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Abstract
Various key-value (KV) stores are widely employed for
data management to support Internet services as they offer
higher efficiency, scalability, and availability than relational
database systems. The log-structured merge tree (LSM-tree)
based KV stores have attracted growing attention because
they can eliminate random writes and maintain acceptable
read performance. Recently, as the price per unit capacity
of NAND flash decreases, solid state disks (SSDs) have
been extensively adopted in enterprise-scale data centers to
provide high I/O bandwidth and low access latency. How-
ever, it is inefficient to naively combine LSM-tree-based KV
stores with SSDs, as the high parallelism enabled within the
SSD cannot be fully exploited. Current LSM-tree-based KV
stores are designed without assuming SSD’s multi-channel
architecture.

To address this inadequacy, we propose LOCS, a sys-
tem equipped with a customized SSD design, which ex-
poses its internal flash channels to applications, to work with
the LSM-tree-based KV store, specifically LevelDB in this
work. We extend LevelDB to explicitly leverage the multi-
ple channels of an SSD to exploit its abundant parallelism. In
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addition, we optimize scheduling and dispatching polices for
concurrent I/O requests to further improve the efficiency of
data access. Compared with the scenario where a stock Lev-
elDB runs on a conventional SSD, the throughput of storage
system can be improved by more than 4× after applying all
proposed optimization techniques.

Categories and Subject Descriptors H.3.4 [Information
Storage And Retrieval]: Systems and Software

Keywords Solid state disk, flash, key-value store, log-
structured merge tree

1. Introduction
With the rapid development of Web 2.0 applications and
cloud computing, large-scale distributed storage systems are
widely deployed to support Internet-wide services. To store
the ultra-large-scale data and service high-concurrent ac-
cess, the use of traditional relational database management
systems (RDBMS) as data storage may not be an efficient
choice [15]. A number of features and functionalities of
RDBMS, such as transaction consistency guarantee and sup-
port of complicated SQL queries, are not necessary for many
web applications. Therefore, a new storage architecture, key-
value (KV) store, has emerged in the era of big data.

A key-value store maps a set of keys to the associated
values and can be considered as a distributed hash table.
Without having to provide features and functionalities usu-
ally required for a database system, the KV stores can offer
higher performance, better scalability, and more availability
than traditional RDBMS [37][29]. They have played a crit-
ical role in data centers to support many Internet-wide ser-
vices, including BigTable [18] at Google, Cassandra [28] at
Facebook, Dynamo [22] at Amazon, and Redis [4] at Github.

The B+ tree is a common structure used in the traditional
databases and some KV stores (e.g. CouchDB [1] and Toky-



oCabinet [8]), because its high fanout helps to reduce the
number of I/O operations for a query operation. However, it
is highly inefficient for using the data structure to support
random insertion and updates. When there are intensive mu-
tations to a data store, using the B+ tree would lead to a large
number of costly disk seeks and significantly degraded per-
formance. The log-structured merge tree (LSM-tree) [32] is
a data structure optimized for writes, including insertions,
modifications, and deletions. The basic idea is to transform
random writes to sequential writes by aggregating multiple
updates in memory and dumping them to storage as a batch.
Incoming data items are stored and sorted according to their
keys in a buffer reserved in the main memory. When the
buffer is full, all of its data will be written into storage as
a whole. There are many popular KV stores adopting the
LSM-tree-based data management, including BigTable [18],
Cassandra [28], Hbase [9], and LevelDB [10].

When KV stores were initially proposed, hard disk drives
(HDDs) were considered as its main target storage devices.
Recently, with the development of NAND flash technology,
the price per unit capacity of the flash-based solid state
disks (SSD) keeps decreasing. Thus, SSDs have become
increasingly popular in today’s data centers. Compared to
HDDs, SSDs provide much higher throughput and lower la-
tency, especially for random operations. However, SSDs also
have their own limitations: performance of random write
substantially lags behind that of sequential write operations
and read operations, mainly due to its incurred expensive
garbage collections [31]. As mentioned before, since the
LSM-tree-based KV stores can effectively eliminate random
writes, it proves promising to integrate LSM-tree-based KV
stores with NAND flash-based SSDs so that high throughput
can be achieved for both read and write I/O operations.

Although researchers have been aware of the potential
advantage of combining LSM-tree-based KV stores with
SSDs [11], to the best of our knowledge, this topic has not
been well studied in prior works. In fact, a simple integration
of these two techniques is not efficient. On the one hand, the
process of data movement in LSM-tree-based KV stores is
originally designed for HDDs rather than SSDs. Since an
HDD has only one disk head, the KV store serially issues
I/O requests to the HDD. We need to increase the concur-
rency level in order to take advantage of SSD’s performance
advantage on random read. On the other hand, the rich in-
ternal parallelism of SSDs has not yet been fully exploited.
Although the modern SSD usually consists of multiple chan-
nels, the SSD controller hardware provides only one block
device interface to the operating system, and the scheduling
and dispatching of I/O requests between internal channels
are hidden from the software level. This makes the LSM-
tree-based KV stores unaware of the SSD’s multi-channel
architecture, and the scheduling and dispatching decisions
made by the SSD controller are not optimized according to
the data access patterns from LSM-tree-based KV stores.

In order to address these issues, we propose to employ a
customized SSD, called SDF [33] that has become available
only recently, to work with a popular LSM-based KV store,
LevelDB in this work [10]. The SDF was originally designed
and adopted in data centers of Baidu, which is the largest
Internet search company in China. It provides a unique fea-
ture wherein the access to internal flash channels is open,
and can be managed by applications to fully utilize SSD’s
high bandwidth. In order to leverage this unique feature, we
modify LevelDB to apply a number of optimizations. At the
same time, we observe that the scheduling and dispatching
policies have a critical impact on the I/O performance in this
novel system. Thus, we study how to improve throughput
with optimized scheduling and dispatching policies, consid-
ering the characteristics of access patterns with LevelDB.
Our system is called LOCS, which is the abbreviation for
“LSM-tree-based KV store on Open-Channel SSD”.

The contributions of this work can be summarized as
follows:

• This is the first work to integrate an LSM-tree-based KV
store with an open-channel SSD whose internal channels
can be directly accessed in the applications.

