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Abstract—Quantitative effects of Moore’s Law have driven
qualitative changes in FPGA architecture, applications, and tools.
As a consequence, the existing EDA tools takes several hours or
even days to implement the applications onto FPGAs. Typically,
routing is a very time-consuming process in the EDA design flow.
While several attempts have accelerated this process through
parallelization, they still do not provide a strong parallel scheme
for FPGA routing.

In this paper we introduce a dependency-aware parallel
approach, named Bamboo, to accelerate the routing time for
FPGAs. With the dependency detection, Bamboo partitions the
nets into multiple subsets, where the nets in the same subsets are
independent, and the dependency only exists among different
subsets. Specifically, the independent nets in the same subset
are routed in parallel, and the subsets are processed in serial
according to the original routing ordering. The partitioning
problem is solved optimally using dynamic programming, and
the parallelization is implemented by speculative parallelism on
a single GPU. Experimental results show that our approach
achieves an average of 15.13× speedup with negligible influence
on the routing quality. Most importantly, it effectively maintains
deterministic results and always produces the same results as the
serial version.

I. INTRODUCTION

FPGA is a popular design style that provides reconfigurable

flexibility, lower manufacturing cost and time, and the ability

to leverage the advantages of semiconductor process in deep

submicron technology. Moreover, FPGA is also a promising

hardware accelerator that offers attractive performance and

energy for emerging applications that originally ran on general

purpose processors. For example, Microsoft has adopted the

FPGAs to accelerate the search engine [1]. Central to an FPGA

design is EDA tool, which takes the RTL design to implement

it into a target FPGA.

FPGA is a pre-fabricated device, and it is cost-effective to

maximize the resource usage on the underlying FPGA. Thus

the size of RTL design is generally correlated to FPGA size

and low utilization is very seldom seen. Typically, the EDA

tool has very high utilization stress for mapping the RTL

design into target FPGA and meeting the constraints liking

timing closure. This trend is to scale in area and performance

with Moore’s law for each technology node, and today, the

largest FPGA can target designs with near to five million

logic elements. As a consequence, the existing EDA tools takes

several hours or even days to synthesize the RTL design into

the target FPGA device.

Routing is probably the most complex and time-consuming

process in the FPGA EDA flow. Since routing quality directly

affects the maximum clock frequency and other design metrics

such as routability and power, it also becomes a critical

step in the design cycle. Finding a legal routing solution

is equivalent to the NP-complete disjoint path problem in

graph theory. The variant of the negotiation-based PathFinder

routing algorithm [2] is in dominant use in the commercial

FPGA EDA tools. This algorithm enables the different nets to

negotiate with each other to find a feasible solution. It invokes

a maze expansion step [3] to find a routing tree to connect the

individual pins of a single net on the routing resource graph.

Specifically, the PathFinder routing algorithm is sequential in

nature and lengthy in runtime.

Parallelization is a promising direction to accelerate the

routing time but it is non-trivial due to there is a dependency

between two or more nets. In the parallel routing process

of different nets, the dependency state must be synchronized

among threads or processes to avoid sharing the same routing

resources to find a feasible solution. Two primary methods

have been explored: coarse-grained distributed-memory and

fine-grained shared-memory parallelization [4]. The former

uses the multi-process techniques to parallelize the multiple

nets routing concurrently, but the synchronization overhead is

costly due to the high remote memory access latency. The

latter leverages the multi-thread techniques to accelerate the

single net routing serially. While the achievable speedup may

be restricted by the number of processor cores, we explore

parallel routing on many-core GPU platform.

In this paper we focus on the fine-grained shared-memory

parallel model and introduce a dependency-aware parallel

approach, named Bamboo, to accelerate the routing time for

FPGAs. Bamboo leverages dependency detection to partition

the independent nets that are combined into a single net,

which can be speculatively parallelized on GPU. Notably, the

partitioning enables the Bamboo is deterministic that always

returns exactly the same result when running on the different

processors with various cores. Also, it guarantees the Bamboo

is serial equivalency that always gives the same answer as

the serial version of the algorithm, regardless of how many

processing cores are used. They are both important metrics for

easier regression verification and customer support in FPGA

development. Following are the major contributions of our

work to parallel FPGA routing research:
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• We provide an efficient detection approach to determine

the net dependency, and impose the strictly-ordered and

independent constraints to develop an optimal partitioning

algorithm.

