current is applied on the

domain, and the required bit is shifted in just as a shift

operation.

BL
GND

SL
BLB

SL

Access Head 0 Access Head 1

Overhead

Domain
Domain Wall

T1

T2

T1

T2

Fig.2. Physical structure of a racetrack memory cell.

Shift Operations. Shift operation is an unique ope-

ration of racetrack memory. The shift operation is

based on a phenomenon called spin-momentum transfer

caused by spin current. The shift current provided by

shift control transistor (SL) drives all the domains in

a racetrack cell left and right. Note that several over-

head domains are physically assigned at either end of

the cell, in order to save valid domains with stored bits

when they are shifted out.

2.3 GPU Register File with Racetrack

Memory

Multi-Bank RM-Based Register File. In order to

support multi-read and multi-write operations, multi-

bank SRAM register file is widely adopted in high-

throughput processors. Compared with single-bank

multi-ported SRAM register file, it achieves higher per-

formance, lower power, and less area[9,12-13]. For in-

stance, the NIVIDA Fermi architecture employs a 16-

bank SRAM register file, where up to four read or write

operations could be accomplished at the same time for

register file. In this paper, we design RM-based register

file following the multi-bank architecture.

Fig.1 shows the architecture of RM-based register

file. It is 16-bank RM-based register file. For each

bank, it has a read request queue and a write buffer.

The read request queue is used to buffer read requests.

The write buffer is used to resolve the conflict between

the delayed write operation in RM and the immediate

write-back operation in GPU pipeline’s last stage. All

the read and the write requests will be arbitrated by

the request arbitrator to avoid bank conflicts and de-

termine the sequence for the requests. At any given

clock cycle, at most four read or write requests could

be served at the same time, which means up to four

banks can be accessed simultaneously.

Performance of RM-Based Register File. For

SRAM-based register file, each register could be ran-

domly accessed in any given clock cycle, while for the

RM-based register file, the lengthy shift operations of

RM would increase the register access latency. This la-

tency could be up to tens of cycles according to the dis-

tance between the target domains and the correspond-

ing access ports, and this could degrade the perfor-

mance of GPU with RM-based register file. Therefore,

we propose three optimization techniques in Section 4

to mitigate this problem.

3 Motivation

RM has high storage density, which means under

the same chip area budget, larger register file capacity

could be achieved. Moreover, larger register file capa-

city could allow more threads of GPU, unleashing per-

formance improvement by larger TLP. Table 1 shows

the maximum TLP of five benchmarks under different

sizes of register file. In order to quantify the potential

performance improvement by using RM-based register

file, we compare the performance of GPU in five appli-

cations under the same chip area budget 1○ for SRAM

and ideal RM-based register file 2○. As shown in Fig.3,

by using RM-based register file, we could potentially

1○The chip area budget is set according to the area of a 16-bank 128 KB SRAM register file as shown in Table 2.
2○The ideal RM-based register file is RM-based register file when the shift operation overhead is zero.

40 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

achieve up to 29% (on average 22%) performance im-

provement. The improvement is attributed to larger

TLP enabled by larger register file capacity. For exam-

ple, the TLP of application mri-gridding is increased

from 3 to 6 by doubling register file capacity. Note that

this improvement is the ideal performance improvement

by assuming the same access delay for SRAM and RM-

based register file and the shift operation overhead of

RM is zero. In this paper, an optimization framework

for RM-based register file on GPUs is proposed target-

ing at increasing performance. We will demonstrate

that by employing our proposed framework to optimize

RM-based register file, the achieved performance im-

provement is close to the ideal case.

ho
tsp

ot

b+
tre

e

his
to
_fi

na
l

his
to
_m
ain

mri_
gri
dd
ing

Ave
ra

ge

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

N
o
rm

a
li
z
e
d
 I

P
C

SRAM Ideal RM

Fig.3. GPU performance in different applications.

4 Optimization Framework

A preliminary version of this paper was reported in

[14]. In this paper, we propose an optimization frame-

work consisting of three performance-centric optimiza-

tion techniques at the application, compilation, and ar-

chitecture level.

4.1 Framework Overview

We develop an RM-based register file optimization

framework on GPU as shown in Fig.4. It employs

three performance-centric optimization techniques at

the application, compilation, and architecture level. At

the application level, we determine the TLP that does

not cause contention in neither register file nor cache

through profiling. At the compilation level, we design

a register mapping algorithm to reduce the number of

shift operations by analyzing the register access trace.

Finally, at the architecture level, we design a preshift-

ing mechanism for the register file request arbitrator to

preshift the ports for the idle banks. In the following,

we will describe the details for each technique.

TLP Optimization

Register Mapping

Bank Preshifting

Application Level

Compilation Level

Architecture Level

CUDA Kernel

Fig.4. Optimization framework.

4.2 TLP Optimization

By using RM-based register file, we can support

high TLP on the GPU. However, the previous study[15]

shows that due to the contention in caches, the maxi-

mum TLP is not always the optimal choice for per-

formance. Furthermore, using the RM-based register

file design, high TLP could lead to long shift distance,

which results in worse performance. Therefore, in this

subsection, we adjust TLP by modelling the resource

contention and shift operation overhead.