• We extend the LevelDB to support multi-threaded I/O
accesses to leverage the abundant parallelism in SDF.
In addition, we optimize the write request traffic control
mechanism of LevelDB to take advantage of in-device
parallelism for a much-improved throughput.

• We study the impact of I/O requests scheduling and dis-
patching policies and present corresponding optimization
techniques to further improve the I/O performance.

• We provide extensive experimental results, which demon-
strate that LOCS can outperform the naive integration of
original LevelDB with a conventional SSD design with
similar hardware organization. The results also show that
the I/O performance can be further improved with our
optimization techniques for request scheduling and dis-
patching.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a review of LevelDB and a brief description
of the open-channel SSD design (SDF). In Section 3, we de-
scribe how to extend LevelDB so that it can work efficiently
with SDF. In addition, we propose several optimization tech-
niques for scheduling and dispatching polices to improve the
I/O performance. We also demonstrate the flexibilities pro-
vided by LOCS. Section 4 provides extensive experiments
and comparisons. We describe related literature in Section 5,
followed by conclusions in Section 6.

2. Background
In order to present the details of our design, we first provide
some background on the implementation details of LevelDB.
Then we provide a review of the design of the customized
open-channel SSD.



2.1 LevelDB
LevelDB is an open source key-value store that originated
from Google’s BigTable [18]. It is an implementation of
LSM-tree, and it has received increased attention in both
industry and academia [6][34][2]. Figure 1 illustrates the
architecture of LevelDB, which consists of two MemTables
in main memory and a set of SSTables [18] in the disk and
other auxiliary files, such as the Manifest file which stores
the metadata of SSTables.

MemTable

Write

Immutable
MemTable

Memory

Disk
Dump

……

…

Level 0

Level 1
10MB

Level 2 
100 MB

Compaction
Log

Manifest

Current

SSTable

Figure 1. Illustration of the LevelDB architecture.

When the user inserts a key-value pair into LevelDB, it
will be first saved in a log file. Then it is inserted into a sorted
structure in memory, called MemTable, which holds the
most recent updates. When the size of incoming data items
reaches its full capacity, the MemTable will be transformed
into a read-only Immutable MemTable. A new MemTable
will be created to accumulate fresh updates. At the same
time, a background thread begins to dump the Immutable
MemTable into the disk and generate a new Sorted String
Table file (SSTable). Deletes are a special case of update
wherein a deletion marker is stored.

An SSTable stores a sequence of data items sorted by
their keys. The set of SSTables are organized into a series
of levels, as shown in Figure 1. The youngest level, Level 0,
is produced by writing the Immutable MemTable from main
memory to the disk. Thus SSTables in Level 0 could contain
overlapping keys. However, in other levels the key range of
SSTables are non-overlapping. Each level has a limit on the
maximum number of SSTables, or equivalently, on the total
amount of data because each SSTable has a fixed size in a
level. The limit grows at an exponential rate with the level
number. For example, the maximum amount of data in Level
1 will not exceed 10 MB, and it will not exceed 100 MB for
Level 2.

In order to keep the stored data in an optimized layout,
a compaction process will be conducted. The background
compaction thread will monitor the SSTable files. When the
total size of Level L exceeds its limit, the compaction thread

will pick one SSTable from Level L and all overlapping
ones from the next Level L+1. These files are used as inputs
to the compaction and are merged together to produce a
series of new Level L+1 files. When the output file has
reached the predefined size (2 MB by default), another new
SSTable is created. All inputs will be discarded after the
compaction. Note that the compaction from Level 0 to Level
1 is treated differently than those between other levels. When
the number of SSTables in Level 0 exceeds an upper limit
(4 by default), the compaction is triggered. The compaction
may involve more than one Level 0 file in case some of them
overlap with each other.

By conducting compaction, LevelDB eliminates over-
written values and drops deleted markers. The compaction
operation also ensures that the freshest data reside in the
lowest level. The stale data will gradually move to the higher
levels.

The data retrieving, or read operation, is more compli-
cated than the insertion. When LevelDB receives a Get(Key,
Value) request, it will first do a look up in the MemTable,
then in Immutable MemTable, and finally search the SSTa-
bles from Level 0 to higher levels in the order until a matched
KV data item is found. Once LevelDB finds the key in a cer-
tain level, it will stop its search. As we mentioned before,
lower levels contain fresher data items. The new data will be
searched earlier than old data. Similar to compaction, more
than one Level 0 file could be searched because of their data
overlapping. A Bloom filter [14] is usually adopted to re-
duce the I/O cost for reading data blocks that do not contain
requested KV items.

2.2 Open-Channel SSD
The open-channel SSD we used in this work, SDF, is a
customized SSD widely deployed in Baidu’s storage infras-
tructure to support various Internet-scale services [33]. Cur-
rently more than 3 000 SDFs have been deployed in the pro-
duction systems. In SDF, the hardware exposes its internal
channels to the applications through a customized controller.
Additionally, it enforces large-granularity access and pro-
vides lightweight primitive functions through a simplified
I/O stack.

The SDF device contains 44 independent channels. Each
flash channel has a dedicated channel engine to provide
FTL functionalities, including block-level address mapping,
dynamic wear leveling, bad block management, as well as
the logic for the flash data path. From an abstract view of
software layer, the SDF exhibits the following features.

First, SDF exposes the internal parallelism of SSD to user
applications. As mentioned previously, each channel of an
SDF has its exclusive data control engine. In contrast to the
conventional SSD, where the entire device is considered as
a single block device (e.g., /dev/sda), SDF presents each
channel as an independent device to the applications (e.g.,
from /dev/ssd0 to /dev/ssd43). With the capability of
directly accessing individual flash channels on SDF, the user



application can effectively organize its data and schedule its
data access to fully utilize the raw flash performance.

Second, SDF provides an asymmetric I/O interface. The
read unit size is different from write unit size. SDF ag-
gressively increases the write unit size to the flash erase
block size (2 MB) and requires write addresses to be block-
aligned. Therefore, write amplification is almost eliminated
since no flash block will contain both valid and invalid pages
at the time of garbage collection. The minimal read unit is set
to the size of a flash page (8 KB), which keeps SSD’s inher-
ent capability of random read. In other words, SDF discards
its support for small random writes while keeping the ability
of random read, which is well matched to the access pattern
of LSM-tree-based KV store.