• We propose the dependency-aware parallel approach to

enable efficient routing acceleration for FPGAs. This

parallel router is deterministic and serial equivalency.

• We demonstrate the promising acceleration in routing

time for a set of large-scale benchmarks. Experimental

results shows that our approach provides an average

speedup of 15.13× using speculative parallelism with a

single GPU.

II. MOTIVATION AND BACKGROUND

In this section, we give the motivation and background to

design a strong parallel routing scheme for FPGAs.

A. Motivation

With many-core processors become increasingly prevalent,

parallel computing is applied in FPGA EDA algorithms to

improve the performance. Parallelizing FPGA routing involves

the following important requirements which are not fully

encountered in prior parallel routing works.

1. Quality. Most FPGA designers are not tolerate the

significant degradation in routing quality compared to

serial algorithm. The serial routing algorithm currently

optimize wirelength, critical path delay, and any replace-

ment need to deliver equivalent quality. Creating a new

parallel router from scratch with equal capability and

quality is non-trivial. Existing works [12], [13] result in

unacceptable degradation of the routing quality.

2. Scalability. Due to the FPGA logic capacity steadily

increase at the regular rate, scalability has become an

important metric in physical design. Some works [7],

[9] attempts to partition the routing resources into the

disjoint subsets, where each net is allocated one of

the subsets, and routing is performed using only the

resources in the subset. However, some high-fanout nets

require the routing resources from multiple subsets and

can not be routed in parallel. This behavior might further

worsen the parallelism with the increasing number of

partitions. Therefore, they are not highly scalable.

3. Determinism. The parallel router must be deterministic

that always returns exactly the repeatable result when

run multiple times on different machines. This require-

ment is rarely fully implemented in prior works, but

is vital to ease program development and debugging in

commercial context. There exists a parallel router [8]

that guarantees deterministic results only on identical

processor, in a sense that the routing results are different

when running on different commodity hardware. The

majority of parallel routers [11], [12], [13] prefers to

accelerate the routing time and indirectly overlooks this

characteristic.

4. Serial equivalency. It is an even stronger requirement,

known as serial equivalency, we can apply to our

parallel router. This is the property that the parallel

router must give exactly the same answer as the serial

router, regardless of how many processing cores are

used in different machines. A serial-equivalent parallel

router is clearly deterministic as well. Serial equivalency

has advantages including easier regression testing and

customer support. However, the support of this property

was limited or ignored in prior works due to it was

considered expensive.

Thus, it is a meaningful and challenging work to design a

novel parallel router which satisfies these requirements.

B. FPGA Routing
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Fig. 1. (a) Architecture; (b) Routing resource graph.

The physical routing resources of an FPGA can be modeled

as a directed graph, named routing resource graph, where

each vertex represents an electrical pin or a wire segment,

and each edge corresponds to a programmable connection

between two vertices, as an electrical pin and a wire segment,

or a programmable routing switch between two wire segments.

Fig. 1(a) shows an example of a small FPGA architecture

fragment, and the corresponding routing resource graph is

shown in Fig. 1(b) with a channel width of four. The routing

is typically performed on the routing resource graph.

Routing is to find disjoint paths in the graph to connect the

pins of the source and the sinks for each net. In general, the

result of routing a net can be captured by routing resource

tree. In FPGA routing, the routing resource tree is a spanning

tree of the routing resource graph, which includes all vertices

in a routing net. Its root is the source of net, and the sinks are

the terminal nodes. Fig. 1(b) shows a net has one source node

and a few sinks that are logically connected to the source.

The routing resource trees for different nets are disjoint in the

graph, to prevent short circuits.

C. PathFinder Algorithm

The negotiation-based PathFinder routing algorithm [2]

commonly exists in commercial and academic FPGA EDA

research. PathFinder routes one net at a time in each iteration,

where dependencies are temporally allowed in the intermediate

routing solutions. The nets must negotiate with each other to

decide who will make a detour around the dependent resource

nodes in subsequent iterations, until all the dependencies are

resolved to obtain a complete legal routing solution.
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Each iteration rips up an existing routing tree and reroutes

it by invoking the maze expansion [3], which computes a path

from the source to each sink in the routing resource graph.