Cache Contention. RM-based register file allows

more threads blocks to be executed on each SM, which

increases the TLP of GPU. However, higher TLP may

cause cache contention and further degrades GPU per-

formance. To illustrate the performance degradation

problem caused by cache contention, we show the per-

formance and L1 data cache miss rate of two typical

kernels under different TLP numbers in Fig.5. Note

that to exclude the impact from the lengthy shift ope-

rations of RM, we set the shift operation overhead to

zero. From Fig.5(a), we can see that the performance

of kernel calculate temp monotonically increases as the

number of thread blocks increases, while the cache miss

rate remains almost the same. This means that for

kernel calculate temp, the increased TLP will not ag-

gravate cache contention, thus the best performance is

achieved by setting TLP to be the maximum number

of thread blocks per SM. As for kernel split sort, how-

ever, the maximum TLP cannot lead to the best per-

formance as shown in Fig.5(b). The best performance

is achieved when the number of thread blocks per SM

is set to be 5 but not 6. This is due to the aggra-

vated cache contention caused by higher TLP, which is

reflected by the increased cache miss rate. Therefore,

Yun Liang et al.: Performance-Centric Optimization for Racetrack Memory Based Register File on GPUs 41

based on the analysis of these two kernels, we conclude

that because of the cache contention overhead caused

by increased TLP, the maximum TLP cannot always

lead to the best GPU performance.

0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6

Number of Thread Blocks per SM

IP
C

0.5

0.6

0.7

0.8

0.9

1.0

L
1
 D

a
ta

 C
a
ch

e
 M

is
s

R
a
te

IPC Miss Rate

0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6

Number of Thread Blocks per SM

IP
C

0.80

0.85

0.90

0.95

1.00

L
1
 D

a
ta

 C
a
ch

e
 M

is
s

R
a
te

IPC Miss Rate

(a)

(b)

Fig.5. Performance and L1 data cache miss rate of two kernels.
Both IPC and cache miss rate values are normalized according
to the results when the number of thread blocks per SM is 1.
(a) calculate temp. (b) split sort.

Shift Operation Overhead. Higher TLP will lead to

more thread blocks present on GPU cores, which re-

quires more registers allocated in register file. Due to

the tape-like structure of RM, the maximum shift dis-

tance will be longer for RM. As Fig.6 shows, when the

TLP is increased from 2 to 4, the number of warp regi-

sters per bank is doubled, thus making maximum shift

distance increased from 4 to 8. The increased maximum

shift distance enlarges the RM working space, thereby

the read/write operations may be further delayed by

more shift operations. These delayed read/write op-

erations will cause performance degradation for GPU.

Therefore, in order to determine the TLP to achieve

optimal performance, we should also take into account

of the shift operation overhead.

TLP Optimization. To optimize the TLP to achieve

the best performance, we need to model both the cache

contention and the shift operation overhead. Because

the shift operation overhead is present in the register

file while the cache contention problem exists in L1 data

cache, we assume the shift operation overhead model is

independent of cache contention model. Therefore, we

model them separately and then combine them together

to optimize TLP.

Warp 1, R3

Warp 2, R2

Warp 3, R1

Warp 0, R4

Bank 0

Warp 3, R5

Warp 4, R4

Warp 5, R3

Warp 6, R2

Warp 2, R6

Warp 1, R7

Warp 0, R8

Warp 7, R1

Maximum

Shift
Distance

Bank 1

Maximum

Shift
Distance

Fig.6. Shift operation overhead caused by increased TLP.

First, the cache contention is modeled by the vari-

able Pcache(NTLP), which represents the performance

(IPC) under different TLPs but without shift operation

overhead, and NTLP is defined as the TLP value. We

obtain the Pcache(NTLP) value by using a profiling tech-

nique. More clearly, we profile the performance of each

benchmark under different TLP values. To make the

shift operation overhead to be zero, we set the number

of access ports of RM to be the same as the number of

data domains of racetrack, and thus no shift operation

is needed for read/write operations.

Second, the shift operation overhead is modeled

by the variable ∆Pshift(NTLP), which represents the

amount of performance (IPC) reduction when shift op-

eration overhead is considered, and it is calculated ac-

cording to the following equation:

∆Pshift(NTLP) = Pideal(NTLP)− PRM(NTLP). (1)

In this equation, Pideal(NTLP) represents the perfor-

mance (IPC) when both cache contention and shift

operation overheads are zero. We get the value of

∆Pshift(NTLP) by employing a profiling method. To

be more specific, we profile the performance results

of Pideal(NTLP) and PRM(NTLP) under different TLP

numbers. And then we calculate ∆Pshift(NTLP) accord-

ing to (1). Note that, to exclude the cache contention

overhead during profiling, we set the L1 data cache to

be hit at all the time.

42 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

Last, the performance of a benchmark considering

both cache contention and shift operation overhead is

calculated as

P (NTLP) = Pcache(NTLP)−∆Pshift(NTLP). (2)

To optimize TLP to achieve the best performance, we

calculate each P (NTLP) according to (2), and then find

the TLP value which leads to the best performance.

Overall, only a few times of profiling are needed for

each benchmark 3○.

4.3 Register Mapping Optimization

In this subsection, we design a compile-time regis-

ter mapping algorithm, which first analyzes the register

access trace and then attempts to put the registers that

are used frequently together close in the register file to

reduce the shift operation overhead. Fig.7(a) shows a

snippet of the register file access trace of a bank shown

in Fig.7(b). There are totally five registers (R0∼R4) ac-

cessed in the bank and the trace contains six accesses

to the registers. If we map the registers to the bank

simply in an ascending order of register index as shown

in Fig.7(b), the racetracks need 12 shift operations to

access the registers for this trace. The optimal mapping

of register is shown in Fig.7(c). By exchanging the posi-

tions of registers R0 and R4, the shift operations can be

reduced to 6. The warps in GPUs access the register file

almost every clock cycle. Hence, we need to carefully

map the registers to the physical address in racetrack

register file to reduce the shift operations and ensure

high throughput.