Third, the erase operation is exposed to the software as a
new command to the device. Erase is an expensive operation
compared to read or write. For example, it takes about 3 ms
to erase a 2 MB block. When an erase operation is in process
in a channel, it can significantly delay the service of regular
requests issued to the channel. Erase operations scheduled
by the conventional SSD controller are hidden from the
applications. They can cause unpredictable service quality
fluctuation, which is especially harmful for performance-
critical workloads. With this erase command, the software is
responsible for conducting erase operations before a block
can be overwritten. But it also gives software the capability
to schedule erase operations to minimize delay, improve
throughput, and alleviate collision with the service of high-
priority requests.

Fourth, a simplified I/O stack is designed specifically for
SDF. Linux builds a complicated I/O stack which is mainly
designed for a traditional low-speed disk. The layer of I/O
stack, such as the block layer, has become a bottleneck for
today’s high-performance SSD [16][17]. Experiments show
that the additional delay introduced by the software layer
could be as high as 12 µs on our servers. This overhead
is substantial with high-speed flash data accesses. Since the
SDF is customized for the LSM-tree-based KV store, most
functionalities of the file system become unnecessary. For
the sake of efficiency, we bypass most of the I/O layers in the
kernel and use the ioctl interface to directly communicate
with the SDF driver. The latency of SDF’s I/O stack is only
about 2 µs to 4 µs. SDF provides a user-space storage API
library for applications to exploit the features stated here.

3. Design and Implementation
In this section we first introduce the architectural overview
of our LOCS system. Then we describe how to extend the
original LevelDB design to facilitate concurrent accesses to
the multiple channels in the SDF. Following that, we analyze
the impact of request scheduling in LevelDB and dispatching
to the channels of SDF, and propose policies to improve
access efficiency.

3.1 Overall Architecture
As shown in Figure 2, the LOCS system is illustrated with
both software and hardware levels. The software level is
composed of four main layers: the LevelDB, the proposed
scheduler, the layer of storage API, and the SSD driver. As
mentioned in the previous section, LevelDB is a popular
LSM-tree-based KV store and is used in this work as a case
study. In order to enable LevelDB to work with the open-
channel SDF and improve its efficiency for high concurrent
accesses to SSD, we introduce several necessary modifica-
tions to LevelDB. The details are described in Section 3.2.
Note that the techniques proposed in this work can also be
applied to other LSM-tree-based KV stores.

Different from the traditional system design, a scheduler
is added between LevelDB and the layer of storage API.
The scheduler is dedicated to scheduling and dispatching re-
quests from LevelDB to various channels of SDF. Note that
the scheduler is not like the OS scheduler in the traditional
I/O stack. As introduced in Section 2.2, most functions in
the traditional I/O stack have been removed when the SDF
is employed. In addition, the OS scheduler is responsible for
I/O requests from all processes. On the contrary, the sched-
uler in Figure 2 only takes the requests from LevelDB into
consideration. Moreover, the erase operations for garbage
collection are also managed by the scheduler. The detailed
designs and request management policies will be described
in Section 3.3.

After the scheduling and dispatching, requests from Lev-
elDB will call the corresponding API for different opera-
tions, including read, write, and erase. Then, the SSD driver
is invoked to send these requests to the SSD controller in
the hardware device. Since the scheduling and dispatching
have been taken over by the scheduler in the software level,
the corresponding unit in the traditional hardware SSD con-
troller is reduced. The SSD controller is only responsible for
sending the requests to the corresponding channels accord-
ing to the instructions of the software scheduler. In addition,
since the erase operation is also explicitly issued from our
scheduler in the software level, the garbage collection func-
tion is not needed either. The other basic functions, such as
wear-leveling, ECC, and DRAM cache control, are still kept
in the SSD controller.

3.2 Extension of LevelDB
In this subsection we discuss how to extend the current
LevelDB to make it efficiently access the multiple channels
exposed by SDF.

3.2.1 Enabling Concurrent Access to Multiple
Channels

Although LevelDB supports multiple concurrent user queries,
there is only one background thread that dumps MemTables
to the storage device and handles the compaction process.
Such a design is sound for traditional systems with HDD
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Figure 2. The overall architecture of LOCS.

because there is only one access port in HDD. Due to the
latency of moving the disk head, using multiple threads for
SSTable writing and compaction can introduce interference
among requests from different threads and degrade I/O per-
formance. However, for storage systems based on SSD, the
seek time can be removed. For the SDF used in this work,
since the internal flash channels have been exposed to the
software level, it is necessary to extend the LevelDB design
to enable concurrent accesses to these channels.

First, we increase the number of Immutable MemTables
in memory to make full use of SDF’s 44 channels. As in-
troduced in Section 2, in the stock LevelDB there are only
two Memtables: one working MemTable and one Immutable
MemTable. The entire Immutable MemTable is flushed to
SSD in a single write request. If the working MemTable is
full while the Immutable MemTable is still being flushed,
LevelDB will wait until the dumping ends. Since one write
request cannot fill up all channels, we increase the upper
limit on the number of Immutable MemTables to store more
incoming data. When the working MemTable has accrued
enough updates and reached the size threshold (2 MB in
this work), it will generate one Immutable MemTable, set it
ready for write, and send it to the scheduler. With this mod-
ification, write requests produced from multiple Immutable
MemTables can be issued concurrently. We will show the
impact of the number of Immutable MemTables in Section 4.

When the scheduler receives a write request, it will insert
the write request into a proper request queue according to
the dispatching policy. As shown in Figure 2, there is one
I/O request queue for each flash channel. It means that all
requests in the queue are exclusively serviced by a single

flash channel. With an appropriate dispatching policy, the
access concurrency to multiple channels can be effectively
exploited. For the read and erase requests, they will be in-
serted into corresponding queues depending on the locations
of data to be accessed. For the write requests, they will be in-
serted into the suitable queues according to the dispatching
policy. It should be addressed that multiple compaction pro-
cesses can also be conducted in parallel if they are applied
to SSTables distributed over different channels.

