
115

Efficient Kernel Management on GPUs

YUN LIANG and XIUHONG LI, Peking University

Graphics Processing Units (GPUs) have been widely adopted as accelerators for compute-intensive appli-
cations due to its tremendous computational power and high memory bandwidth. As the complexity of
applications continues to grow, each new generation of GPUs has been equipped with advanced architec-
tural features and more resources to sustain its performance acceleration capability. Recent GPUs have been
featured with concurrent kernel execution, which is designed to improve the resource utilization by executing
multiple kernels simultaneously. However, it is still a challenge to find a way to manage the resources on
GPUs for concurrent kernel execution. Prior works only achieve limited performance improvement as they
do not optimize the thread-level parallelism (TLP) and model the resource contention for the concurrently
executing kernels.

In this article, we design an efficient kernel management framework that optimizes the performance for
concurrent kernel execution on GPUs. Our kernel management framework contains two key components:
TLP modulation and cache bypassing. The TLP modulation is employed to adjust the TLP for the concurrently
executing kernels. It consists of three parts: kernel categorization, static TLP modulation, and dynamic TLP
modulation. The cache bypassing is proposed to mitigate the cache contention by only allowing a subset
of a kernel’s blocks to access the L1 data cache. Experiments indicate that our framework can improve
the performance by 1.51× on average (energy-efficiency by 1.39× on average), compared with the default
concurrent kernel execution framework.

CCS Concepts: � Computer systems organization → Single instruction, multiple data; Multicore
architectures;

Additional Key Words and Phrases: General purpose graphics processing unit (GPGPU), energy-efficiency,
kernel management

ACM Reference Format:
Yun Liang and Xiuhong Li. 2017. Efficient kernel management on GPUs. ACM Trans. Embed. Comput. Syst.
16, 4, Article 115 (May 2017), 24 pages.
DOI: http://dx.doi.org/10.1145/3070710

1. INTRODUCTION

Over the past few years, GPUs have emerged as a powerful computing platform
for general-purpose computing. Each new generation of GPUs ushers in new archi-
tectural features and more computing resources to sustain its leading role in high-
performance computing. As GPUs have become increasingly powerful, more and more
general-purpose applications, especially those with unstructured design and irregu-
lar behaviors, are ported to GPUs for acceleration. GPUs are starting to host multi-
ple tasks simultaneously. For example, one user may request to concurrently execute
more than one task on the GPU integrated in the mobile SoC (System-on-Chip). More

This work is supported by the National Science Foundation China (No. 61672048).
Authors’ addresses: Y. Liang, Office 518s, Science building No.5, Peking University, China, 100871; email:
ericlyun@pku.edu.cn; X. Li, Office 512, Science building No.5, Peking University, China, 100871; email:
lixiuhong@pku.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1539-9087/2017/05-ART115 $15.00
DOI: http://dx.doi.org/10.1145/3070710

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

http://dx.doi.org/10.1145/3070710
http://dx.doi.org/10.1145/3070710

115:2 Y. Liang and X. Li

Table I. Equipped Hardware Resources for Different NVIDIA GPU Generations

GTX 480 (Fermi) GTX 680 (Kepler) GTX 980 (Maxwell)
SMs 15 8 16
SPs 32*15 = 480 192*8 = 1536 128*16 = 2048
LD/ST Units 16*15 = 240 32*8 = 256 32*16 = 512
SFUs 4*15 = 60 32*8 = 256 32*16 = 512
Threads/SM 1,536 2,048 2,048
Warps/SM 48 64 64
Thread Blocks/SM 8 16 32
32-bit Registers/SM 32,768 65,536 65,536
Shared Memory/SM 48KB 48KB 96KB

importantly, the rise of data-center and cloud-computing environments has led to an
even larger scale of multitasking, where many applications from multiple users com-
pete for access to GPU resources simultaneously. The diversity in program behaviors
of these concurrently executing applications presents new challenges in kernel man-
agement to improve performance and energy efficiency on GPUs.

Using NVIDIA’s terminology, a GPU is composed of multiple streaming multipro-
cessors (SMs). In general, each SM contains both memory and computation resources.
In particular, memory resources include registers, shared memory, and the contexts
for threads and thread blocks; computation resources include three types of pipeline
function units: streaming processors (SPs), special functional units (SFUs), and load
store units (LD/ST). Moreover, the resources are growing with each new generation
for NVIDIA GPUs from Fermi and Kepler to Maxwell, as shown in Table I. However,
GPU applications, especially the irregular and general-purpose applications, are often
unable to effectively utilize all the resources on the GPUs [Pai et al. 2013; Fung and
Aamodt 2011; Burtscher et al. 2012; Fung et al. 2007]. These applications tend to use
only a portion of SMs or a portion of memory and computation resources within an
SM [Pai et al. 2013; Gregg et al. 2012]. Hence, the concurrently executing of applica-
tions with different resource requirements will have the potential to improve resource
utilization and energy efficiency.

Actually, GPU vendors have enabled concurrent kernel execution to improve the re-
source utilization. For example, NVIDIA Fermi architecture supports concurrent kernel
execution from the same application; NVIDIA Kepler architecture improves Fermi by
introducing the Hyper-Q feature, which maintains multiple independent kernel queues
to concurrently execute independently kernels. However, in practice, this implementa-
tion gives marginal improvement as the concurrency only happens when a task does
not use all the SMs and it is about to finish. The need for multitasking support also
motivates researchers to investigate new techniques. Recent proposals include coarse-
grained and fine-grained multitasking. Coarse-grained multitasking [Adriaens et al.
2012] improves the SM utilization by assigning disjoint sets of SMs to different ker-
nels. Although coarse-grained multitasking helps to improve the resource utilization,
the improvement is restrictive. It only improves for the cases where the kernels lack
parallelism or saturate with memory bandwidth; it does not improve the resource uti-
lization within an SM. Fine-grained multitasking [Lee et al. 2014; Pai et al. 2013]
improves the spatial multitasking by assigning heterogeneous kernels onto the same
SM. However, state-of-the-art fine-grained multitasking [Lee et al. 2014] primarily fo-
cuses on the memory resources but ignores pipeline resources. Thus, several problems
still remain. First, none of the present systems and prior techniques have the flexibility
to optimize the thread-level parallelism (TLP) for the concurrently executing kernel.
Second, prior studies primarily focus on resource utilization, but ignore the resource
contention [Lee et al. 2014]. Recent studies also show that running with the maximum

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:3

number of threads does not always give the best performance due to the contention
in caches, network, for example., and subsequent pipeline and memory stall [Kayiran
et al. 2013]. Therefore, concurrent kernel execution has to strike the right balance
between the resource utilization and contention.

In this work, we propose an optimization framework that manages the multiple
kernel execution on GPUs. The framework involves in two key techniques. First, we
identify that different kernels show obvious diversities in resource utilization. The
variations mainly lie in two aspects. On one hand, as TLP increases, different kernels
have different performance response. On the other hand, different kernels will have
imbalanced requirements on computing resources and memory resources. A memory-
intensive kernel may leave SP under-utilized, while a compute-intensive kernel may
leave LD/ST under-utilized. Concurrent kernel execution with complementary resource
usage has the potential to improve the resource utilization and thereby energy- effi-
ciency. Although the TLP management techniques for GPUs have been proposed in the
context of single-kernel execution, they do not consider the heterogeneities between
different kernels. Thus we design a TLP modulation technique that adjusts the TLP
for the concurrently executing kernel, based on the above observations. We define the
TLP as the number of simultaneously executing thread blocks. Second, we develop
a cache bypassing technique that can adaptively adjust the number of thread blocks
that use the cache to alleviate the cache contention. Our work make the following
contributions:

—We develop a TLP modulation technique to adjust the TLP for the concurrently
executing kernel. It first employs kernel characterization. Then, based on the char-
acterization, a static TLP modulation algorithm is conducted to determine the initial
TLP configuration. During the runtime, on the basis of the initial TLP configuration,
a dynamic TLP modulation algorithm will adaptively adjust TLP configuration.