0. Warp 2, R2

1. Warp 3, R1

2. Warp 0, R4

3. Warp 3, R1

4. Warp 1, R3

5. Warp 0, R0

(c)(b)(a)

1(1)

5(3)

3(3)

Warp 3, R1

Warp 2, R2

Warp 1, R3

Warp 0, R4

Warp 0, R0

Warp 3, R1

Warp 2, R2

Warp 1, R3

Warp 0, R0

Warp 0, R4

4(2)

2(3)

1(1)

2(1)

4(2)

3(1)

5(1)

Fig.7. Comparison of different register mappings. (a) Register
access trace. (b) Direct register mapping. (c) Optimal register
mapping. For (b) and (c), each arrow is associated with m(n),
where m represents the m-th register access in the trace, and n

represents the number of shift operations.

4.3.1 Problem Formulation

In the following, we formulate the register mapping

problem. We observe that the register access traces of

different banks are disjoint, and thus different banks

can be modelled independently. Hence, next we will

discuss the register mapping for one bank. The same

techniques can be repeated for different banks.

Let T be the register access trace (sequence of regi-

ster access) generated by executing the GPU applica-

tion on the target architecture. We define a move from

register Ri to Rj if Rj is accessed immediately after

the access of Ri. We use Cij to represent the num-

ber of move from register Ri to Rj in the trace, where

i, j = 0, 1, 2, ..., Nr − 1, and Nr is the number of regis-

ters in a bank. Cij can be easily derived by traversing

the trace.

We define a mapping functionm(Ri) that maps regi-

ster Ri to a physical address in the register file as fol-

lows:

m(Ri) = p(Ri)×
Nd

Np

+ o(Ri),

where 0 < p(Ri) < Np and 0 6 o(Ri) < Nd

Np
. In

other words, p(Ri) determines which port’s region Ri is

mapped to and o(Ri) determines the offset of Ri in the

region. Each physical entry can only be allocated for

one register. Thus, ∀0 6 i, j 6 Nr−1,m(Ri) 6= m(Rj).

Then, we define the number of shift operations re-

quired for trace T as follows:

S =
∑

06i,j6Nr−1

Cij × d(m(Ri),m(Rj)), (3)

where d(m(Ri),m(Rj)) represents the shift operation

needed from the physical address of Ri to Rj within

a bank. The function d(m(Ri),m(Rj)) is defined as

follows:

d(m(Ri),m(Rj)) = |o(Ri)− o(Rj)|. (4)

Problem 1 (Shift Operation Minimization). Given

the register access trace T , find a mapping of the regi-

sters to the physical address in the bank (e.g., m(Ri))

such that S is minimized.

We solve Problem 1 in two phases. In the first phase,

we develop a register grouping algorithm that partitions

the registers into groups. The size of each group is Np

(the number of ports). In the second phase, we de-

velop a register arrangement algorithm that optimizes

3○The number of recurrence is bounded by the maximum TLP supported on the GPU. The maximum TLP is a hardware limit
for any generation of GPUs. For our platform, the maximum TLP is 8, which means at most 8 times of occurrence are needed for each
benchmark.

Yun Liang et al.: Performance-Centric Optimization for Racetrack Memory Based Register File on GPUs 43

the arrangement of registers within a bank. The first

phase determines the p(Ri) part and the second phase

determines the o(Ri) part in m(Ri) for each register,

respectively.

4.3.2 Register Grouping Algorithm

We split the objective function (3) into two parts

based on (4) as follows:

S =
∑

06i,j6Nr−1,o(Ri) 6=o(Rj)
Cij × d(m(Ri),m(Rj))+∑

06i,j6Nr−1,o(Ri)=o(Rj)
Cij × d(m(Ri),m(Rj))

=
∑

06i,j6Nr−1,o(Ri) 6=o(Rj)
Cij × |o(Ri)− o(Rj)|+∑

06i,j6Nr−1,o(Ri)=o(Rj)
Cij × |o(Ri)− o(Rj)|

=
∑

06i,j6Nr−1,o(Ri) 6=o(Rj)
Cij × |o(Ri)− o(Rj)|.

(5)

That is, the moves between two registers that share

the same offset to ports do not require shift operations.

This is because these registers can be accessed simul-

taneously via multiple ports in racetrack-based register

file without extra shift overhead.

Furthermore, given the register access trace T , the

total number of moves is a constant. We define it as

follows:

Q =
∑

06i,j6Nr−1 Cij

=
∑

06i,j6Nr−1,o(Ri) 6=o(Rj)
Ci,j+∑

06i,j6Nr−1,o(Ri)=o(Rj)
Ci,j .

(6)

From (5) and (6), we find that
∑

o(Ri)=o(Rj)
Ci,j is

negative correlated with S. Thus, we can minimize S

by maximizing
∑

o(Ri)=o(Rj)
Ci,j . The intuition behind

this is that if there are frequent moves between Ri and

Rj (e.g., Ci,j is high), then we should align Ri and Rj

to the same offset along two ports so that they can

be accessed simultaneously without shifting overhead.

In our racetrack-based register file design, each bank

is associated with Np ports. Thus, we need to parti-

tion the registers into groups of size Np. The registers

in each group g have a high number of moves (e.g.,∑
Ri,Rj∈g Ci,j) between them.