All of the unvisited vertices are first stored in a priority queue

based on their cost, and the vertex with the minimum cost

is extracted during maze expansion. If the vertex is a sink,

a routing path will be constructed by invoking a backtrace

procedure. Otherwise, each neighbor of the vertex, which has

not been previously visited, is inserted into the priority queue

and the maze expansion continues until a legal routing tree is

found.

D. Speculative Parallelism

The speculative parallelism [16] is a thread-level framework

that automatically parallelizes a program where the compute

and check operators are defined. The general idea of the

speculative parallelism is to iteratively apply a set of operators

on a subset of elements in the data structure which are referred

to as active nodes. At each iteration, the active nodes are

performed useful computations, and the rest inactive nodes

are idle. The check operator determines whether or not the

element assigned to the thread is an active node or not. The

compute operator performs the actual computations required

for the algorithm to progress and can generate more work by

activating inactive nodes. Execution completes when all nodes

are inactive and will not be activated again.

Speculative parallelism is an emerging parallel style that

uncovers abundant parallelism in irregular computations and

simplifies parallel programming. Moctar and Brisk [11] are

first to use speculative parallelism with multi-thread techniques

to accelerate FPGA routing. Recently, Shen [14] and Hoo [15]

have also demonstrated the effectiveness of the speculative

parallelism with GPU and MPI techniques for FPGA rout-

ing, respectively. Specifically, GPU is excellent at exploiting

massive parallelism to achieve high speedup. In this paper

we leverage speculative parallelism with GPU techniques to

accelerate the routing for FPGAs.

III. BAMBOO APPROACH

With the dependency detection, Bamboo partitions the nets

into small subsets and the independent nets of subsets are

combined into a single net. An iterative routine is applied

to converge a congestion-free state when these nets are

routed in parallel. The routine integrates the commonly used

negotiation-based ripped-up and re-routed scheme to progres-

sively find the feasible solution. In this section we describe

the Bamboo techniques in detail and mainly focus on the

dependency-aware parallel routing.

A. Overview

The overall design flow of Bamboo is illustrated in Fig. 2.

Bamboo takes the initial netlist as the input, and first checks

the dependency of nets based on routing window expansion.

Bamboo then separates the nets into a number of subsets using

strictly-ordered partitioning. Since the subsets have a number

of independent nets, Bamboo combines the independent nets

Detection

Partitioning

Combination

Parallelization Feasible

Update cost

All of nets

Rip-up & Re-route

Placed design

Routed design

Yes

No

Fig. 2. The parallel routing flow of Bamboo.

into a single net, which can be routed using speculative

parallelism on GPU. Bamboo iteratively performs these four

steps until to find a feasible solution.

Specifically, the partitioning is subject to the original net

ordering, the nets in the same subset are independent, and the

dependent nets are distributed in different subsets to guarantee

the same routing results. In the parallelization, the nets in

the same subset are routed in parallel, and the subsets are

routed in serial. With the partitioning and parallelization,

Bamboo effectively accelerates the routing and satisfies the

requirements detailed in Section II-A.

When the iteration proceeds, the dependencies among nets

may change. In every iteration, Bamboo repartitions the nets

into subsets considering such change to improve the paral-

lelism. All the routing resources are accessible by every net

in a shared-memory model during parallelization.

B. Routing Window Detection

The objective of detection is to determine the dependency

of nets such that the independent nets are partitioned for

parallelization. It is non-trivial to detect whether the nets are

independent due to the dependency varies continuously with

routing iteration proceeds. One possible way is to run the

routing and analyze the results. Although it is correct, it is not

practicable because the dependency should be obtained before

routing to guide the partitioning. Here we use the routing

window expansion techniques to simulate the variation of net

dependency.

To enable an efficient detection, we impose some artificial

constraints during parallel routing. For each net ri, we assume

a routing window bi, in which we artificially restrict the

exploration of its routing tree. For each routing window bi, the

width and height are wb
i and hb

i , respectively, and the lower-left

cornet position is at (xb
i ,ybi ).