—We design a cache bypassing technique to mitigate the cache contention to further
improve the performance.

—Our framework is scalable, and we effectively extend it to multiple kernel scenario.

We conduct a systematic evaluation using 28 two-kernel workloads. Experiments in-
dicate that our framework can achieve 1.51× performance speedup and 1.39× energy-
efficiency improvement, compared with the default concurrent kernel execution frame-
work.

The rest of this article is organized as follows. In Section 2, we describe the back-
ground, which concretely consists of baseline GPU architecture, concurrent kernel
execution, and energy consumption analysis on GPUs. Then Section 3 presents a mo-
tivational study and characterizes the effects of TLP and cache bypassing on perfor-
mance. In Section 4, we give the details of our framework. The evaluational results are
presented in Section 5. Section 6 presents the related work and Section 7 concludes the
article.

2. BACKGROUND

2.1. Baseline GPU Architecture

In GPU applications, the computing task that is offloaded to GPU for acceleration is
written as a special function, called a kernel. When the kernel is launched onto GPU,
a grid (an instance of the kernel) is instantiated. A grid consists of up to hundreds or
thousands of threads. The threads in a grid are organized in a hierarchical manner.
Every 32 threads are grouped into a warp, and warps are further grouped into thread
block. The number of blocks in a grid and the number of threads in a block are specified
by the programmer.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:4 Y. Liang and X. Li

Fig. 1. Baseline GPU architecture.

Table II. GPGPU-Sim Configuration

SM Configuration
Compute Units (SM) 15
SM configuration 32 cores, 700MHz
Thread Limits per SM 1,536 threads and 8 thread blocks
Register Limits per SM 32,768 registers
Shared memory Limits per SM 48KB
L1 Data Cache 16KB, 32-set, 4-way, cache line (128B)
Warp Scheduler 2 warp schedulers per SM, GTO policy

Memory Subsystems Configuration
L2 Cache 768 KB, 700 MHz, 64-set, 8-way

DRAM

924 MHz, latency (100 cycles), nbk=16:CCD=2:RRD=6:RCD=12:
RAS=28
RP=12:RC=40:CL=12:WL=4:CDLR=5:WR=12:nbkgrp=4:CCDL=
3:RTPL=2

We use the architecture in the GPGPU-Sim(version 3.2.2) shown in Figure 1, which
is a widely adopted cycle-accurate GPGPU simulator. Its detailed setting is shown in
Table II. A GPU is composed of multiple Streaming Multiprocessors (SMs), and all
the SMs share the same interconnection network. In each SM, there are many SIMD
computing resources, such as streaming processors (SPs), load store units (LD/ST),
and special function units (SFUs). Besides the computing resources, there are large
amounts of memory resources including instruction cache, register file, L1 data cache,
and shared memory, for example. When a kernel is launched, a thread block as a whole
is assigned to one SM for execution. The number of thread blocks that can execute on
one SM is limited by the available resources of an SM.

2.2. Concurrent Kernel Execution

The current generations of GPUs (e.g., NVIDIA Fermi and Kepler) support concur-
rent kernel execution from the same application using stream interface in CUDA

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:5

programming model. A stream is a sequence of commands that execute in order. But
different streams execute their commands concurrently. In this work, similarly to the
prior studies [Adriaens et al. 2012; Pai et al. 2013; Lee et al. 2014], we consider the
concurrent execution of independent kernels from multiprogrammed workloads. We
use the stream interface for our concurrent kernel execution. More importantly, our
framework can automatically generate stream interface for the concurrently executing
kernels. Each stream corresponds to one kernel. Then, using the stream interface, the
kernels from different streams are executed concurrently. In this work, we concentrate
on two-kernel workloads. But our kernel management framework can be applied to
more than two kernels, too.

Baseline Concurrency. The concurrency supported on the current generations of
GPUs is very rudimentary. The latest Kepler and Maxwell architectures feature the
Hyper-Q mechanism, which allows kernels from the same process to execute concur-
rently. In general, the scheduler employs the LeftOver policy to schedule the kernels
as indicated by prior study [Pai et al. 2013]. Under the LeftOver policy, the scheduler
begins issuing thread blocks from the first kernel. When all the thread blocks of the
first kernel are dispatched, if there are idle SMs, then the scheduler will issue thread
blocks from the second kernel to the idle SMs. Hence, concurrent kernel execution only
occurs during the period when the first kernel is about to finish and the second kernel
just gets started. So, the performance improvement of the baseline concurrent kernel
execution over sequential kernel execution is very minimal. Using stream software
interface, programmers can push independent kernels into different streams so they
can be executed concurrently.

Coarse-Grained Concurrency. Coarse-grained concurrency on GPUs was first
proposed by [Adriaens et al. 2012]. Coarse-grained concurrency divides the SMs into
disjoint sets and assigns to different kernels. Thus, the thread blocks from different
kernels are executed concurrently on different SMs. When one of the kernels finishes
execution, it releases those SMs it occupies exclusively, and then the other kernels will
take over all the SMs for its remaining execution. Coarse-grained concurrency is useful
for the cases where the tasks lack of parallelism or saturate with memory bandwidth.
However, it does not improve the resource utilization within an SM.

Fine-Grained Concurrency. To fully utilize the resources equipped on GPUs,
we propose to use fine-grained concurrency. Fine-grained concurrency allows thread
blocks from different kernels executed onto the same SMs. Compared to coarse-grained
concurrency, fine-grained concurrency is a fine-grained approach. Prior studies have
attempted to employ fine-grained concurrency for performance improvement [Lee
et al. 2014; Pai et al. 2013; Li and Liang 2016]. However, they all ignored pipeline
utilization. In this article, we use the pipeline utilization as a guide to tune the pa-
rameters of fine-grained concurrency and exploit the imbalance of pipeline utilization
among heterogeneous kernels.

3. MOTIVATION

Heterogeneous kernels tend to use different resources, leaving different resources
under-utilized as shown in Table III. By executing different kernels together, we
have the opportunity to enable resource sharing. Though the concurrent kernel ex-
ecution mechanism allows multiple kernels to execute concurrently, the total number
of threads/thread blocks is still bounded by the hardware limits. Thus, we first need
to determine the TLP for each concurrently executing kernel. We define the TLP of
two-kernel set {A, B} as {T bA, T bB}, where T bA and T bB represent the number of
thread blocks that execute concurrently for kernel A and B, respectively. Thus, there
are totally T bA + T bB thread blocks that execute concurrently for the two kernel set
{A, B}.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:6 Y. Liang and X. Li

Fig. 2. Motivation study.