We build an undirected graph G = (V,E), where

vi ∈ V represents register Ri, |V | = Nr. The edges

are weighted using function W , where W is defined as

follows,

W (e(vi, vj)) = Ci,j + Cj,i.

Problem 2 (Subgraph Weight Maximization).

Given the graph G = (V,E), find a subgraph G′ =

(V ′, E′) where V ′ ⊆ V , E′ ⊆ E, |V ′| = Np, such that∑
∀e∈G′ W (e) is maximized.

The registers in subgraph G′ form a group and we

will distribute the Np registers in G′ across the Np ports

with the same offset.

Algorithm 1 describes the details of our register

grouping algorithm. It partitions the groups into ⌈Nr

Np
⌉

groups and each group has Np registers. Algorithm 1

repeatedly calls function FindMaxSubgraph to form

a group from G. Function FindMaxSubgraph is a

heuristic to Problem 2. It finds the nodes in a group

iteratively. It first finds the edge with the maximal

weight. Then, in each iteration, it will complement

the existing subgraph G′ with either one node (lines

21∼25) or two nodes (lines 26∼30) depending on which

results in larger weight (lines 31∼36). Each time when

FindMaxSubgraph is called, it returns a subgroup G′

with size Np. The registers in G′ are distributed across

the Np ports with the same offset. We assign the

port region (P (Ri)) for each register in G′ (lines 7∼9,

15∼17). As a byproduct of this process, we assign group

identifier for each group based on the sequence of the

formed group. Fig.8 illustrates Algorithm 1 using an

R4

R1

R3

R6

R9

R12

R10R7

R2

R5

R11
R8

R4

R1

R3

R6

R9

R12

R10R7

R2
R5

R11
R8

Find Max-Weighted

Cliques One by One

Register Grouping Algorithm Register Arrangement Algorithm

Partition

into Groups

Find

Best

Group

Mapping

Revert

Back

R1, R4,
R7, R10

R2, R5,
R8, R11

R3, R6,
R9, R12

R1, R4,
R7, R10

R2, R5,
R8, R11

R3, R6,
R9, R12

R3

R1

R2

R6

R4

R5

R9

R7

R8

R12

R10

R11

Fig.8. Illustration of register mapping algorithm.

44 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

example. In this example, Np = 4. We partition the

registers into three groups with the group size of 4.

Algorithm 1:1. Register Grouping Algorithm

input : G = (V, E)
output: m(Ri)

1 for t← 0 to ⌈Nr

Np
⌉ − 1 do

2 port num← 0;
3 group id = 0;
4 if |V | > Np then

5 G′(V ′, E′)← FindMaxSubgraph(G, Np);
6 foreach vi ∈ V ′ do

7 o(Ri)← offset;
8 p(Ri)← port num;
9 PortNum← port num+ 1;

10 end

11 Delete G′ from G

12 end

13 group id← group id+ 1;
14 else

15 G′(V ′, E′)← FindMaxSubgraph(G′ , n);
16 foreach vi ∈ V do

17 o(Ri)← group id;
18 p(Ri)← port num;
19 port num← port num+ 1;

20 end

21 end

22 end

23 FindMaxSubgraph(G = (V, E), Size){ V ′ ← ∅, E′ ← ∅;
24 while |V ′| 6 Size do

25 wd ← 0, we ← 0;
26 foreach vt ∈ V do

27 w ←
∑

vi,vj∈(Vs∪vt),i6=j Ci,j ;

28 if wd 6 w then

29 wd ← w;
30 vd ← vt;

31 end

32 end

33 foreach e(vm, vn) ∈ V do

34 w ←
∑

vi,vj∈(Vs∪(vm,vn)),i6=j Ci,j ;

35 if we 6 w then

36 we ← w;
37 Ve ← {vm, vn};

38 end

39 end

40 if wd > we and |Vs| 6 size− 1 then

41 V ′ ← V ′ ∪ vd;
42 V ← V − vd;
43 else if we > wd and |V ′| 6 size− 2 then

44 V ′ ← V ′ ∪ Ve;
45 V ← V − Ve;

46 end

47 end

48 end

49 E′ = {e(vi, vj)|vi, vj ∈ V ′, vi 6= vj};
50 Return G′ = (V ′, E′);
51 }

4.3.3 Register Arrangement Algorithm

Algorithm 1 determines the port region p(Ri) for

each register. In this subsection, we develop a register

arrangement algorithm that determines the offset o(Ri)

for each register.

Given Nr registers in a bank, there exist Nr! pos-

sible mappings of registers to the physical address in

the register file. For example, using racetrack mem-

ory, we can increase the capacity of the register file

from 128 KB to 256 KB. The racetrack-based regis-

ter file is designed using 16 banks and 8 ports (Np)

per bank as this design gives the best trade-off among

access latency, power and area as shown by prior

studies[8-9,11-12]. Under this setting, we have Nr = 64.

Obviously, it is intractable to enumerate all the possible

mappings (64!).

The registers are partitioned into groups by Algo-

rithm 1. More importantly, all the registers in the same

group share the same offset. Therefore, we can deter-

mine the offset of the groups and assign the offset of

the group for all the registers in it. By partitioning the

registers into Np groups, we reduce the size of mapping

problem from Nr to Nr

Np
. In our setting, the problem

size is reduced from 64! to 8!, which enables the enu-

meration for the best case.

Let Ω be the set of all the permutations of eight

groups. Let σ ∈ Ω, then σ[i] is the offset of the i-th

group. Algorithm 2 presents the details for register ar-

rangement algorithm. It finds the best mapping that

minimizes S ((3)) and returns m(Ri) for each register.