DEFINITION 1. (INDEPENDENT). The nets are independent,

if the routing window of every pair of nets do not overlap with

each other, i.e.,

(xb
i + wb

i � xb
j) ∨ (ybi + hb

i � ybj)∨
(xb

j + wb
j � xb

i ) ∨ (ybj + hb
j � ybi )∨
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It is evident that if the nets satisfies the independent

property, it is safe to route them in parallel without affecting

the routing results. Thus we resort to whether the routing

windows are overlap to quickly determine whether the nets are

independent. With the routing iteration proceeds, the routing

window is from the initial bounding box of the pins expand

to the final bounding box of the routing resource tree. It also

means that the nets need to be repartitioned in each iteration to

preserve the accurate independency such that Bamboo achieves

further speedup.

A simple simulation of routing window expansion is to

continuously expand the routing window during iterations.

However, this implementation will result in more dependen-

cies between nets due to some unnecessarily larger routing

windows and increase the excessive routing time. To solve

the issues, the edge recognition is used in conjunction with

routing window expansion to decide whether the current

routing window continues to be expanded.

sink2

sink1

sink0

source

(a)

Edge 
recognition

(b) (c)

Fig. 3. (a) Initial routing window; (b) Intermediate routing window with edge
recognition; (c) Final routing window.

Fig. 3 shows the process of routing window expansion, and

a net is probably to use more routing resource nodes when

its routing resource tree occupies a node on the edge of the

current routing window. Once recognition, the routing window

will be linear relaxed on four sides by a fixed distance1 in the

next iteration, until it finds the feasible results. With the edge

recognition in the routing window expansion, the routing is

simulated to converge using the similar number of iterations

as the original routing algorithm.

Thus in each iteration we leverage the routing window to

detect the dependency of nets such that the independent nets

are partitioned for parallelization.

C. Strictly-Ordered Partitioning

Partitioning is a very important step in the parallel routing

flow. In this section we give an effective partitioning algorithm

to guarantee these requirements presented in Section II-A are

satisfied in Bamboo.

In serial routing, the net ordering has an important influence

on the quality of results [5]. Moreover, the perturbation of the

net ordering may result in divergence as well [6]. To ensure the

convergence of the iterative routing and avoid the degradation

in the routing quality, we must maintain the original net

ordering, and at the meanwhile, only the independent nets are

partitioned for parallelization. Thereby, we give the definition:

1This distance is empirically set to one, which is sufficient to find a legal
routing solution according to the experiments.

DEFINITION 2. (NET ORDERING). The nets ri are critical

elements in parallel routing. The set N = {r1, r2, . . . , rn} is

the collection of all the nets, where the nets are partitioned by

the increasing ordering as r1, r2, . . . , rn.

Note that the increasing ordering is the original net ordering

of serial VPR routing by default. Based on this basic condition,

we explore the partitioning method to guarantee that the

parallelization phase will not affect the routing results.

The deterministic behavior of a parallel program is com-

pletely defined by its serial equivalency [17]. To maintain

the serial equivalency of the parallel router, we impose the

strictly-ordered property in the partitioning algorithm. After

partitioning, the subsets are strictly-ordered, and the nets in

the same subset are independent.

DEFINITION 3. (STRICTLY-ORDERED). Given the nets N =
{r1, r2, . . . , rn} to be routed, by partitioning, we call the

subsets M = {s1, s2, . . . , sm} strictly-ordered, if sp =
{rip , rip+1, . . . , rip+1−1}, where 1 = i1 < i2 < . . . < im+1 =
n+ 1.

We regard these subsets strictly-ordered, because for i < j,

every net in si is routed before a net in sj as in the original

net ordering. For the partitioning subsets M , the parallel router

routes the nets in s1 concurrently at the first subset, and then

after synchronization, it routes the nets in s2 at the second

subset, and so on. Notice that strictly-ordered is a necessary

condition and independent is a sufficient condition for the

parallel router with serial equivalency.

Based on the independent and strictly-ordered conditions,

the parallel router is serial equivalency, thanks to the routing

results are equivalent to the serial routing results, where the

nets r1, r2, ..., rn are routed one by one. A serially equivalent

algorithm is clearly deterministic as well.