We create a two-kernel set with kernels {BKP, KMS} from the Rodinia benchmark
suite [Che et al. 2009] (For details of these two kernels, see Table III). Kernel BKP (Back
Propagation) is a machine-learning algorithm to train the weights of connecting nodes
on a neural network [Che et al. 2009]. Kernel KMS (Kmeans) is a clustering algorithm
to identify related points by associating each data point with its nearest cluster [Che
et al. 2009]. Figure 2(a) explores the design space of the TLP when executing these two
kernels concurrently. The horizontal axis represents different TLP for {BKP, KMS}.
There are totally 15 points in the design space. Performance is normalized to the
baseline concurrency, seen in Section 2.2. We notice that the performance depends
on the TLP of the two kernels. By exploring this design space, we can improve the
performance by up to 25%. We also notice that running with the maximal TLP (e.g.,
{1, 5}, {2, 4}, {3, 3}, {4, 2}) does not always ensure the best performance. By exploring
the TLP, we can effectively improve the performance. However, concurrency may lead
to resource contention, especially the L1 cache contention due to its limited size. For
example, using the best TLP setting {5, 1} in Figure 2(a), we notice that the L1 data
cache hit rate drops from 64.28% to 49.61%. To solve this problem, we propose cache
bypassing technique for concurrent kernel execution scenario. Our cache bypassing
is performed at thread block level. More clearly, we will let a subset of concurrently
executing thread blocks bypass the cache for each kernel. If a thread block chooses to
bypass the cache, then all the memory requests from all the threads in the thread block
will bypass the L1 cache. For the two-kernel set {A, B}, we define its bypassing solution
as {ByA, ByB}, where ByA and ByB represents the number of thread blocks that bypass
the cache from kernel A and B, respectively. Obviously, ByA ≤ T bA and ByB ≤ T bB.
Figure 2(b) shows the results of cache bypassing optimization. In Figure 2(b), the TLP
is set to {5,1} for {T bBKP, T bKMS}. There are totally L1 bypassing candidates. The

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:7

Fig. 3. Framework overview of our framework.

Fig. 4. Illustration of the TLP modulation process.

performance is normalized to cache-all, where none of the thread blocks bypass the
cache. Through cache bypassing, we can further improve the performance by 60%.

The optimal performance results for two-kernel set {BKP, KMS} is achieved with
the setting {T bA, T bB} = {5, 1} and {ByA, ByB} = {0, 1}. Exploring TLP with cache
bypassing optimization can be an effective strategy in improving overall performance
significantly.

4. KERNEL MANAGEMENT FRAMEWORK

Our multiple kernel management framework is shown in Figure 3. It leverages on
two components: TLP modulation and cache bypassing. TLP modulation component
determines the TLP for each concurrent executing kernel. Cache bypassing compo-
nent adjusts the number of thread blocks that bypass the cache to reduce the cache
contention. Next, we will present the details of each component.

The massive threading is a strength of GPU but a challenge for concurrent kernel
execution. Recent studies demonstrated that for a single kernel execution, running
with the maximum number of threads does not always ensure the best performance
due to resource contention. In our concurrent kernel execution, multiple kernels
race for the resources on the GPU, leading to high contention [Kayiran et al. 2013;
Lee et al. 2014; Rogers et al. 2012]. Therefore, we need to determine the TLP for the
concurrently executing kernels. We design our TLP modulation algorithm based on the
two following observation. First, different kernels show different behaviors as the TLP
increases when it executes in single-mode. Second, different kernels have different
preferences on computation resources and memory resources. As shown in Figure 4,
we first perform kernel categorization and classify the kernels into different types
through profiling. Next, we design a static TLP modulation algorithm based on kernel

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:8 Y. Liang and X. Li

Fig. 5. Characterization of Type Up kernel using kernel BKP as an example.

Fig. 6. Characterization of Type Optimal kernel using kernel ESP as an example.

type information, which can provide an initial TLP configuration. Then, on the basis of
the initial TLP configuration obtained by static TLP modulation algorithm, we employ
a dynamic TLP modulation algorithm, which can tune TLP configuration at runtime
according to the requirements on computation resources and memory resources.

4.1. Kernel Categorization

We propose to categorize the kernels based on how the performance varies as the
TLP increases. For a single kernel, we define its TLP as the number of thread blocks
that concurrently execute. The maximal TLP on our platform is 16. We categorize the
kernels into three categories as follows,

—Up. The performance of the kernel increases as the TLP increases.
—Optimal. The performance of the kernel first increases then decreases as the TLP

increases.
—Down. The performance of the kernel decreases as the TLP increases.

Figure 5(a), Figure 6(a), and Figure 7(a) illustrate kernels in different categories. Given
a kernel k, we use opt(k) to represent its TLP that gives the best performance. If kernel
k is type Up, then opt(k) is the maximum TLP; if kernel k is type Optimal, then opt(k)
is somewhere between the minimal and maximum TLP; if kernel k is type Down, then
opt(k) is the minimum TLP.

Then, we analyze the structural stall and memory stall that critically influence the
performance. Prior work [Lee et al. 2014] categorizes kernels in a similar way, but we
provide in-depth analysis of stall and identify the relation between kernel categoriza-
tion and stall. The stall will also be used in Section 4.4 as a metric to guide cache
bypassing.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:9

Fig. 7. Characterization of Type Down kernel using kernel STC as an example.

—Structural Stall. It refers to the stall caused by lack of execution units. In this case,
the pipeline has to be stalled and no warps can be issued until the execution units
are available. Large TLP could aggravate the contention of execution units and cause
structural stall.

—Memory Stall. It refers to the stall caused by long memory latency. In this case, no
warps could be issued until the data are available. The memory stall is due to poor
data locality and read-after-write (RAW) hazards. Memory stall could be hidden by
large TLP.

Figure 5(b), Figure 6(b), and Figure 7(b) depict how the structural stall and memory
stall vary with the TLP for different types of kernels (e.g., BKP, ESP, and STC), re-
spectively. For type Up, the memory stall decreases dramatically as the TLP increases,
while the structural stall has very small variation. For type Up kernels, their behav-
iors mainly depend on memory stall; more TLP helps to improve the performance as
it helps to hide the lengthy memory operations. For type Optimal and Down kernels,
the performance does not show obvious improvement from more TLP. On the contrary,
more TLP may hurt the performance as it can increase the memory stall and structural
stall due to resource contention. Table III gives the type for each kernel.

4.2. Static TLP Modulation Algorithm

For a two-kernel set {A, B}, we determine the {T bA, T bB} based on their types. We
consider all the combinations of two kernels except for both kernels are type Up,
because in this case both two kernels require high TLP and TLP modulation has
no benefits. For this case, we use the default concurrency. We combine type Down
or Optimal kernel with other kernels. Because running these two types of kernels
individually, the optimal block number issued to SM is less than the capacity of SM,
which gives space for concurrency on the same SM.

As is shown in Algorithm 1, the static TLP modulation algorithm attempts to deter-
mine T bA for type Down or Optimal kernel (A) based on optimal block number (i.e.,
opt(A)) derived from off-line profiling and then determine T bB for the other kernel (B)
using the remaining resources. T bB is the maximum number of thread blocks of kernel
B on an SM using the remaining resources after launching T bA thread blocks of kernel
A. Our algorithm is symmetric. When the two kernels belong to the same type, we will
arbitrarily choose one as kernel A and the other as kernel B.

Our framework can adapt to the more-than-two-kernels scenario. First, we do off-line
profiling to learn the categorization information of each kernel. Then, we select two
kernels from the kernel pool using the kernel categorization information (i.e., kernel
A is type Down or Optimal) and run them concurrently. After one of the two kernels
finishes, we select another kernel from the kernel pool.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:10 Y. Liang and X. Li

Although a straightforward brute-force search can get the optimal TLP configura-
tion, as the number of concurrent kernels increases, the search is prohibitively time
consuming. By contrast, except for the off-line profiling, the cost of our algorithm does
not increase with problem scale. In general, our algorithm’s result is always close to
the optimal TLP configuration.