Fig.8 illustrates the register arrangement algorithm us-

ing an example. In this example, Nr = 12 and Np = 4.

By partitioning the registers into three groups, we can

easily determine the mapping for groups through enu-

meration (3!) and then derive the mapping for all the

registers.

Algorithm 2:1. Register Arrangement Algorithm

input : g(Ri), p(Ri)
output : m(Ri)

1 S ← +∞;
2 foreach enumeration of groups σ ∈ Ω do

3 S′ ←
∑

06i,j6Nr−1 Ci,j × |σ[g(Ri)]− σ[g(Rj)]|; if

S′ 6 S then

4 S ← S′;
5 foreach register Ri do o(Ri) = σ[g(Ri)];

6 end

7 end

// compute the final mapping function

8 foreach register Ri do m(Ri)← p(Ri)×
Nd
Np

+ o(Ri);

4.4 Preshifting Optimization

GPU register file adopts a multi-bank structure. At

any given clock cycle, only a small portion of register

file banks could be accessed for read or write operations.

Yun Liang et al.: Performance-Centric Optimization for Racetrack Memory Based Register File on GPUs 45

For instance, in NIVIDIA Fermi architecture, up to 4

out of 16 register file banks could be accessed simul-

taneously. In this paper, we define the banks that are

being accessed as busy banks, while the banks which

are not being accessed as idle banks. Fig.1 shows that

each bank of register file owns a read request queue and

a write buffer. The read requests and write requests to

be served in each bank are all stored in the correspond-

ing queue or buffer. Because the requests in each queue

or buffer are served in a first-in first-out (FIFO) fash-

ion, for a busy bank, the top request in the read request

queue or write buffer will be poped out and then served.

It is needed to note that the write requests have higher

priority than the read requests, and thus the write re-

quests will always be served before the read requests.

Because only 4 out of 16 banks of register file could

be served in any given clock cycle and the next accessed

register can be accurately determined by knowing the

top requests of each queue or buffer, we could take ad-

vantage of the idle banks to reduce shift operation over-

head by preshifting. A simple motivation example is

shown in Fig.9. As the figure shows, bank 0∼bank 4

are busy banks serving the read/write requests, while

the remaining idle banks are preshifting towards regis-

ters which are going to be accessed in the next. This

preshifting scheme could potentially reduce the number

of shift operations when the idle banks are carefully de-

ployed.

Preshifting Strategy. With the knowledge of the top

requests in each queue and buffer, we could determine

the next warp register to be served in the following

for each bank, which leaves us a good opportunity to

preshift the idle banks in advance before they are ap-

pointed to be busy banks. Therefore, we propose an

idle bank preshifting mechanism shown in Fig.10.

First, in any given clock cycle, after the four busy

banks are determined by the register file arbitrator,

each bank will be checked about whether it needs a shift

operation. If it is a busy bank, it will be read/written

or shifted depending on whether it needs shift, while if

the bank is an idle bank, it will also be checked about

whether it needs a shift operation. If it needs a shift

operation to align the register to corresponding access

port, the bank will shift one step towards access port;

otherwise it will do nothing. Overall, this opportunis-

tic preshifting policy makes the idle banks shift as much

as possible to keep the ready requests to be served as

early as possible, which could potentially reduce the

shift operation overhead.

Hardware Overhead of Preshifting Overhead. The

preshifting strategy is implemented as a control logic

in register file arbitrator. This control logic only needs

to know idle/busy state and the current access port

position of each bank. The hardware implementation

for this control logic is simple because only a few com-

parators and control state flip-flops are required. Then,

since the preshifting logic is dedicated for one bank, the

routing resource overhead is limited. Thus, the hard-

ware overhead incurred by incorporating our proposed

preshifting strategy for register arbitrator is negligible.

… …

Bank 0

Warp 14, R2

Warp 13, R3

Warp 12, R4

Warp 11, R5

Warp 10, R6

Warp 9, R7

Warp 0, R0

Warp 15, R1

Warp 8, R8

Warp 7, R9

Read

Warp 11, R5

Warp 17, R2

Warp 16, R3

Warp 15, R4

Warp 14, R5

Warp 13, R6

Warp 12, R7

Warp 3, R0

Warp 18, R1

Warp 11, R8

Warp 10, R9

Bank 3

Write

Warp 16, R3

Warp 18,

Warp 17,

Warp 16,

Warp 15,

Warp 14,

Warp 13,

Warp 4,

Warp 19,

Warp 12,

Warp 11,

Bank 4

Shift Toward

Warp 16, R4

Warp 13,

Warp 12,

Warp 11,

Warp 10,

Warp 9,

Warp 8,

Warp 15,

Warp 14,

Warp 7,

Warp 6,

Bank 15

Shift Toward

Warp 6, R9

Busy Banks Idle Banks

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

Fig.9. Example of opportunistically preshifting idle banks.

46 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

Busy Bank?

Bank ID

Need Shift? Need Shift?

Shift One Step
Towards Target

Yes No

Yes

Read/Write
Registers

No

Return

No

Fig.10. Flow of opportunistic preshifting idle banks.

5 Experimental Evaluation

We implement our racetrack-based register file de-

sign based on GPGPU-sim. We evaluate our technique

using applications from benchmark suites Rodinia and

Parboil as shown in Table 1. We extend GPGPU-sim

with racetrack memory model using a circuit-level race-

track memory simulator[9]. The design parameters of

racetrack-based register file are shown in Table 3. Race-

track memory incurs long write latency. To mitigate

this problem, similar to prior study[8], we employ a

write buffer to improve the writing efficiency. The write

buffer is 2 KB and each bank has two entries as shown

in Fig.1.