3.2.2 Write Traffic Control Policy
The second modification of the LevelDB is concerned with
the write traffic control policy. The traffic control means that
LevelDB has the mechanism of limiting the rate of write
requests from users when the number of Level 0 SSTables
reaches a threshold. The purpose of this mechanism is to
limit the number of Level 0 SSTables, thereby reducing the
search cost associated with multiple overlapping Level 0
SSTables. In other words, the write throughput is traded for
the read performance.

There are several thresholds that control the number of
Level 0 SSTables. When the threshold kL0 Compaction

Trigger (4 by default) is reached, the compaction process
will be triggered. If the number of Level-0 SSTables can-
not be efficiently decreased in the compaction process and
reaches the second threshold kL0 SlowdownWritesTrigger

(set as 8 in the stock LevelDB), the LevelDB will enter
the sleep mode for one millisecond to reduce the receiv-
ing rate of write requests. However, if the number of Level-
0 SSTable keeps increasing and exceeds the third thresh-
old kL0 StopWritesTrigger (12 by default), all write
requests will be blocked until the background compaction
completes.

The write traffic control policy affects the write through-
put significantly. When the insertion of KV pair is blocked,
the write throughput degrades substantially. Considering
SDF’s multiple channel architecture, we adjust the write
traffic control policy to improve the throughput. First, we
increase the value of these thresholds, which are originally
optimized for HDDs. When there are multiple MemTables
flushed to SSD simultaneously, the threshold should not be
triggered too frequently. By increasing the threshold, we can
enlarge the intervals between the pausing. Second, we intro-
duce an additional background thread when the slowdown
condition is triggered. In traditional HDD, all read and write
I/O requests share the only disk head. Running multiple
compactions concurrently will cause random I/O problem.
However, the multiple channels in SDF make it feasible to
trigger multiple compactions at the same time. When the
user request is blocked, a single compaction thread cannot
utilize all channels effectively, i.e., some channels will be
idle. By creating an additional thread to do the compaction
during the pausing, we can reduce the number of files in
the Level 0 faster and mitigate the throughput loss brought
by the pausing. It should be mentioned that, if too many



threads for compaction are introduced, they will interfere
with the normal data access. Our experiments show an addi-
tional compaction thread is good enough to reduce through-
put fluctuation. Additionally, we do not need to block write
requests until all Level 0 SSTables are compacted. Instead,
we modify LevelDB to make sure that it will accept user
write requests again when the number of Level 0 SSTables
is less than the half of kL0 CompactionTrigger.

3.2.3 Write Ahead Log
LevelDB maintains one single log file to recover the MemTa-
bles in main memory when accidents like power-down hap-
pen. In the original LevelDB design, the log is written to
HDD using the memory-mapped file. The new updates are
appended to the current log file as continuous I/O requests.
This log strategy of using a single log file can seriously
impact the write throughput when there are intensive con-
current write requests. In this work we assume that we
have a small part of high-performance non-volatile mem-
ory (NVM), such as PCM or battery-backup DRAM, to
hold these logs. Since the logs can be discarded whenever
a MemTable is dumped to the SSD, the demand for storage
space on the non-volatile memory is moderate. For the ex-
ample of using SDF with 44 channels, we only need about
100 MB.1

3.3 Scheduling and Dispatching Policies
With the extension introduced in the last subsection, the
LevelDB can now work with the SDF. In LOCS, we find
that the scheduling and dispatching policies of write requests
have an impact on the throughput and working efficiency
of SSD. For example, if there are a large number of I/O
requests in one channel while other channels are idle, the
performance will be severely degraded. However, since we
can directly control the accesses to multiple channels of
SDF, it is possible to optimize scheduling and dispatching
with the guiding information from LevelDB. Thus, in this
subsection we study several different policies and discuss
how to improve the performance of our system.

3.3.1 Round-Robin Dispatching
Our baseline dispatching policy is the simple round-robin
(RR) dispatching, which uniformly distributes write requests
to all channels in the SSD. The write requests from LevelDB
are in the granularity of an SSTable, the size of which is
2 MB. We dispatch all write requests to each channel in
circular order.

This is similar to the design in the traditional hardware-
based SSD controller. For example, in the Huawei SSD,
which is used in our experiments, each large write request
from LevelDB is stripped over multiple channels to benefit
from parallel accesses. In our system, with the multiple
request queues, the case is a little different. A large write

1 Currently the write ahead logs are stored in DRAM.

request from LevelDB is issued to a channel, and its data
will not be striped. Thus, the requests are distributed to the
channels in the granularity of 2MB.

The round-robin dispatching has the advantage of sim-
plicity. Since the size of each write request is fixed, it works
efficiently with the case where the write requests are dom-
inant. However, when there are intensive read and erase re-
quests in the queues, the round-robin dispatching becomes
less efficient. This is because the dispatching of both types
of requests is fixed. Especially in the case where there are
several read/erase requests waiting in the same queue, it can
result in unbalanced queue lengths.

Figure 3(a) gives an example of round-robin dispatch-
ing. Suppose that there are three channels in the SSD. The
traces of 11 I/O requests are shown in Figure 3(c), including
6 write requests and 5 read requests. The third row shows
the channel address for a read request. Note that the chan-
nel addresses of read requests are already determined and
cannot be changed, but we have the flexibility to decide at
which channel each write request should be serviced. When
the round-robin dispatching is applied, all write requests are
dispatched to the channels uniformly in circular order. How-
ever, the round-robin dispatching causes the request queue
of Channel 2 to be much longer than the other two channels,
since four continuous read requests all fall into Channel 2.
Therefore, the request queues are unbalanced, which means
Channel 2 will take a longer time to handle I/O requests than
Channel 1 and Channel 3, and it is possible that Channel 1
and 3 will be idle while Channel 2 is still busy. In this situa-
tion, parallelism enabled by the multiple channels is not fully
exploited. In fact, we have observed that such an unbalanced
queue can severely impact the performance. The detailed ex-
perimental results are shown and discussed in Section 4.