ALGORITHM 1: TLP Modulation Algorithm
Input: Kernel A and Kernel B
Output: T bA and T bB

1 if TypeA = Down ∧ TypeB = U p then
2 T bA = opt(A);
3 r = Compute Remain(B);
4 T bB = r;
5 end
6 else if TypeA = Down ∧ TypeB = Optimal then
7 T bA = opt(A);
8 r = Compute Remain(B);
9 T bB = min(r, opt(B));

10 else if TypeA = Down ∧ TypeB = Down then
11 T bA = opt(A);
12 T bB = opt(B);
13 else if TypeA = Optimal ∧ TypeB = Optimal then
14 T bA = opt(A);
15 r = Compute Remain(B);
16 T bB = min(r, opt(B));
17 else if TypeA = Optimal ∧ TypeB = U p then
18 T bA = opt(A);
19 r = Compute Remain(B);
20 T bB = r;
21 end

4.3. Dynamic TLP Modulation Algorithm

The static TLP modulation algorithm gives the initial TLP configuration. The initial
value obtained by the static TLP modulation can facilitate the convergence of the
dynamic TLP modulation algorithm. For some certain kernels, of which the phase
behavior is not obvious, the initial value can guide the dynamic TLP modulation and
reduce the searching overhead thus improve the final performance. Using the initial
TLP configuration, we design a dynamic TLP modulation algorithm. Based on the
SIMD pipeline usage at runtime, the dynamic algorithm can adjust TLP to balance
computing operation and memory access operation. It dispatches thread blocks from
two kernels on one SM. In other words, each SM contains a mix of thread blocks from
different kernels for concurrent execution. Obviously, T bA and T bB are limited by the
resource constraints,

ResourceA ∗ T bA + ResourceB ∗ T bB ≤ ResourceSM (1)

where ResourceA (ResourceB) denotes the required resource per block for kernel A
(B) and ResourceSM denotes the resource budget per SM. The total number of thread
blocks depends on multiple resources (register, shared memory, threads). For each type
of resource, Equation (1) has to be satisfied.

Different kernels tend to prefer different resources. As is shown in Figure 2(a), there
are different ways to combine T bA and T bB, leading to different resource utilization.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:11

The goal of block dispatcher is to determine the T bA and T bB such that the overall
utilization and thus the performance can be improved. Hence, our block dispatcher is
designed to adaptively adjust T bA and T bB.

To achieve this goal, our block dispatcher leverages on-line learning. It uses pipeline
utilization as the performance metric to guide the learning process. The learning pro-
cess consists of three steps as follows:

—Step 1. Get the initial value for T bA and T bB when A and B start execution.
—Step 2. Start the timer when there are T bA blocks of kernel A and T bB blocks of

kernel B, and keep T bA and T bB unchanged for a sampling period.
—Step 3. Compare the performance metric of the current sampling period with that of

histories and update T bA and T bB if necessary.

Initially, we get T bA and T bB from static TLP modulation algorithm. Then, we itera-
tively execute Steps 2 and 3 until one kernel finishes execution.

In Step 2, we start the timer when the number of thread blocks of kernels A and
B equal to {T bA, T bB}. We use the lifetime of T bA thread blocks of kernel A and
T bB blocks of kernel B as sampling period. Because after each sampling period, the
TLP configuration {T bA, T bB} and the cache bypassing configuration will be updated
accordingly. Thus, this sampling period definition is convenient for updating and keeps
harmony with our algorithms.

In Step 3, we first define the Pipeline Utilization Change Trend (PUCT) as the metric
to predict the pipeline utilization. PUCTSP and PUCTLDST are defined as follows:

PUCTSP = SPcur

SPhis
, (2)

PUCTLDST = LDSTcur

LDSThis
, (3)

where SPcur and SPhis represent SP pipeline utilization in the current sampling period
and historical sampling periods, respectively. Similarly, LDSTcur and LDSThis rep-
resent LD/ST unit pipeline utilization in the current sampling period and historical
sampling periods, respectively. At the end of Step 3, we update SPhis using SPhis and
SPcur and LDSThis using LDSThis and LDSTcur.

If both PUCTSP and PUCTLDST are greater than 1, then this implies that both
SP and LD/ST utilization increase in this period. In this case, we will not update
{T bA, T bB}. Otherwise, we select the SIMD pipeline, which has the minimal PUCT
value as the Critical Pipeline. Then, we will try to increase its pipeline utilization by
updating {T bA, T bB}.

For each kernel, we characterize its pipeline preferences using Pipeline Utilization
Historical Preference (PUHP) as follows:

PUHP = SPhis

LDSThis
. (4)

High PUCT implies that the kernel prefers to use SP rather than LDST and vice
versa. Then, we select the kernel based on PUCT and update its thread block number
correspondingly. For example, suppose Critical Pipeline is SP and kernel A has higher
PUCT value; then we will increase T bA. But when we increase T bA, we might have to
decrease T bB to meet Equation (1). Figure 8 gives a detailed flow of the proposed block
dispatching algorithm.

Finally, when one thread block finishes, another block from the same kernel will be
dispatched onto the same SM. When one of the kernels finishes execution, the other
kernel will take over all the resources for its remaining execution.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:12 Y. Liang and X. Li

Fig. 8. Flow chart of the block dispatching algorithm.

4.4. Cache Bypassing

Concurrently kernel execution not only helps to improve the resource utilization but
also enables computation and memory overlapping between kernels as described by
prior subsection. However, it also presents a new challenge in the form of resource
contention. The primary resource contention is the L1 cache contention due to its
limited size. Typically, a GPU is equipped with 16 or 32KB cache per SM (e.g., NVIDIA
Fermi and Kepler). As each SM can execute thousands of threads, this leads to only
a few bytes cache capacity per thread [Xie et al. 2013, 2015b; Liang et al. 2015b].
Concurrent kernel execution makes this even worse as the useful data of one kernel
might be evicted from the cache by the other kernel. The goal of cache bypassing is
to mitigate the cache contention by selectively bypassing the cache requests from a
portion of threads in a kernel.

For two concurrently executing kernels, we propose to bypass one kernel and let the
other kernel use the cache. In general, we apply cache bypassing for the kernel that is
more tolerant to memory latency and let the kernel with good locality use the cache.
By doing this, we not only avoid cache contention but also exploit the locality. Suppose
we choose to bypass kernel A; then we only bypass a subset of thread blocks (ByA) for
it. That is, among its concurrently executing T bA thread blocks, ByA thread blocks will
bypass the cache, and the rest of the T bA − ByA thread blocks will use the cache. We
have the flexibility to dynamically adjust Byk at runtime. Next, we present details on
how to use on-line learning to find the kernel to bypass and then adjust the number of
thread blocks that bypass the cache for it.

For a two-kernel set {A, B}, we use ByA and ByB to represent the number of thread
blocks that bypass the cache for kernel A and kernel B, respectively. Since we only
choose one kernel to bypass, then either ByA or ByB is 0. Then, we use StallA

ByA
(StallB

ByB
)

to represent the incurred stall (pipeline and memory) when ByA (ByB) thread blocks

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:13

Fig. 9. Illustration of Online Learning; 0 represents using cache, and 1 represents cache bypassing.

from kernel A (B) bypass the cache during a sampling period. Finally, we use Stallnone
to represent the stall for the case where no thread blocks bypass the cache for either
kernel. The on-line learning consists of five steps as follows:

(1) Step 1. Initially, we set ByA = ByB = 0. We collect Stallnone after a sampling period.
(2) Step 2. We tentatively choose kernel A to bypass. We set ByA = 1, ByB = 0. We

collect the StallA
ByA

after a sampling period.
(3) Step 3. We tentatively choose kernel B to bypass. We set ByB = 1, ByA = 0. We

collect the StallB
ByB

after a sampling period. Then we compare StallA
ByA

, StallB
ByB

,
and Stallnone. If Stallnone is the minimum, then we will not bypass any thread block
for either kernel and return; if StallA

ByA
is smaller, then we will choose kernel A to

bypass and set ByA = 1 and vice versa.
(4) Step 4. Suppose we choose kernel A as the bypassing kernel (decided in Step 3).