In the following, we perform three sets of experi-

ments. First, we demonstrate the performance im-

provement of our racetrack-based register file. Second,

we show the energy results. Third, we compare the area

scalability of SRAM and racetrack memory.

5.1 Performance Results

Fig.11(a) shows the performance improvement of

racetrack-based register file over default SRAM de-

sign. Our proposed optimization framework achieves

up to 29% (21% on average) performance improvement.

The reasons for the improvement are mainly two folds.

First, high-density racetrack-based register file doubles

the cache capacity (256 KB) compared with conven-

tional SRAM design (128 KB). The increased register

file enables the applications to execute more threads in

parallel. Fig.12 depicts the GPU occupancy improve-

ment, showing that the occupancy is increased from

46.6% to 80.0% on average. Second, the optimization

techniques used in our optimization framework have

greatly alleviated the shift operation overhead, leading

to a promising performance improvement.

In Section 4, we propose a framework which em-

braces three optimization techniques, TLP optimiza-

tion, register mapping, and preshifiting optimization.

In order to quantify the respective portions of contri-

bution from these proposed techniques, we break down

the contributions and show the results in Fig.11(d).

It shows that RM-based register file without using

the proposed method contributes to 18% performance

improvement, while our optimization framework con-

tributes to 82% performance improvement. To further

break down the contributions from each technique used

in our framework, we show that the TLP optimization,

register mapping, and preshifting optimization tech-

niques contribute to 8%, 54%, and 20% performance

improvement respectively.

Fig.11(b) shows the average number of shift oper-

ation has been reduced to 41% of the original num-

ber of shift operations by employing our optimization

framework. To differentiate the contributions from the

three optimization techniques, we show the contribu-

tion breakdown in Fig.11(e). As shown in the figure,

we can see that preshifting idle banks, TLP optimiza-

tion, and register mapping contribute to 17%, 30%, and

53% number of shift operation reduction respectively,

which matches the performance improvement contribu-

tion result we have concluded from Fig.11(d).

5.2 Energy Results

Fig.11(c) shows the energy consumption of RM-

based register file with and without our optimization

framework, and the value of energy consumption is nor-

malized according to the SRAM-based register file en-

ergy consumption. As shown in Fig.11(c), the energy

consumption has decreased by 33%∼53% (on average

43%) by employing our proposed optimization tech-

niques. In order to quantify how much our proposed

Table 3. SRAM, RM, and Write Buffer Operating Parameters

Register Capacity Number of Read Latency Write Latency Shift Latency Read Energy Write Energy Shift Energy Leakage

File (KB) Banks (ns) (ns) (ns) (pJ) (pJ) (pJ) (mW)

SRAM 128 16 0.31 0.31 - 218.88 057.28 - 12.31

RM 256 16 0.28 1.24 0.61 117.12 173.22 56.16 07.95

Write buffer 002 - 0.15 0.16 - 015.60 014.60 - 01.12

Yun Liang et al.: Performance-Centric Optimization for Racetrack Memory Based Register File on GPUs 47

calc
ulat

e_te
mp

find
Ran

geK

hist
o_fi

nal

hist
o_m

ain
spli

t_so
rt

Avera
ge

calc
ulat

e_te
mp

find
Ran

geK

hist
o_fi

nal

hist
o_m

ain
spli

t_so
rt

Avera
ge

calc
ulat

e_te
mp

find
Ran

geK

hist
o_fi

nal

hist
o_m

ain
spli

t_so
rt

Avera
ge

calc
ulat

e_te
mp

find
Ran

geK

hist
o_fi

nal

hist
o_m

ain
spli

t_so
rt

Avera
ge

calc
ulat

e_te
mp

find
Ran

geK

hist
o_fi

nal

hist
o_m

ain
spli

t_so
rt

Avera
ge

calc
ulat

e_te
mp

find
Ran

geK

hist
o_fi

nal

hist
o_m

ain
spli

t_so
rt

Avera
ge

1.3

1.1

0.9

0.7

0.5

0.3

0.1

(a)

N
o
rm

a
li
z
e
d
 I

P
C

SRAM RM with Optimization
1.0

0.8

0.6

0.4

0.2

0

(b)

N
o
rm

a
li
z
e
d
 N

u
m

b
e
r

o
f
S
h
if
ts

RM RM with Optimization

0.8

0.6

0.4

0.2

0

(c)

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

RM RM with Optimization
1.0

0.8

0.6

0.4

0.2

0

(d)
IP

C
 C

o
n
tr

ib
u
ti
o
n

 MappingRM TLP Preshift

1.0

0.8

0.6

0.4

0.2

0

(e)

S
h
if
t

R
e
d
u
c
ti
o
n

C
o
n
tr

ib
u
ti
o
n

 MappingTLP Preshift
1.0

0.8

0.6

0.4

0.2

0

(f)

E
n
e
rg

y
 R

e
d
u
c
ti
o
n

C
o
n
tr

ib
u
ti
o
n

 MappingRM TLP Preshift

Fig.11. Analysis of performance, number of shifts, and energy in different applications. (a) Performance. (b) Shift number. (c) Energy.
(d) Performance breakdown. (e) Shift number breakdown. (f) Energy breakdown.

method contributes to the reduced energy consumption,

we break down the energy contribution and show the re-

sults in Fig.11(f). As we can see, the emerging RM tech-

nology is the main factor bringing energy consumption

reduction, which contributes to 66% energy reduction.