3.3.2 Least Weighted-Queue-Length Write
Dispatching

In order to mitigate the unbalanced queue problem of round-
robin dispatching, we propose a dispatching policy based on
the length of request queues. The basic idea is to maintain
a table of weighted-queue-length to predict the latency of
processing all requests in these queues. Since there are three
types of requests (read, write, and erase) with various laten-
cies, we should assign different weights to the three types of
requests. Then, the weighted length of a queue can be repre-
sented as follows,

Lengthweight =
N∑
1

Wi × Sizei (1)

Note that N denotes the total number of requests in a
queue, and Wi and Sizei represent the weight and size of
each request, respectively. The weights are determined ac-
cording to the corresponding latency of each type of re-
quests. The sizes of both write and erase requests are fixed,
and only the size of a read request may vary. Then we select



a channel with the least value of the weighted-queue-length,
and insert the current write request from LevelDB to this
channel. Unlike the round-robin dispatching policy, the least
weighted-queue-length (denoted as LWQL) dispatching pol-
icy takes all three kinds of I/O requests into consideration.
Figure 3(b) is an example of using LWQL dispatching.

In this example, the weighted-queue-lengths of read and
write requests are 1 and 2, respectively. We notice that the
dispatching of the 10th and the 11th requests is different
from the RR policy, because the weighted queue length of
Channel 2 is not the least when the 10th request arrives.
Compared to the round-robin dispatching, it is apparent that
the queues become more balanced in terms of weighted
queue length. And the throughput of SDF can be improved
compared to the RR dispatching.
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Figure 3. Illustration of RR and LWQL dispatching.

3.3.3 Dispatching Optimization for Compaction
There are two types of write requests generated by the
LevelDB. Besides the write requests of dumping MemTa-
bles into Level 0, the other write requests are generated
by the compaction. We notice that the data access pattern
of the compaction is predictable. Therefore, we propose a
dispatching optimization for compaction. As mentioned in
Section 2.1, the compaction will merge SSTables within a
certain key range. The process includes both read and write
requests. Since the channel addresses of read requests are
fixed, if some input SSTables for one compaction are allo-
cated in the same channel, they have to be read in sequence,
resulting an increase of the latency of compaction. Figure
4(a) shows an example of this case. First, when a compaction
process is conducted, three SSTables, denoted as Level 0
“b∼d” (i.e., the SSTable whose key range is “b∼d” in Level
0), Level 1 “a∼b” and Level 1 “c∼d” will be read out from
SDF to the main memory, as shown in Step 1. Then a multi-
way merge sort is performed on these SSTables to generate
two new SSTables, Level 1 “a∼b” and Level 1 “c∼d.” After
the merge operation, they will be written back to the SDF,

as illustrated in Step 2. If we do not allocate these SSTa-
bles carefully, it is possible that the Level 1 “a∼b” will be
assigned to the Channel 1, which contains a Level 2 “a∼b”
SSTable. This means we have to read both of these SSTables
from the same channel in the next compaction, as shown in
Step 3. Thus the efficiency of compaction is compromised.

It is obvious that the allocation of new SSTables gener-
ated in current compaction will affect the efficiency of future
compaction. Thus, write dispatching optimization for com-
paction is needed to improve the efficiency of compaction.
The goal is to make sure that SSTables are carefully dis-
patched so that the SSTables with adjacent key ranges are
not allocated in the same channel. Consequently, we pro-
pose a technique to optimize dispatching for SSTables gen-
erated from compaction. The dispatching policy is based on
the LWQL policy and is described as follow.

• We record the channel location for each SSTable in the
Manifest file. The Manifest file also contains the set of
SSTables that make up each level, and the corresponding
key ranges.

• For each SSTable generated from compaction, we first
look for the queue with the shortest weighted-queue-
length as the candidate. If there are any SSTables in the
next level, of which the keys fall in the range of the four
closest SSTables, then this candidate queue is skipped.

• We then find the queue with the shortest weighted-queue-
length in the rest of the queues and check for the condi-
tion of key ranges, as in the previous step. The step is
repeated until the condition is met.

Figure 4(b) shows an example of this policy. Step 1 is
the same as 4(a). After Step 1, the compaction thread se-
lects the candidate queue for the newly generated SSTables
in Step 2. Supposing Channel 1 is selected for the Level
1 “a∼b” SSTable according to the LWQL policy, then the
thread will search for four nearest neighbors of Level 2. Con-
sequently, it will find Level 2 “a∼b” which means they will
probably be merged in future compactions. Thus Channel
1 is skipped, and it will find another candidate queue with
the least weighted-queue-length. Then Channel 2 is cho-
sen, where no neighbouring SSTables at Level 2 reside. As
mentioned before, the compaction operation will read all in-
volved neighboring SSTables into memory. Thus avoiding
SSTables with neighboring key ranges to stay in the same
channel effectively improves read performance, as shown
in the Step 3 of Figure 4(b). Similarly, the Level 1 “c∼d”
SSTable in memory will evade Level 2 “a∼b,” “c∼d,” “e∼f,”
and “g∼h” SSTables. A statistical experiment shows that
over 93% compaction operation in our workloads involve
no more than five SSTables, which means one SSTable will
be merged with four or fewer SSTables in the next level,
in most cases. Considering this fact, we set the searching
range to four nearest SSTables in both left and right direc-
tions. Note that such a technique cannot be applied to the tra-
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Figure 4. Illustration of dispatching optimization for compaction.

ditional hardware-based SSD controller because it does not
have enough information from the software level. It demon-
strates the flexibility of software-hardware co-optimization
provided by the scheduler in LOCS.

3.3.4 Scheduling Optimization for Erase
So far, the dispatching policy is only optimized for write re-
quests. Besides the dispatching, the scheduling of requests
can also impact the performance of the system. In this sub-
section we will discuss how to schedule the erase requests to
improve the throughput.

As mentioned in previous subsections, the dispatching of
erase requests cannot be adapted. However, since the erase
process is not on the critical path, the scheduling can be
adapted dynamically. For the LSM-tree-based KV stores, the
erase operations only happen after compaction. The SSTa-
bles used as inputs of compaction are useless and should be
erased. A straightforward method is to recycle these storage
spaces by erasing the SSTables right after the compaction.
However, such an erase strategy can degrade performance,
especially when there are intensive read operations. First, the
read operation may be blocked by the erase for a long period
of time due to long erase latency. Second, the queues can
become unbalanced because the dispatching policy for both

erase and read requests is fixed. An example is shown in in
Figure 5(a). The existence of one erase operation in Chan-
nel 1’s request queue results in a long delay of the following
two read operations.