To implement the parallel routing flow shown in Fig. 2, we

formally formulate this partitioning problem as follows:

Problem Formulation. Given the nets N = {r1, r2, ..., rn}
to be routed, our objective is to find a partition M = {s1,

s2, ..., sm} with strictly-ordered and independent properties

to minimize the total routing time.

Due to the number of subsets M is directly involved with the

runtime of parallel routing, we minimize the number of subsets

to indirectly minimize the total routing time. This problem can

be solved by dynamic programming optimally.

subset1 subset2

strictly-ordered

net1 net2 net3 net4 net5 net6

net1 net2 net3 net4 net5 net6

partitioning

subset3

Fig. 4. Strictly-ordered partitioning.
We partition the nets into M subsets s1, s2, ..., sm with

r1, r2, ..., rn nets respectively. Note that r1+r2+...+rn = n,

and the relative ordering for the subsets must be preserved.
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Fig. 4 shows an example that the nets are partitioned into

multiple subsets subject to the strictly-ordered and independent

properties with each partitioning.

The net partitioning can be solved by dynamic programming

in quadratic time. We will analyze the time complexity of the

partitioning below. Table I gives the related notations.

TABLE I
NOTATIONS FOR THE PARTITIONING PROBLEM

Notation Description
E[j][i] The feasibility indicator whether the nets

rj , rj+1, ..., ri are independent.
C[i] The minimum number of subsets for the nets from

r1 to ri with the strictly-ordered and independent
properties.

Specifically,

E[j][i] =

{
1, independent

+∞, otherwise

The algorithm consists of two stages: the precomputation

stage and the dynamic programming stage. We precompute the

E[j][i] using simple pair-wise testing in worst-case quadratic

time. In practice, even this simple algorithm terminates very

fast, because the size of independent subsets is limited.

Based on the precomputed E[j][i], we can start the dynamic

programming algorithm. The minimal number of strictly-

ordered subsets of the first i nets satisfies

C[i] =

{
1, i = 0

mini−1
j=0{C[j] + E[j + 1][i]}, i ≥ 1

The solution to our problem is C[N ]. It is obvious that

computing C[N ] takes O(N2), given E[i][j]. Thus, the time

complexity of the overall dynamic programming algorithm is

quadratic.

Correctness. This dynamic programming algorithm enables

the partitioning is strictly-ordered. It also can be proved by

induction that the strictly-ordered partitioning generates the

minimal number of subsets.

Effectiveness. In practice, this partitioning algorithm is fast,

because the value of j that needs to be enumerated is very

small compared to the nets i. Moreover, due to the sparseness

of routing resource graph, there will be much fewer subsets

than the independent nets routed in parallel.

With this partitioning, the subsets are strictly-ordered to

maintain the routing quality, combined with the nets in the

same subset are independent to guarantee the serial equiva-

lency. The serial equivalent parallel algorithm is deterministic

by default. Moreover, our parallel router is clearly scalability

based on strictly-ordered partitioning.

D. Combination and Parallelization

With the process of partitioning, we combine the multiple

independent nets into a single pseudo net and implement the

net routing using speculative parallelism on GPU.

An effective implementation of combination is to introduce

a pseudo source node to directly connect to the actual source

nodes of multiple independent nets. Thus the independent nets

of each subset can be combined into a single pseudo net, which

can be routed as the real single net by speculative parallelism

on GPU. Here we demonstrate the source of speedup when

routing multiple nets in parallel. To parallelize a single net,

the wait time between beginning and ending phases is costly.

When we parallel route multiple nets as a single net, the

overhead in these two phrases are reduced to improve the

speedup. Fig. 5 shows multiple independent nets are combined

for parallelization.

pseudo source

subset1 subset2

strictly-ordered partitioning

net1 net2 net3 net4 net5 net6

subset3

pseudo source

Fig. 5. Combination of multiple independent nets.

With the combination of multiple independent nets based on

strictly-ordered partitioning, We collect the independent nets

according to their original ordering, and make sure that their

parallel routing will not affect their routing results, comparing

to the sequential routing. By using the routing windows of

the nets, this collection process can efficiently and precisely

determine the dependency between the nets in each iteration.