Then, we will collect StallA
ByA+1 after a sampling period. If StallA

ByA+1 is smaller
than StallA

ByA
, then we will increment the number of thread blocks that bypass

cache for kernel A, ByA = ByA + 1 and continue Step 4; otherwise, we will keep ByA
thread blocks bypassed. Finally, if ByA reaches its upper limit T bA, then we will
stop updating ByA.

Each thread block is associated with a 1-bit tag to distinguish cache or bypass. If
a thread block is tagged with 1, then it will bypass the cache; if it is tagged with 0,
then it will use the cache. We use Bycur

A to represent the number of active thread blocks
that are tagged with 1 for kernel A. Note that Bycur

A may differ from ByA as the thread
blocks are dispatched and committed dynamically. When a thread block from kernel
A is dispatched, we compare the current number of thread blocks that bypass (Bycur

A)
with the target number (ByA). If Bycur

A < ByA, then we will tag the new thread block
with 1; otherwise, we will tag it with 0.

We define a sampling period as the lifetime of T bA thread blocks of kernel A and T bB
thread blocks of kernel B that concurrently execute. Figure 9 illustrates the sampling
period and on-line learning process. In this example, we assume T bA is 3 and T bB is
2. We start the timer for the first sampling period at t1 as 3 blocks from A and 2 blocks

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:14 Y. Liang and X. Li

from B start concurrent execution at t1. At t2, all these five blocks finish execution
and this marks the end of Step 1. When we start Step 2 at t3, we tentatively let kernel
A bypass one thread block. In the next sampling period(t4,t5), we let kernel B bypass
one thread block. In this example, bypassing kernel B gives less stall. Thus, we will let
kernel B bypass the cache and its bypass number is fixed to 1 after the learning.

4.5. Overhead Discussion

Actually, our algorithm only introduces marginal overhead. For the static algorithm, it
only performs some comparison operations. Thus, the complexity of the static algorithm
is O(1). For the dynamic algorithm, it is invoked periodically and during each invoking,
the algorithm performs three comparison operations and two add operation at most.
Thus, the complexity of the dynamic algorithm is also O(1). In terms of performance
overhead, we first compare the time of the algorithm with the sampling period. A
sampling period is the lifetime of T bA thread blocks of kernel A and T bB blocks of
kernel B. In general, the lifetime of a thread block is in the microsecond level; however,
a comparison or add operation is within the nanosecond level. So the performance
overhead is negligible. Moreover, in our evaluation, we have included the overhead
into the final performance (four clock cycles per single-precision arithmetic operation).

Our concurrency framework requires very small area for hardware implementation.
The maximum number of concurrently executing thread blocks on an SM is 16. Thus,
we need two 4-bit registers for T bA and T bB. Similarly, we need four 4-bit registers (e.g.,
ByA, ByB, Bycur

A , Bycur
B) to count the number of thread blocks that bypass for each kernel

on each SM. To support the dynamic TLP modulation algorithm, we need to record
the runtime information (i.e., SPcur, SPhis, LDSTcur, LDSThis, PUCTSP , PUCTLDST ,
PUHPA, and PUHPB). Finally, we need a table to keep StallA

ByA
and StallB

ByB
on each

SM. We give a 32-bit register for each metric. Thus, the total size of table is 6 4-bit
registers and 10 32-bit registers for two kernels.

Moreover, the runtime overhead is also negligible. For the TLP modulation algorithm
and cache bypassing algorithm, the runtime overhead is only to obtain the metrics
and conduct some comparisons. This overhead is very small compared to the kernel
execution time. For the evaluation, we have included the overhead.

4.6. Extension to Higher Than Two-Kernel

In the above discussion, we focus on the two-kernel workloads. Actually, our frame-
work can also be extended for higher-than two-kernel workloads. In general, we have
two options to support higher-than two-kernel fine-grained kernel management. First,
all of the kernels are running simultaneously within an SM. Second, each time two
kernel are running simultaneously within an SM. When one kernel finishes, another
pending kernel is scheduled to run with the remaining kernel. For the first option,
there could be some potential issues. The first issue is the possibility of more resource
contention within an SM. In practice, we find that executing more than three kernels
simultaneously will aggravate resource contention such as L1 cache, resulting in worse
performance. Moreover, large number of concurrently executing kernels may also ag-
gravate the pressure of the warp scheduler. The second issue is that the block one
SM can accommodate is only 16 for the mainstream GPU nowadays. The number of
concurrently executing kernels is at most 16. Thus, the scalability is relatively poor.

So, we choose the second option for our extension. We only allow two kernels executing
simultaneously at the same time. In this way, our TLP modulation algorithm and cache
bypassing scheme can also easily be extended to highter-than two-kernel scenarios.
More clearly, as shown in Figure 10, given a set of kernels stored in a pool, we can select
two kernels for concurrent kernel execution first. When one of the kernel finishes, we

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:15

Fig. 10. Extension for higher than two-kernel scenarios.

Table III. Kernel Description

Kernel Benchmark Thread Shared Memory Register
Abbr. Name Suite Opt. Max. Utilization Utilization Utilization Type
BKP bpnn_layerforward Rodinia 6 6 100% 13.28% 75% Up
HST calculate Rodinia 3 3 50% 18.75% 84.38% Up
SRD extract Rodinia 3 3 100% 0 56.25% Up
SPM spmv_jds Parboil 2 8 25% 0 18.75% Optimal
BLK blackschole CUDA SDK 6 8 50% 0 75% Optimal
LBM performStream Parboil 3 6 25% 0 46.88% Optimal
KMS invert_mapping Rodinia 1 6 16.67% 0 9.38% Down
STC kernel_compute Rodinia 1 3 33.33% 0 31.40% Down
average 50% 4% 48.25%

will select another kernel from the pool and execute it concurrently with the left kernel.
With the satisfaction of dependency, we give the kernels which have complementary
resource preference higher priority. For example, if one kernel finishes and the left
kernel is memory intensive, we will choose an independent compute intensive kernel
from the pending kernel pool. If all of the kernels in the pending kernel pool are memory
intensive, then we will choose the first one according to First Come First Service (FCFS)
policy.

5. EXPERIMENTS

We implement our concurrent kernel management framework based on GPGPU-sim
(version 3.2.2) [Bakhoda et al. 2009]. We conduct the simulation using the configura-
tion in Table II. We extend the stream interface to support our concurrency model.
We evaluate our technique using eight kernels as shown in Table III. They are from
Rodinia [Che et al. 2013], Parboil [Stratton et al. 2012], and CUDA SDK benchmark
suites. Using eight kernels, we can create 28 two-kernel workloads. Note that the re-
source utilization is obtained when they apply their optimal TLP configuration. In the
following, we perform three sets of experiments to evaluate our kernel management
framework. First, we show the overall performance, and break down the contributions
of TLP modulation and cache bypassing. We present the experiment results from per-
formance to the behind reasons (i.e., TLP modulation process, L1 data cache miss rate,
and pipeline stall result). Then, we also show energy-efficiency results. Second, we
compare our work with the state-of-the-art concurrent kernel execution frameworks.
Finally, we shows the extension results for highter-than two-kernel scenarios.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:16 Y. Liang and X. Li

Fig. 11. Performance impact of our framework. Results are normalized to RR.