The solution to this problem is to delay the erase re-
quests and schedule them when there are enough write re-
quests. This is because the write requests can help balance
the queue length. The key to this solution is to determine
whether there are enough write requests. In LOCS, we set up
a threshold THw for the ratio of write requests. The erase re-
quests are scheduled when the ratio of write requests reaches
the threshold. Note that the erase requests are forced to be
scheduled when the percentage of free blocks are lower than
a threshold. This design is similar to the policy of garbage
collection in a traditional hardware-based SSD controller.

Figure 5(b) shows that by removing this erase operation
from the request queue of Channel 1, the overall read delay
will be greatly reduced. Figure 5(c) shows a scenario where
the queues contain seven write operations. Each queue is
scheduled by the LWQL policy. It takes 12 time slots to pro-
cess the requests. When a delayed erase operation is inserted
into the request queue, as shown in Figure 5(d), the LWQL
policy ensures that the four write requests arriving after the
erase request are inserted to the shortest queues, making the



queues balanced without increasing the processing time. We
can see that the total time to complete all operations in Fig-
ure 5(a) and 5(c) is 19 without the erase scheduling, while it
reduces to 15 in Figure 5(b) and 5(d) when the optimization
is applied. Thus the overall throughput is improved.
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Figure 5. Illustration of scheduling optimization for erase.

4. Evaluation
In this section we describe the experimental setup for eval-
uation of LOCS and comprehensive evaluation results and
analysis.

4.1 Experimental Setup
We conducted experiments on a machine equipped with
SDF, the customized open-channel SSD. The configuration
of the machine is described in Table 1.

CPU 2 Intel E5620, 2.4 GHz
Memory 32 GB
OS Linux 2.6.32

Table 1. Evaluation platform configuration.

We used a PCIe-based SSD, Huawei Gen3, for compari-
son in the evaluation. In fact, the Huawei SSD is the prede-
cessor of SDF, which shares the same flash chips with SDF,
except that SDF has a redesigned controller and interface. In
Huawei SSD, data are stripped over its 44 channels with a
stripping unit of 8 KB. Table 2 shows its specification.

In the following experiments, “RR” denotes the round-
robin dispatching policy described in Section 3.3.1, “LWQL”
denotes the least weighted-queue-length dispatching policy
described in Section 3.3.2, and “COMP” denotes the dis-
patching optimization for compaction described in Section
3.3.3.

Host Interface PCIe 1.1 x8
Channel Count 44
Flash Capacity per Channel 16 GB
Channel Interface Asynchronous 40 MHz
NAND Type 25 nm, MLC
Page Size 8 KB
Block Size 2 MB

Table 2. Device specification of SDF and Huawei Gen3.

4.2 Evaluation Results
We compare the performance of the stock LevelDB running
on the Huawei SSDs and the optimized LevelDB running
on SDF. Figure 6(a) shows the comparison of I/O through-
put. The round-robin dispatching policy is used for the SDF.
The channel dispatching for Huawei SSD is implemented
within its firmware, and the SSTables generated by LevelDB
are stripped and dispatched to all the channels uniformly.
The results show that the I/O throughput can be significantly
improved on SDF with the optimized LevelDB for differ-
ent benchmarks with various get-put request ratios. On av-
erage, the I/O throughput can be improved by about 2.98×.
It shows that LOCS can exploit high access parallelism even
without any optimization of scheduling and dispatching poli-
cies. In the Huawei SSD, each large write request (2MB)
from LevelDB is stripped over its 44 channels, with a strip-
ping unit size of 8 KB, and distributed over different chan-
nels to benefit from the parallel accesses to multiple chan-
nels. In SDF, the case is different with the multiple request
queues. The large write request from LevelDB is issued to a
channel without stripping. Thus, the requests are uniformly
distributed to the channels in the granularity of 2MB. Large
requests are split into multiple sub-requests in the Huawei
SSD, and serviced in different channels. Accordingly, re-
quested data has to be split (for write) or merged (for read)
in the request service, and each channel serves a larger num-
ber of smaller requests. This adds to the overhead and re-
duces throughput. Furthermore, there is additional write am-
plification overhead caused by the garbage collection in the
Huawei SSD. The expensive garbage collection can compro-
mise performance stability.

Figure 6(b) compares the performance of LevelDB in
terms of number of operations per second (OPs). The trend is
similar to that of I/O throughput. The improvement is about
2.84× on average, which is a little bit lower than that of
I/O throughput. The reason is that writes generated by com-
paction are counted into I/O throughput but not considered in
the calculation of OPs of LevelDB. Note that we only show
results for data with a value size of 100 Bytes due to space
constraint. In fact, our LOCS system consistently achieves
performance improvement across different data value sizes.

In Figure 7, we study the impact of Immutable MemTa-
bles in main memory on the I/O throughput of SDF. In this
experiment, the get-put data ratio is set to be 1:1, and the
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Figure 6. Comparison of sustained performance with
Huawei Gen3 SSD.
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Figure 7. Impact of number of MemTables.

key value size is 8 KB. Since the number of Immutable
MemTables determines the number of concurrent write re-
quests to the SDF, the I/O throughput increases proportion-
ally to the number of MemTables. The results show that the
I/O throughput saturates when MemTables count reaches the
number of flash channels. In fact, if we further increase the
count, the I/O throughput of SDF could be reduced because
of competition of service by excessive numbers of concur-
rent write requests at each flash channel. Thus, we always set
the number of MemTables to the number of flash channels.
The results for other configurations show the same trend.

We analyze the impact of the thresholds for write request
traffic control in LevelDB in the following experiments. The
dispatching policy is round-robin, and the value size and get-
put ratio are set to be 8 KB and 1:1, respectively.

In Figure 8, the fluctuation of I/O throughput is illustrated
and compared to two cases when threshold kL0 Slowdown
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Figure 8. Illustration of throughput fluctuation with differ-
ent slowdown thresholds.