With the combination, we start to route the first subset of

independent nets concurrently and then route the next subset

until all the subsets are processed as shown in Fig. 6. It

is evident that this subset can be routed in parallel without

affecting the routing results.

subset1 subset2 subsetm

combination

syn syn syn

parallelization

Fig. 6. Parallelization of subsets.

In parallelization, we exploit the speculative parallelism to

implement the single net routing on GPU, while the subsets

are routed one by one in the original ordering. The single

net routing is essentially to solve the shortest path problem.

Notice that same results can be obtained when the shortest

path solution is unique; when there are multiple paths with

the same shortest length, we can always break the tie using

the labels of the nodes to make the solution unique.

The details of speculative parallelism implements the single

source shortest path on GPU for single net routing are as

follows. Instead of the priority queue, the centralized worklist,

a variant of the queue, with atomic memory operation (AMO)

is used to manage the speculative parallelism.

Fig. 7 shows an example to route a single net using specu-

lative parallelism. An initialization step is first to pre-check all
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Fig. 7. Route a single net using speculative parallelism.

the nodes and populates the active nodes into the worklist for

parallel processing. For example, to route a net, the worklist

is initialized with the source node. Second, every thread

pulls some active nodes from the worklist using AMO and

then applies the compute operator to the corresponding active

nodes. For example, in the routing algorithm, the threads pull

several active nodes from the worklist and apply the compute

operator to update the known shortest path of their neighbors.

The newly activated nodes, whose known shortest paths are

updated, are pushed onto the worklist with AMOs, such that

only active nodes will be visited in the next iteration. Note that

in general, the neighborhood of an active node is distinct from

its neighbors in the graph. This process is repeated until the

worklist becomes empty. And at that meanwhile, the solution

of single net routing is obtained.

With the dependent detection of routing window, the nets

are partitioned into subsets. Specifically, the independent nets

in subsets are combined into a single net, which can be routed

using speculative parallelism on GPU. With the requirement of

independent and strictly-ordered, this parallel router is aware

of net dependency and produces serial equivalent results.

IV. EVALUATION

In this section we evaluate and analyze the experimental

results of Bamboo, a novel dependency-aware parallel router

for FPGAs.

A. Experimental Setup

The experiments are performed on the Linux server with

a 6-core Intel Xeon E5-2620 CPU at 2.2GHz and 32 GB

shared memory, equipped with a Tesla K40c GPU having

2880 cores in 15 streaming multiprocessors and 12 GB video

memory. The parallel routing approach described in this paper

is implemented with C++ and CUDA. Some of the GPU

implementations of the SSSP algorithm are adapted from the

source code in the LonestarGPU collection [18]. Table II

shows a summary of the 11 largest representative benchmarks

used for the experiments. Specifically, these circuits are from

the large-scale VTR benchmark suite [19] commonly used in

FPGA EDA research. The MCNC benchmarks [20] are not

evaluated because even the largest case takes several minutes

to route. We use ABC for logic synthesis and technology

mapping, T-VPack for packing, and VPR placer for placement,

respectively.

TABLE II
BENCHMARK SUMMARY

Bench. Arch. Dim. Nets CLBs
mkDelayW. k4 N4 90nm 48x48 5224 1554
blob mer. k4 N4 90nm 51x51 6606 2702
mkSMAdap. k4 N4 90nm 53x53 7154 3126
mkPKtMer. k4 N4 90nm 58x58 7474 3767
or1200 k4 N4 90nm 65x65 8078 3648
stereov.0 k6 N10 40nm 39x39 9312 1492
stereov.1 k6 N10 40nm 39x39 13523 1401
LU8PEEng k6 N10 40nm 53x53 16278 2373
bgm k6 N10 40nm 73x73 27853 4225
stereov.2 k6 N10 40nm 86x86 36479 2802
mcml k6 N10 40nm 101x101 81282 7934

The baseline for comparison is the original VPR 7.0

router [19], which is faster than the existing commercial

routers such as Quartus router [21]. Across all runs, each

benchmark is routed using a channel width of 1.4× the

minimum channel width needed by VPR, following the same

configurations as in the previous works [11], [12]. Although

the focus of this paper is parallelizing the FPGA routing, since

the dependency-aware parallel router is with strictly-ordered

and independent constraints, it can work and maintains the

same routing results as serial router.