5.1. Performance Results

Figure 11 shows the performance results for all the 28 two-kernel workloads. For
workloads such as {BLK, HST} and {SPM, HST}, it shows marginal performance
improvement. Because HST has much longer execution time than BLK and SPM.
Different kernels have different execution times. The discrepancy in execution time
will dilute the benefit from concurrency. The larger the discrepancy of execution time,
the less the performance improvement. For example, the execution time of HST is 4X
longer than BLK.

Effect of Static TLP Modulation Algorithm. We discussed in Section 4.1 that different
kernels show different behaviors as the TLP increases. For the kernels belonging to
type Optimal and type Down, given the optimal TLP configuration opt(k), they will
leave the resources under-utilized. By concurrently executing kernels, the static TLP
modulation algorithm helps in improving resource utilization. On average, the static
TLP modulation algorithm achieves 1.31× performance speedup. Table IV shows the
TLP settings selected by the static TLP modulation algorithm. By the static TLP mod-
ulation algorithm, on average, the utilization of thread, shared memory, and register
is 72.63%, 5.24%, and 77.50%, respectively. By comparison, there are significant im-
provement than baseline concurrency (i.e., the utilization of thread, shared memory,
and register is 50%, 4%, and 48.25%, respectively).

Effect of Dynamic TLP Modulation Algorithm. For two kernels both belonging to type
Up, the static TLP modulation algorithm cannot help to concurrently executing them.
Moreover, during runtime, the fixed TLP configuration cannot fully exploit the comple-
mentation of concurrently executing kernels. The dynamic TLP modulation algorithm
can adjust the TLP configuration based on the runtime information. On average, coor-
dinated static and dynamic TLP modulation can achieve 1.40× performance speedup.
The primary advantage comes from the pipeline stall reduction. Our framework can
reduce of structural stall and memory stall. On average, it reduces memory stall and
structural stall by 38.4% and 12.1%, respectively. Figure 12 compares the structural
stall and memory stall of the baseline concurrency and our framework. In Figure 12,
for each workload, the left column represents the stall of baseline concurrency and the
right column represents the stall of our framework normalized to the default concur-
rency. We find that for some workloads, such as {HST, KMS}, {LBM, BKP}, and {BLK,
BKP}, our framework slightly increases the structural stall. This is because for these
workloads concurrent kernel execution increases the TLP, leading to more threads
racing for the execution units. But our framework still get significant stall reduction
by reducing the memory stall. For workloads LBM_BKP, STC_BKP, and BLK_STC,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:17

Table IV. TLP Settings Selected by the Static TLP Modulation Algorithm
and Resource Utilization

Two-Kernel T bA T bB Thread Util SMem Util Reg Util
BKP_SRD 6 0 100% 13.28% 75%
BLK_HST 6 1 66.67% 6.25% 99.46%
SPM_HST 2 3 70.83% 18.75% 92.14%
SRD_KMS 2 1 83.33% 0 46.88%
HST_SRD 3 0 50% 18.15% 84.38%
KMS_STC 1 1 50% 0 40.77%
LBM_BKP 3 4 33.59% 0 96.88%
BKP_HST 6 0 100% 13.28% 75%
BLK_BKP 6 2 83.33% 4.42% 100%
SPM_BKP 2 4 91.67% 8.85% 68.75%
SPM_BLK 2 6 75% 0 93.75%
LBM_BLK 3 4 58.33% 0 96.88%
HST_KMS 3 1 66.67% 18.75% 82.76%
LBM_SPM 3 5 87.5% 0 93.75%
SPM_SRD 2 2 91.67% 0 56.25%
SPM_KMS 2 1 41.67% 0 28.13%
LBM_KMS 3 1 41.67% 0 56.25%
LBM_HST 3 2 41.80% 12.50% 95.80%
BLK_KMS 6 1 66.67% 0 84.38%
BLK_SRD 6 1 83.33% 0 93.75%
LBM_SRD 3 2 91.67% 0 84.38%
HST_STC 2 1 66.67% 12.50% 80.32%
BKP_STC 4 1 100% 8.85% 81.40%
LBM_STC 3 1 58.33% 0 78.27%
BKP_KMS 5 1 100% 11.07% 71.88%
SPM_STC 2 1 58.33% 0 50.15%
BLK_STC 5 1 75% 0 93.90%
SRD_STC 2 1 100% 0 68.90%
average 72.63% 5.24% 77.50%

Fig. 12. Structural stall and memory stall breakdown.

our work shows very high performance speedup, because for these workloads, the
two kernels have a very complementary pipeline requirement. LBM and STC have
an extremely imbalanced requirement for LD/ST pipelines, while BLK and BKP pre-
fer SP pipelines. When these kernels are dispatched to the same SM and scheduled
simultaneously, they can balance the pipeline utilization and achieve significant per-
formance improvement. To further dig out benefits of TLP modulation on performance

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:18 Y. Liang and X. Li

Fig. 13. An illustration of block modulation process

Fig. 14. L1 data cache miss rate.

benefit, we record the dynamic block dispatching process of HST_BKP in Figure 13.
We find that in the beginning, LD/ST utilization decreases. Our block dispatcher dy-
namically modulates the block configuration from {3, 6} to {2, 8} to improve LD/ST
utilization. Then, the dispatcher modulate block configuration from {2, 8} to {4, 2} to
improve SP utilization.

Effect of Cache Bypassing. TLP modulation alone is an effective optimization tech-
nique for most of the workloads. However, for certain workloads, such as {BKP, KMS},
TLP modulation alone does not give much of a performance improvement due to cache
contention. On average, by employing cache bypassing, our framework can achieve
1.51× performance speedup. For the two-kernel workloads {BKP, KMS}, {HST, KMS},
and {LBM, STC}, cache bypassing shows remarkable additional improvements. Among
these workloads, kernels STC and KMS belong to type Down. Type Down kernels are
cache sensitive, and when we increase the number of blocks on each SM, the L1 data
cache miss increases rapidly, and the performance is decreased as shown by Figure 5(b),
Figure 6(b), and Figure 7(b). Hence, they will benefit from cache bypassing. Our cache
bypassing helps to reduce the L1 cache miss rate by about 30% for these three two-
kernel workloads. Figure 14 shows the L1 cache miss rate. For most two-kernel work-
loads, our work has minor impact on the L1 cache performance. For some workloads,
such as LBM_BLK and STC_BKP, the miss rate is even reduced. This is because the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:19

Fig. 15. Energy-efficiency result.

block dispatcher can dynamically adjust the TLP. High TLP may result in a high cache
miss rate and pipeline waste. For these workloads, the block dispatcher chooses to
decrease TLP to reduce the pipeline waste. As a result, cache miss is reduced.

Energy-Efficiency Result. It is demonstrated that GPU can achieve tremendous horse-
power. However, this is in the cost of heavy energy consumption. We analyze the energy
consumption of different kernels (in Table III) using the GPGPU Wattch [Leng et al.
2013]. SIMD pipeline and DRAM are the two main energy contributors. Moreover, het-
erogeneous kernels tend to use different resources, leaving different resources under-
utilized. By executing different kernels together, we have the opportunities to enable
improve energy-efficiency. Figure 15 shows the energy-efficiency result. Our frame-
work improves the resource utilization by concurrently executing multiple kernels. On
average, our framework can improve energy-efficiency about 1.39×.