WritesTrigger is set to be 8 and 68, respectively. Thresh-
old kL0 StopWritesTrigger is set to be 1.5·kL0 Slowdown

WritesTrigger. The periodic fluctuation and significant
throughput degradation are caused by traffic control on write
requests. It is apparent that the period of fluctuation becomes
larger with a higher threshold. It increase from 30 seconds to
about 70 seconds, and accordingly, the average throughput
increases from 221 MB/s to 349 MB/s. This suggests that
the threshold should set to be much larger value in SDF to
accommodate its much higher access parallelism.
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Figure 9. Impact of SlowdownWritesTrigger threshold.

Note that the throughput is not always improved when
the threshold increases. This is because a higher threshold
results in more SSTables in Level 0. Since the latency of
searching data in Level 0 SSTable is increased, the overall
throughput may be decreased with a too-large threshold. In
order to confirm this finding, we measure the throughput
with different values of the threshold and compare them in
Figure 9. We find that the sweet point appears around the
value of 68.
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Figure 10. Illustration of throughput fluctuation with addi-
tional compaction thread.



We study the impact of introducing an additional com-
paction thread in Figure 10. We find that the fluctuation
of throughput can be mitigated with this extra thread. This
is because the SSTables in Level 0 can be compacted at a
higher rate so that the slowdown of write requests is alle-
viated. On average, the throughput can be increased from
221 MB/s to about 361 MB/s. Note that the kL0 Slowdown

WritesTrigger threshold is still set to be 8 in order to
highlight the impact of adding one extra thread. The results
of putting together these two techniques are shown in Fig-
ure 11. The throughput can be improved up to about 375
MB/s on average.
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Figure 11. Illustration of throughput fluctuation after apply-
ing two techniques.
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Figure 12. Impact of empty queues.

In the next several sets of experiments, we study the im-
pact of dispatching policies on the throughput of SDF and
the performance of LevelDB. The value size is 8 KB and
the get-put ratio is 1:1. As shown in Figure 12, in order
to demonstrate the importance of balancing the lengths of
weighted queues, we first illustrate the relationship between
transiently empty queues and the I/O throughput. The aver-
age number of empty queues is obtained by sampling queue
length over a long execution period of LevelDB. We find
that the throughput of SDF has significant fluctuation and
is inversely proportional to the number of empty queues. It
is easy to understand that the transiently empty queues are
caused by unbalanced dispatching of requests. On average,
an empty queue may result in about 14 MB/s loss of I/O
throughput.

In order to address this problem, we have proposed the
LWQL dispatching policy. In Figure 13, we compare the
standard deviation of queue length for all the 44 channels
over a long execution period of LevelDB. It is easy to see
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Figure 13. Standard deviations of weighted-queue-lengths.

that, after using the LWQL dispatching policy, the deviation
of queue length is reduced significantly, compared to the
baseline round-robin policy. This indicates that an optimized
dispatching policy for write requests can effectively help to
balance the I/O intensity across channels.

The third set of results in Figure 13 shows the deviation
of queue length when the optimization of the dispatching for
compaction is applied. As discussed in Section 3.3.3, this
technique can help to address the problem of dispatching
multiple SSTables, which are likely to be read for later com-
paction, into the same channel. In other words, it can help to
balance the intensity of read requests across different chan-
nels. Thus, the deviation of queue length can be further re-
duced after using this technique compared with the LWQL
policy. Note that the improvement is not very significant be-
cause the optimization can only be applied to the channels
with the shortest queue lengths.

We evaluate the performance of our LOCS system in Fig-
ure 14. In order to get a sustained performance result, the
total amount of data written in each workload is at least
1 500 GB, twice as large as the SDF’s capacity. The results
of I/O throughput for different value sizes, get-put data ra-
tios, and various benchmarks are shown in Figures 14(a)–
(d). All of these results demonstrate similar trends and sup-
port prior discussion about dispatching optimization for bal-
anced queue lengths. For example, the I/O throughput of
SDF is increased by 30% on average after using the LWQL
policy, compared to the baseline case of using the round-
robin dispatching policy. For the same setup, after apply-
ing the optimization technique for compaction, the improve-
ment to throughput of SDF is further increased by 39%. Note
that the improvement not only comes from balancing queue
length but also benefits from the more efficient compaction
operations. Another observation is that the improvement de-
creases as the get-put request ratio decreases. As we men-
tioned in Section 3, this is because the round-robin policy
works well when the write intensity is high. Compared with
the baseline that simply runs the stock LevelDB on SSDs,
the throughput is improved by more than 4×.

In Figures 14(e)–(h), we compare the performance of
LevelDB in terms of LevelDB OPs for three dispatching
policies with different value sizes, get-put data ratios, and
benchmarks. We can find a throughput trend similar to that
of the SSD throughput. On average, the number of OPs is
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(a) Value size: 100 Bytes
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(b) Value size: 8 KB

0

50

100

150

200

250

300

350

400

450

500

1:4 1:2 1:1 2:1 4:1

Th
ro

u
gh

p
u

t 
(M

B
/s

) 

Workload Get-Put Ratio 

LWQL+COMP LWQL RR

(c) Value size: 64 KB
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(d) Value size: 256 KB
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(e) Value size: 100 Bytes
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(f) Value size: 8 KB

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1:4 1:2 1:1 2:1 4:1

Th
ro

u
gh

p
u

t 
(o

p
s/

se
c)

 

Workload Get-Put Ratio 

LWQL+COMP LWQL RR

(g) Value size: 64 KB
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(h) Value size: 256 KB
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Figure 14. Comparison of performance: sustained throughput and LevelDB OPs/sec.

improved by 21% after using the LWQL dispatching policy
and is further improved to 31% after applying the optimiza-
tion technique for compaction. It means that our optimiza-
tion techniques can not only increase the throughput of SSD
but also improve the performance of LevelDB.