B. Experimental Results
Fig. 8 reports the speedups provided by Bamboo, with

VPR router as the baseline. Bamboo integrates detection,

partitioning, combination and parallelization techniques to

accelerate the routing with the constraints of strictly-ordered

and independency. It can be seen that Bamboo achieves an

average speedup of 15.13× on a single GPU.
To analyze the individual influence of these techniques, we

implement the serial and parallel versions, respectively. The

baseline, original VPR router, is executed on overall routing

resource graph. But our serial version runs on the routing

window. The window constraints the routing search space to

optimize the runtime. On average, the serial version provides

a 1.53× speedup. Without partitioning and combination, the

parallel version2 implements the routing in net-by-net fashion,

2For comparison with Bamboo, the parallel version uses the routing window
expansion techniques as well.
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TABLE III
ROUTING QUALITY SUMMARY

Quality Wirelength Critical Path Delay(ns)
Bench. Baseline Serial Parallel Bamboo Baseline Serial Parallel Bamboo
mkDelayW. 112122 112931 112931 112931 8.575 8.663 8.663 8.663
blob mer. 119927 120836 120836 120836 19.35 19.54 19.54 19.54
mkSMAdap. 108533 109237 109237 109237 19.46 19.65 19.65 19.65
mkPKtMer. 109980 110791 110791 110791 14.93 15.09 15.09 15.09
or1200 133856 134665 134665 134665 66.99 67.65 67.65 67.65
stereov.0 115870 116582 116582 116582 4.745 4.795 4.795 4.795
stereov.1 199814 201525 201525 201525 6.795 6.871 6.871 6.871
LU8PEEng 426520 429667 429667 429667 124.1 125.4 125.4 125.4
bgm 152096 153405 153405 153405 33.57 33.97 33.97 33.97
stereov.2 702836 708573 708573 708573 16.60 16.78 16.78 16.78
mcml 1542736 1583886 1583886 1583886 48.82 49.29 49.29 49.29
Avg. 1.0000 1.0073 1.0073 1.0073 1.0000 1.0105 1.0105 1.0105

which achieves average speedup of 7.09× with a single

GPU. The Bamboo parallel router can produce a 2.13× extra

improvement, although the time complexity of partitioning

algorithm is quadratic.
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Fig. 8. Speedup of Bamboo.

In Fig. 8, we also observe that the speedup of Bamboo

scales well when the design size grows. We do obtain notable

speedups for the four largest benchmarks in Bamboo, because

more independent nets can be combined into a single pseudo

net and result in more acceleration on GPU. These results

indicate that Bamboo is promising to maintain a similar

speedup on very-large-scale FPGA design.

Table. III reports the quality of Bamboo compared to the

baseline VPR router, regarding the routed wirelength and

the critical path delay. Only a minor difference of routed

wirelength between the baseline and Bamboo is observed for

all benchmarks. For the critical path delay, it is worsened about

1% on average. Though Bamboo generates serial equivalent

routing results, its serial version also uses the technique of

routing window expansion. The window constraints the search

space and change the routing path, thus, the routing results

are different from original VPR router. From the results of the

routed wirelength and the critical path delay, we conclude that

Bamboo has negligible impact on the routing quality.

The previous work [22] reports that how much quality

degradation is necessary to achieve runtime improvement for

FPGA routing. It is acceptable that Bamboo trades the 1%
degradation in the critical path delay for the 15.13× speedup.

Furthermore, Xilinx recent announces that the routing re-

sources will increase to 2× and more for FPGAs.

C. Comparison with Existing Works

Table. IV shows the comparisons of Bamboo with recent

parallel routing works in quality, scalability, determinism,

serial equivalency, and speedup. Bamboo maintains the serial

equivalency and thus gives exactly the same answer as the

corresponding serial router. Notice that the existing works

guarantees the deterministic results only using the identical

processor, and thus they are weak deterministic. Bamboo is

strong deterministic, regardless of how many processing cores

are used in different processors.