5.2. Comparison with the State-of-the-Art Techniques

We compare our proposed scheme with state-of-the-art GPU multitasking techniques.
Coarse-Grained Concurrency. Adriaens et al. [2012] demonstrate that for

memory-intensive kernels, some SMs are idle due to off-chip memory bandwidth sat-
uration. To fully exploit GPU resources, they propose a spatial multitasking that ex-
ecutes computing-intensive on idle SMs. Spatial multitasking partitions those SMs
among different kernels. Thus, it is a coarse-grained concurrency mechanism, where
each SM only executes one single kernel. We implement the Smart-Even policy pro-
posed in [Adriaens et al. 2012]. In addition, [Wu et al. 2015] propose framework spatial
multitasking and thread throttling (SMC). They implement both SM partition and
thread block throttling on each SM. The proposed framework includes two steps. First,
they evenly partition SMs to the two concurrent kernels and search for the optimal
block number per SM using a hill climbing method. Second, they fix the block number
on each SM and search the optimal SM partition configuration.

Figure 16 compares the performance results of Smart-Even and SMC with our our
work. The performance is normalized to the baseline concurrency. On average, the
performance speedups of Smart-Even, SMC, our work are 1.21×, 1.26×, and 1.51×,
respectively. Smart-Even and SMC are both coarse-grained concurrency; they only
consider the off-chip memory bandwidth utilization and do not consider the pipeline
utilization inner SMs. In contrast, our our work is fine grained. Both Smart-even and
SMC do not consider the pipeline utilization. Overall, our work outperforms those two
schemes for all the two-kernel workloads. For workload {LBM, KMS}, SMC gets better
performance than our framework. Because LBM and KMS are both extremely memory
intensive and the LD/ST unit utilization for them is very high. In our framework, we

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:20 Y. Liang and X. Li

Fig. 16. Comparison with coarse-grained multitasking.

Fig. 17. Comparison with mCKE.

dispatch blocks from LBM and KMS into the same SM, which will introduce inherent
contention on LD/ST units. Our framework can adjust the TLP configuration to alle-
viate the contention, but SMC only performs SM partitioning and thread throttling,
which would not aggravate the LD/ST unit contention. Thus, the performance improve-
ment of our framework is not significant. However, on average, due to the contribution
of pipeline utilization analysis, our framework can outperform those coarse-grained
frameworks.

Fine-Grained Concurrency. Lee et al. [2014] discuss the mixed concurrent kernel
execution technique. Similarly to our our work, mCKE is also a fine-grained concur-
rency mechanism that dispatches two concurrent kernels to the same SM. mCKE only
gives the block configuration for several workloads. Hence, we cannot compare it with
our work systematically. For a fair comparison, we only our work with mCKE using
the workloads used in Lee et al. [2014].

Figure 17(a) shows the performance result. The performance is normalized to the
baseline concurrency. Our work achieves better performance for all the evaluated
workloads. On average, our work achieves 1.41× speedup, while mCKE achieves 1.12×
speedup. The reason is twofold. The first is that our our work dynamically adjusts the
block number of concurrent kernels on each SM by monitoring the runtime information,
while mCKE fixes the block number during the execution.

5.3. Evaluation of the More-Than-Two-Kernels Scenarios

In this section, we will demonstrate that our framework can well scale to the more-than-
two-kernels scenarios. First, we conduct experiments for a three-kernel scenario. We
create three-kernel workloads using the same methodology with two-kernel workloads.
Due to space limit, we select 10 representative three-kernel workloads. Figure 18(a)
shows the evaluation results. We can find that for three-kernel workloads, we can also

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:21

Fig. 18. Evaulation of scalability.

achieve similar performance speedup. To further evaluate the scalability, we also select
4 four-kernel workloads and 2 five-kernel workloads in Figure 18(b). We achieve 1.44×
speedup on average. This demonstrates that our work can scale to the more-than-two-
kernels scenarios.

6. RELATED WORK

As GPUs are widely adopted as accelerators for general-purpose parallel applications,
more and more optimization techniques are proposed to fully release the computing
horsepower. They mainly focus on control flow divergence optimizations [Rogers
et al. 2013; Cui et al. 2012; Fung and Aamodt 2011; Fung et al. 2007; Rogers et al.
2015; Burtscher et al. 2012], warp schedulers [Lee and Wu 2014; Jablin et al. 2014;
Narasiman et al. 2011; Rogers et al. 2013, 2012; Jog et al. 2013a], on-chip memory
optimizations [Zhang et al.; Chen et al. 2014; Jia et al.; Lee et al. 2010; Jog et al.
2013b; Gebhart et al. 2012; Xie et al. 2015b; Li et al. 2015a], and concurrent kernel
executions [Liang et al. 2015a; Pai et al. 2013; Lee et al. 2014; Adriaens et al. 2012;
Tanasic et al. 2014; Chen et al. 2017].

On-chip memory optimization. To better utilize computation resources on GPUs,
different optimization techniques are proposed, including data placement [Li et al.
2015b], register allocation [Xie et al. 2015a; Hayes and Zhang 2014], and cache opti-
mization [Chen et al. 2014; Xie et al. 2015b]. Xie et al. [2013] propose a systematic
framework for cache bypassing on GPUs . A few studies identify that on-chip memory
optimizations are also important for general-purpose applications, especially those with
unstructured and irregular behaviors. Cache bypassing techniques, which selectively
bypass some memory requests to help to alleviate the cache contention and further
improve performance, are discussed. [Jia et al.] demonstrate that using cache does not
always have a positive performance impact on GPUs. Xie et al. [2015b] propose both
static and dynamic techniques to determine the cache bypassing behaviors to mitigate
the cache contention problem. Chen et al. [2014] propose a coordinated scheme that not
only applies cache bypassing but also throttles the number of active warps. However,
they do not exploit the performance benefit of concurrent kernel executions. Moreover,
our framework can work synthetically with those cache bypassing works.

Concurrency or multitasking. Concurrent kernel execution for GPUs becomes
increasingly important. As the number of applications ported to GPUs continue to
increase, concurrent kernel execution or multitasking support for GPUs becomes in-
creasingly important. Coarse-grained concurrency policies are proposed in Adriaens
et al. [2012], Liang et al. [2015a], [Wu et al. 2015], and they partition the SMs among
kernels to enable concurrent execution. [Adriaens et al. 2012] first observe that many
GPGPU applications fail to fully utilize all the available GPU resources and suggest
to partition the SMs to improve off-chip memory bandwidth utilization. They discuss

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:22 Y. Liang and X. Li

several SM partitioning heuristics and evaluate their performance. [Wu et al. 2015]
propose a software program transformation framework to implement SM partitioning.
They adopt a hill-climbing heuristic to determine both SM partitioning configuration
and thread throttling configuration. Liang et al. [2015a] propose an efficient heuristic
algorithm and a software emulation framework for both temporal and spatial concur-
rency. However, all those techniques do not allow different kernels executing in one
SM; their performance improvements come from the improved off-chip memory band-
width utilization, and they are oblivious to the SIMD pipeline utilization inner SMs.
Lee et al. [2014] propose a fine-grained concurrency policy; however, their technique is
still primitive. Pai et al. [2013] identify that CUDA programs do not scale to utilize all
the available resources on GPUs. To improve resource utilization, they propose kernel
transformation techniques that convert CUDA kernels into elastic kernels that enable
fine-grained control over their resource usage. By merge multiple kernels, they enable
fine-grained concurrent kernel execution. This is a software approach, whereas our
frameworks is a hardware approach. [Tanasic et al. 2014] and [Lin et al. 2016] consider
preemptive multitasking on GPUs.