In Figure 14(i), we illustrate the impact of erase schedul-
ing operations with two workloads of varying read/write ra-
tios. The first workload (Workload 1) can be divided into two
phases: the equal-read-write phase with a get-put request ra-
tio of 1 and the write-dominant phase with a get-put request
ratio of 1/4. The second workload (Workload 2) has the read-
modify-write pattern with a get-put ratio of around 1. The
baseline policy is to erase blocks right after the compaction
without intelligent erase scheduling. This is compared to the
erase scheduling policy described in Section 3.3.4 with var-
ious thresholds THw on the ratio of write requests. We can
see that the throughput is improved for Workload 1 when
using our scheduling policy with a THw less than 4. This
is because significantly varied read/write ratios provide the
opportunity for the policy to clearly identify a time period
to perform erase operations for higher throughput. However,
for Workload 2, the throughput is reduced with our schedul-
ing policy, as the write intensity rarely reaches the threshold
for performing erase operations. Thus, most erase operations
are postponed until free blocks are used up and have to be
performed on the critical path of the request service.

5. Related Work
Key-Value Stores. Distributed key-value systems, such as
BigTable [18], Dynamo [22], and Cassandra [28], use a clus-
ter of storage nodes to provide high availability, scalability,
and fault-tolerance. LevelDB [10] used in this work runs on
a single node. By wrapping the client-server support around
the LevelDB, LevelDB can be employed as the underlying
single-node component in a distributed environment, such
as Tair [6], Riak [5] and HyperDex [23]. In order to meet the
high throughput and low latency demands of applications,
several recent works, such as FlashStore [20], SkimpyS-
tash [21], and SILT [30], explore the key-value store de-
sign on the flash-based storage. But all of the existing works
use the conventional SSDs that hide its internal parallelism
to the software. Our work focuses on how to use the open-
channel SSD efficiently with the scheduling and dispatching
techniques, and is complementary to the techniques aimed at
consistency and node failure.

Log-Structured Merge Trees. LSM-tree [32] borrows
its design philosophy from the log-structured file-system
(LFS) [35]. The LSM-tree accumulates recent updates in
memory, flushes the changes to the disk sequentially in
batches, and merges on-disk components periodically to re-
duce the disk seek costs. LevelDB [10] is one of the repre-
sentative implementations of LSM trees. TableFS [34] uses
LevelDB as part of the stacked filesystem to store small



metadata. Recently, several similar data structures on persis-
tent storage were proposed. TokuDB [7] and TokuFS [24]
use Fractal Tree, which is related to cache-oblivious stream-
ing B-trees [12]. VT-trees [36] were developed as a vari-
ant of LSM-tree that avoids unnecessary copies of SSTa-
bles during compaction by adding pointers to old SSTables.
Other LSM-tree-based KV stores, such as Cassandra [28]
and HBase [9], can also make full use of software-defined
flash. The scheduling and dispatching techniques proposed
in Section 3.3.3 can also be applicable to them.

NAND Flash-Based SSD. NAND Flash-Based SSDs
have received widespread attention. To enhance the I/O per-
formance, most SSDs today adopt the multi-channel archi-
tecture. It is necessary to exploit parallelism at various lay-
ers of the I/O stack for achieving high throughput of SSD
in the high concurrency workloads. Chen et al. investigate
the performance impact of SSD’s internal parallelism [19].
By effectively exploiting internal parallelism, the I/O perfor-
mance of SSDs can be significantly improved. Hu et al. fur-
ther explore the four levels of parallelism inside SSDs [26].
Awasthi et al. [11] describe how to run HBase [9] on a hybrid
storage system consisting of HDDs and SSDs to minimize
the cost without compromising throughput. However, their
design doesn’t utilize the parallelism of SSD. Our design
successfully exploits the channel-level parallelism in a soft-
ware manner.

Some researchers also tried to make use of the internal
parallelism. Bjorling et al. propose a Linux block I/O layer
design with two levels of multi-queue to reduce contention
for SSD access on multi-core systems [13]. Our design also
uses multiple queues, but the queues are in the user space
instead of in the kernel space. In addition, we propose a se-
ries of scheduling and dispatching policies optimized for the
LSM-tree-based KV stores. Wang et al. present an SSD I/O
scheduler in the block layer [38] which utilizes the internal
parallelism of SSD via dividing SSD logical address space
into many subregions. However, the subregion division is not
guaranteed to exactly match the channel layout. Moreover,
they use only a round-robin method to dispatch the I/O re-
quest, which, as shown in our work, is not optimal.

More closely related to our design is SOS [25], which
performs out-of-order scheduling at the software level. By
rearranging I/O requests between queues for different flash
chips, SOS can balance the queue size to improve the over-
all throughput. However, their “software-based scheduler” is
actually located in the flash translation layer (FTL) and im-
plemented inside an embedded FPGA controller, which is
under the OS and part of the hardware. So they cannot get
application-level information as we do. What is more, the
scheduling policy they adopt only considers the number of
requests of a queue, not the weighted-queue-length, as we
do in this work. Since the three types of NAND flash op-
erations have sharply different costs, this scheduling policy
make it hard to balance the queues if there are both reads and

writes in the request queue. By setting all weights to 1 in the
LWQL policy, LWQL essentially degenerates into SOS and
has a reduced throughput.

Several SSD designs similar to the open-channel SDF are
also proposed by industry. FusionIO’s DFS [27] employs a
virtualized flash storage layer. It moves the FTL in the hard-
ware controller into the OS kernel to allow direct access
to the NAND flash devices. The NVM Express specifica-
tion [3] defines a new interface, in which a NVM storage
device owns multiple deep queues to support concurrent op-
erations.

6. Conclusions
The combination of LSM-tree-based KV stores and SSDs
has the potential to improve I/O performance for storage sys-
tems. However, a straightforward integration of both cannot
fully exploit the high parallelism enabled by multiple chan-
nels in the SSDs. We find that the I/O throughput can be
significantly improved if the access to channels inside SSD
can be exposed to KV stores. The experimental results show
that the I/O throughput can be improved by up to 2.98×.
With such a storage system, the scheduling and dispatch-
ing policies for requests from the KV stores have an im-
portant impact on the throughput. Thus, we propose several
optimization techniques of scheduling and dispatching poli-
cies for the scheduler at the software level. With these tech-
niques, the I/O throughput of LOCS can be further improved
by about 39% on average.
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