TABLE IV
COMPARISON WITH EXISTING WORKS

Comparison Qual. Scal. Deter. Seri. Equi. Speedup
FPT’10 [8] -1% Yes Weak No 2×
FPL’13 [10] -2% No Weak No 2×
DAC’14 [11] -1% Yes No No 5×
ICCAD’15 [12] -10% Yes Weak No 7×
FPL’15 [13] -8% Yes Weak No 7×
FPGA’17 [14] -2% Yes Weak No 18×
FCCM’17 [15] -1% Yes Weak No 19×
Bamboo -1% Yes Strong Yes 15×

Finally, it can be seen that our parallel router is close to the

state-of-the-art techniques in terms of speedup.

V. RELATED WORK

There are a few other academic works that have accelerated

FPGA routing through parallelization. These parallel routers

are mainly based on coarse-grained distributed-memory model

and fine-grained shared-memory model.

In distributed-memory parallel routing, Chan and Schlag [6]

are the first to accelerate the routing. Although the results

are not deterministic, they achieve impressive speedup results

of 2.5× using three processors. And then, Cabral et al [7]

describes an efficient parallel routing algorithm specifically

for the architecture with disjoint topology. As expected, the
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algorithm achieves the almost linear speedup, however, the

routability is not good.

Another influential work by Gort and Anderson [8], [9]

guarantees the deterministic results on the identical processor.

They achieve a 2.8× speedup using eight cores, although their

method is not highly scalable. Recently, Shen and Luo [12]

leverages a dynamic programming algorithm to determine

the optimal recursive partitioning strategy. The parallel router

exploits more parallelism and provides an average speedup of

7×, although it degrades the quality of routed wirelength.

The most recent work by Hoo and Kumar [15] presents

a distributed-memory parallel router based on speculative

parallelism and path encoding. This parallel router achieves

an average speedup of 19× with 32 processes, although it can

not produce the serial equivalent routing results.

In shared-memory parallel routing, an effort by Zhu et

al [10] partitions the high-fanout nets into several low-fanout

subnets to be routed in parallel. They achieve a speedup of

1.9× on a quad-core processor platform with 2.3% loss in

solution quality. And then, Moctar and Brisk [11] exploits the

operator formulation to accelerate the routing for FPGAs. They

achieve a good speedup of 5.4× using eight threads and the

results is non-deterministic.

Another effective work by Hoo et al [13] proposes a fully

parallel router based on Lagrangian relaxation. They attempt

to partition the original routing problem into independent

subproblems. This approach produces an average speedup of

7× using eight threads, compared to its sequential version.

The most recent shared-memory work by Shen and Luo [14]

explores GPU-accelerated parallel routing based on subgraph

dynamic expansion. This parallel router achieves an average

speedup of 18× on a single GPU, although it can not maintain

the serial equivalency as well.

In this paper we focus on the fine-grained shared-memory

parallel model and design a dependency-aware parallel routing

approach for FPGAs. This parallel router guarantees the serial

equivalency and achieves an average speedup of 15× on a

single GPU. Also, this parallel router is first work to maintain

the serial equivalency and strong determinism.

VI. CONCLUSION AND FUTURE WORK

Parallelization is a very promising direction to accelerate the

routing time for FPGAs. Efficient parallel router provides not

only good speedup, but also deterministic and serial equivalent

routing results.

In this paper we present a dependency-aware parallel routing

approach, named Bamboo, to implement the acceleration and

produce the serial equivalent routing results. Bamboo first

determines the net dependency based on routing window

expansion and then partitions the nets into multiple subsets

with requirements of independent and strictly-ordered. The

independent nets in the same subsets are combined into a

single net, which can be routed by speculative parallelism

on GPU. The dependent nets are distributed in the different

subsets, which can be processed in serial according to the

original routing ordering. Specifically, we propose a provably

optimal partitioning algorithm to minimize the number of

subsets to minimize the routing time. Experimental results

shows that Bamboo provides an average of 15× speedup with

a tolerable loss in the routing quality.

In the future our work can be enhanced in two ways, includ-

ing 1) exploring the techniques to extract independent nets for

the more acceleration of multi-net routing, and 2) leveraging

similar ideas to explore the parallelization techniques for an

FPGA-accelerated FPGA router.
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