7. CONCLUSION

GPUs are ubiquitous as computing platforms for high-performance and energy-efficient
computing. In this article, we implement a fine-grained concurrent kernel execution
mechanism that employs a TLP modulation technique to determine the TLP and a
cache bypassing technique to mitigate cache contention caused by concurrent ker-
nel execution. We conduct systematic measurement of concurrent kernel execution on
GPUs using representative workloads and demonstrate that concurrent kernel execu-
tion can achieve substantial performance and energy-efficiency improvement by 1.51×
and 1.39×, on average, respectively.

REFERENCES

Jacob T. Adriaens, Katherine Compton, Nam Sung Kim, and Michael J. Schulte. 2012. The case for
GPGPU spatial multitasking. In Proceedings of the 2012 IEEE 18th International Symposium on High-
Performance Computer Architecture (HPCA’12).

Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt. 2009. Analyzing CUDA
workloads using a detailed GPU simulator. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’09).

Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A quantitative study of irregular programs
on GPUs. In Proceedings of the 2012 IEEE International Symposium on Workload Characterization
(IISWC’12).

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin
Skadron. 2009. Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of the 2009
IEEE International Symposium on Workload Characterization (IISWC’09).

Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. 2017. EffiSha: A software framework for enabling
effficient preemptive scheduling of GPU. In Proceedings of the 22Nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’17).

Xuhao Chen, Li-Wen Chang, Christopher I. Rodrigues, Jie Lv, Zhiying Wang, and Wen-Mei Hwu. 2014.
Adaptive cache management for energy-efficient GPU computing. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-47).

Zheng Cui, Yun Liang, K. Rupnow, and Deming Chen. 2012. An accurate GPU performance model for
effective control flow divergence optimization. In Proceedings of the 2012 IEEE 26th International
Parallel Distributed Processing Symposium (IPDPS’12).

Wilson W. L. Fung and Tor M. Aamodt. 2011. Thread block compaction for efficient SIMT control flow. In Pro-
ceedings of the 2011 IEEE 17th International Symposium on High Performance Computer Architecture
(HPCA’11).

Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2007. Dynamic warp formation and
scheduling for efficient GPU control flow. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-40).

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

Efficient Kernel Management on GPUs 115:23

Mark Gebhart, Stephen W. Keckler, Brucek Khailany, Ronny Krashinsky, and William J. Dally. 2012. Unifying
primary cache, scratch, and register file memories in a throughput processor. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45).

Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. 2012. Fine-grained resource sharing for
concurrent GPGPU kernels. In Proceedings of the 4th USENIX Conference on Hot Topics in Parallelism
(HotPar’12).

Ari B. Hayes and Eddy Z. Zhang. 2014. Unified on-chip memory allocation for SIMT architecture. In Pro-
ceedings of the 28th ACM International Conference on Supercomputing (ICS’14).

James A. Jablin, Thomas B. Jablin, Onur Mutlu, and Maurice Herlihy. 2014. Warp-aware trace scheduling
for GPUs. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation
(PACT’14).

Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2012. Characterizing and improving the use of demand-
fetched caches in GPUs. In Proceedings of the 26th ACM International Conference on Supercomputing
(ICS’12).

Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K. Mishra, Mahmut T. Kandemir,
Onur Mutlu, Ravishankar Iyer, and Chita R. Das. 2013a. OWL: Cooperative thread array aware schedul-
ing techniques for improving GPGPU performance. In Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’13).

Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita
R. Das. 2013b. Orchestrated scheduling and prefetching for GPGPUs. In Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA’13).

Onur Kayiran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das. 2013. Neither more nor less:
Optimizing thread-level parallelism for GPGPUs. In Proceedings of the 22Nd International Conference
on Parallel Architectures and Compilation Techniques (PACT’13).

Jaekyu Lee, N. B. Lakshminarayana, Hyesoon Kim, and R. Vuduc. 2010. Many-thread aware prefetching
mechanisms for GPGPU applications. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-43).

M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. 2014. Improving GPGPU resource utiliza-
tion through alternative thread block scheduling. In Proceedings of the 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA’14).

Shin-Ying Lee and Carole-Jean Wu. 2014. CAWS: Criticality-aware warp scheduling for GPGPU workloads.
In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation (PACT’14).

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and
Vijay Janapa Reddi. 2013. GPUWattch: Enabling energy optimizations in GPGPUs. In Proceedings of
the 40th Annual International Symposium on Computer Architecture (ISCA’13).

Chao Li, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva Kumar Sastry Hari, and Huiyang Zhou.
2015. Locality-driven dynamic GPU cache bypassing. In Proceedings of the 29th ACM on International
Conference on Supercomputing (ICS’15).

Chao Li, Yi Yang, Zhen Lin, and Huiyang Zhou. 2015. Automatic data placement into GPU on-chip memory
resources. In Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation
and Optimization (CGO’15).

Xiuhong Li and Yun Liang. 2016. Efficient kernel management on GPUs. In Proceedings of Design, Automa-
tion and Test in Europe (DATE’16).

Yun Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and Deming Chen. 2015a. Efficient GPU spatial-temporal
multitasking. IEEE Trans. Parallel Distrib. Syst. 26, 3 (Mar. 2015), 748–760.

Yun Liang, Xiaolong Xie, Guangyu Sun, and Chen Deming. 2015b. An efficient framework for cache bypassing
on GPUs. IEEE Trans. Comput.-Aid. Des. 32, 10 (October 2015), 1677–1690.

Zhen Lin, Lars Nyland, and Huiyang Zhou. 2016. Enabling efficient preemption for SIMT architectures
with lightweight context switching. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’16).

Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur Mutlu, and Yale N.
Patt. 2011. Improving GPU performance via large warps and two-level warp scheduling. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44).

Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. 2013. Improving GPGPU concurrency
with elastic kernels. SIGPLAN Not. 48, 4 (Mar. 2013), 407–418.

Timothy G. Rogers, Daniel R. Johnson, Mike O’Connor, and Stephen W. Keckler. 2015. A variable warp size
architecture. In Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA’15).

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

115:24 Y. Liang and X. Li

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-conscious wavefront scheduling. In
Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’12).

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2013. Divergence-aware warp scheduling. In Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46).

John A. Stratton, Christopher Rodrigrues, I-Jui Sung, Nady Obeid, Liwen Chang, Geng Liu, and Wen-Mei W.
Hwu. 2012. Parboil: A Revised Benchmark Suite for Scientific and Commercial Throughput Computing.
Technical Report. University of Illinois at Urbana-Champaign.

Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and Mateo Valero. 2014. Enabling
preemptive multiprogramming on GPUs. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture (ISCA’14).

Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. 2015. Enabling and exploiting flexible task
assignment on GPU through SM-centric program transformations. In Proceedings of the 29th ACM on
International Conference on Supercomputing (ICS’15).

Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao Wang, and Dongrui Fan. 2015a. En-
abling coordinated register allocation and thread-level parallelism optimization for GPUs. In Proceedings
of the 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-48).

Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. 2013. An efficient compiler framework for
cache bypassing on GPUs. In Proceedings of the International Conference on Computer-Aided Design
(ICCAD’13).

Xiaolong Xie, Yun Liang, Yu Wang, Guangyu Sun, and Tao Wang. 2015b. Coordinated static and dynamic
cache bypassing for GPUs. In Proceedings of the 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA’15).

Hang Zhang, Xuhao Chen, Nong Xiao, and Fang Liu. 2016. Architecting energy-efficient STT-RAM based
register file on GPGPUs via delta compression. In Proceedings of the 53rd Annual Design Automation
Conference (DAC’16).

Received September 2016; revised January 2017; accepted March 2017

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 115, Publication date: May 2017.