Moreover, 44% energy consumption reduction comes

from employing our proposed optimization framework,

where preshifting idle banks, TLP optimization, and

register mapping contribute to 11%, 8%, and 15% en-

ergy reduction respectively.

5.3 Area Results

RM has high storage density compared with SRAM.

Thus, after doubling the register file size from 128 KB

to 256 KB by employing RM-based register file, the

chip area of RM-based register is only 55% of the

area of SRAM-based register file. This indicates that

within the same chip area budget, RM-based register

file could provide more register file capacity for GPU

and thus higher TLP. Therefore, RM-based register file

is a promising area-efficient solution for future GPU

register file.

1.0

0.8

0.6

0.4

0.2

0

O
c
c
u
p
a
n
c
y

RMSRAM RM with Optimization

calc
ulat

e_te
mp

find
Ran

geK

hist
o_fi

nal

hist
o_m

ain
spli

t_so
rt

Avera
ge

Fig.12. GPU occupancy in different applications.

48 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

6 Related Work

Recently, emerging memory technologies have at-

tracted a lot of attention in both industry and aca-

demic area. Jog et al. presented a technique to improve

STT-RAM based cache performance for CMP[16]. Top-

ics about using STT-RAM to architect last level cache

have been studied in [17-18]. Optimization techniques

at architecture and compilation level were proposed for

racetrack memory[11]. Chen et al. proposed a data

placement strategy to minimize the shift operations for

racetrack-based memory in general CPU[19]. However,

GPU and CPU have distinct architecture. Thus, these

techniques cannot be directly applied to GPU.

Emerging Memory Technology for GPU Cache.

There are a few proposals that explore emerging mem-

ory for GPU caches by utilizing its high storage density

and power efficient features. TapeCache[20], a cache de-

signed with racetrack memory, demonstrated the bene-

fits of racetrack-based cache design for GPUs. Venkate-

san et al. presented a detailed racetrack memory based

cache architecture for GPGPU cache hierarchies[12],

and their experiment results show substantial perfor-

mance and energy improvement.

Emerging Memory Technology for GPU Register

File. GPUs demand a large size of register file for

thread context switch. Racetrack memory is a good

candidate for designing GPU register file[8,12]. Mao et

al. presented a racetrack memory based GPGPU regi-

ster file[8]. They proposed to use a hardware scheduler

and write buffer to reduce energy consumption. Be-

sides the racetrack memory, Jing et al. proposed an

energy-efficient register file design for GPGPU based

on eDRAM and also developed a compiler-assisted reg-

ister allocation optimization technique[13,21]. However,

all the previous work using emerging technology for

GPU register file mainly focuses on optimizing area,

power and energy, resulting in no or little performance

improvement. In contrast, we focus on improving per-

formance for GPU applications by fully taking advan-

tage of the high storage density of racetrack memory.

We also propose a novel compile-time register mapping

algorithm to minimize the shift operations.

7 Conclusions

The massive threading feature has enabled GPU to

boost performance for a variety of applications. How-

ever, the number of simultaneously executing threads

in GPUs is often constrained by the size of the regis-

ter file and it could potentially be a serious bottleneck

for performance. Moreover, the widely used SRAM-

based register file does not scale well in power and area

when the register file size is increased. In this work,

we explored racetrack memory for designing high per-

formance register file for GPUs. The high storage den-

sity feature of racetrack memory increases the register

file capacity and subsequently enables more threads to

execute in parallel. We also developed an optimization

framework to minimize the shift operations to improve

GPU performance. Our experiments showed that our

racetrack-based register file can achieve up to 29% (21%

on average) performance improvement for a variety of

GPU applications.

Acknowledgments We thank the anonymous re-

viewers for their feedback.

References

[1] Gebhart M, Keckler S W, Khailany B, Krashinsky R, Dally

W J. Unifying primary cache, scratch, and register file

memories in a throughput processor. In Proc. the 45th An-

nual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), Dec. 2012, pp.96-106.

[2] Li X, Liang Y. Energy-efficient kernel management on

gpus. In Proc. the Design Automation and Test in Europe

(DATE), Mar. 2016.

[3] Liang Y, Huynh H, Rupnow K, Goh R, Chen D. Efficient

GPU spatial-temporal multitasking. IEEE Transactions on

Parallel and Distributed Systems, 2015, 26(3): 748-760.

[4] Liang Y, Xie X, Sun G, Chen D. An efficient compiler

framework for cache bypassing on GPUs. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and

Systems, 2015, 34(10): 1677-1690.

[5] Xie X, Liang Y, Li X, Wu Y, Sun G, Wang T, Fan D.

Enabling coordinated register allocation and thread-level

parallelism optimization for GPUs. In Proc. the 48th An-

nual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), Dec. 2015.

[6] Xie X, Liang Y, Sun G, Chen D. An efficient compiler frame-

work for cache bypassing on GPUs. In Proc. the Interna-

tional Conference on Computer Aided Design (ICCAD),

Nov. 2013, pp.516-523.

[7] Xie X, Liang Y, Wang Y, Sun G, Wang T. Coordinated

static and dynamic cache bypassing on GPUs. In Proc. the

21st IEEE International Symposium on High Performance

Computer Architecture (HPCA), Feb. 2015, pp.76-88.

[8] Mao M,Wen W, Zhang Y, Chen Y, Li H H. Exploration of

GPGPU register file architecture using domain-wall-shift-

write based racetrack memory. In Proc. the 51st Annual De-

sign Automation Conference (DAC), June 2014, pp.196:1-

196:6.

[9] Zhang C, Sun G, Zhang W, Mi F, Li H, Zhao W. Quantita-

tive modeling of racetrack memory, a tradeoff among area,

performance, and power. In Proc. the 20th Asia and South

Pacific Design Automation Conference (ASP-DAC), Jan.

2015, pp.100-105.

Yun Liang et al.: Performance-Centric Optimization for Racetrack Memory Based Register File on GPUs 49

[10] Parkin S S P, Hayashi M, Thomas L. Magnetic domain-wall

racetrack memory. Science, 2008, 320(5873): 190-194.

[11] Sun Z, Wu W, Li H. Cross-layer racetrack memory design

for ultra high density and low power consumption. In Proc.

the 50th Annual Design Automation Conference (DAC),

May 2013, Article No. 53.

[12] Venkatesan R, Ramasubramanian S G, Venkataramani S,

Roy K, Raghunathan A. Stag: Spintronic-tape architecture

for GPGPU cache hierarchies. In Proc. the 41st Annual In-

ternational Symposium on Computer Architecture (ISCA),

Jun. 2014, pp.253-264.

[13] Jing N, Shen Y, Lu Y, Ganapathy S, Mao Z, Guo M, Canal

R, Liang X. An energy-efficient and scalable eDRAM-based

register file architecture for GPGPU. In Proc. the 40th An-

nual International Symposium on Computer Architecture

(ISCA), Jun. 2013, pp.344-355.

[14] Wang S, Liang Y, Zhang C, Xie X, Sun G, Liu Y, Wang

Y, Li X. Performance-centric register file design for GPUs

using racetrack memory. In Proc. the 21st Asia and South

Pacific Design Automation Conference (ASP-DAC), Jan.

2016.

[15] Kayiran O, Jog A, Kandemir M T, Das C R. Neither more

nor less: Optimizing thread-level parallelism for GPGPUs.

In Proc. the 22nd International Conference on Parallel

Architectures and Compilation Techniques (PACT), Oct.

2013, pp.157-166.

[16] Jog A, Mishra A K, Xu C, Xie Y, Narayanan V, Iyer R,

Das C R. Cache revive: Architecting volatile STT-RAM

caches for enhanced performance in CMPs. In Proc. the

49th Annual Design Automation Conference (DAC), June

2012, pp.243-252.

[17] Samavatian M H, Abbasitabar H, Arjomand M, Sarbazi-

Azad H. An efficient STT-RAM last level cache architecture

for GPUs. In Proc. the 51st Annual Design Automation

Conference (DAC), May 2014, pp.197:1-197:6.

[18] Sun Z, Bi X, Li H H, Wong W F, Ong Z L, Zhu X, Wu

W. Multi retention level STT-RAM cache designs with a

dynamic refresh scheme. In Proc. the 44th Annual Inter-

national Symposium on Microarchitecture (MICRO), Dec.

2011, pp.329-338.

[19] Chen X, Sha E H M, Zhuge Q, Dai P, Jiang W. Optimiz-

ing data placement for reducing shift operations on domain

wall memories. In Proc. the 52nd Annual Design Automa-

tion Conference (DAC), June 2015, pp.139:1-139:6.

[20] Venkatesan R, Kozhikkottu V, Augustine C, Raychowdhury

A, Roy K, Raghunathan A. TapeCache: A high density, en-

ergy efficient cache based on domain wall memory. In Proc.

the International Symposium on Low Power Electronics

and Design (ISLPED), July 30-August 1, 2012, pp.185-190.

[21] Jing N, Liu H, Lu Y, Liang X. Compiler assisted dynamic

register file in GPGPU. In Proc. the International Sym-

posium on Low Power Electronics and Design (ISLPED),

Sept. 2013, pp.3-8.

Yun Liang obtained his B.S. degree

in software engineering from Tongji

University, Shanghai, and his Ph.D.

degree in computer science from Na-

tional University of Singapore, in

2004 and 2010, respectively. He was

a research scientist with Advanced

Digital Science Center, University of

Illinois Urbana-Champaign, Urbana, IL, USA, from 2010

to 2012. He has been an assistant professor with the

School of Electronics Engineering and Computer Science,

Peking University, Beijing, since 2012. His current

research interests include graphics processing unit (GPU)

architecture and optimization, heterogeneous computing,

embedded system, and high level synthesis. Dr. Liang

was a recipient of the Best Paper Award in International

Symposium on Field-Programmable Custom Computing

Machines (FCCM) 2011 and the Best Paper Award nomi-

nations in International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS) 2008 and

Design Automation Conference (DAC) 2012. He serves a

technical committee member for Asia South Pacific Design

Automation Conference (ASPDAC), Design Automation

and Test in Europe (DATE), International Conference

on Compilers Architecture and Synthesis for Embedded

System (CASES), and International Conference on Parallel

Architectures and Compilation Techniques (PACT). He is

the TPC subcommittee chair for ASPDAC 2013.

Shuo Wang received his B.S. degree

in electrical engineering from Nanjing

Agricultural University, Nanjing, in

2013 and his M.S. degree in electrical

engineering from the University of

Southern California, Los Angeles,

in 2014. Since 2015, he is a Ph.D.

candidate in Center for Energy-Efficient

Computing and Application (CECA), Peking University,

Beijing. His current research interests include compilation

techniques for heterogeneous computing platforms.

