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Abstract—Emerging non-volatile memories (NVMs) have been
considered as promising alternatives of DRAM for future main
memory design. The NVM main memory has advantages of
low standby power, high density, and good scalability. Its non-
volatility, however, induces a security design challenge that data
retained in memory after power-off need to be protected from
malicious attacks. Although several approaches have been pro-
posed to solve this problem through data encryption, they have
some limitations such as high design complexity and non-trivial
timing/energy overhead. Moreover, these techniques decrease the
lifetime of NVM main memory due to extra write operations
caused by encryption. In order to overcome these limitations,
we propose an efficient PAD-XOR based encryption scheme in
this work. A novel PAD generator based on a randomizer and
several sub-PAD tables is introduced. With the PAD generator,
our encryption scheme can provide run-time data protection to
all data in NVM memory with low timing and power overhead.
In addition, the encryption process can co-operate with wear-
leveling of NVM to reduce design complexity. More important,
our encryption technique has no impact on lifetime because no
extra writes are incurred. Experimental results demonstrate that,
compared to prior approaches, our design can achieve the same
security strength with substantial lower overhead in respect of
timing, energy consumption, and design complexity.

I. INTRODUCTION

Recently, smart phones and tablet computers become more

and more popular. As the customer requirements keep in-

creasing, the main memory capacity in these portable devices

has increased significantly over recent years. For example,

the main memory capacity of Intel’s next generation tablet

computer can be as large as 16GB [2]. Such a requirement

makes the well-known problem of Memory Wall severer,

especially for these portable devices with design constrains

from power budget and footprint.

To attack Memory Wall, various emerging non-volatile

memories (NVMs), such as Phase Change Memory (PCM),

Resistive Random-access memory (ReRAM), and Spin-

transfer Torque Random-access Memory (STTRAM), have

been widely proposed to replace traditional SRAM/DRAM

for future memory hierarchy design [14], [21], [16], [20], [8].

These NVMs have advantages of good scalability, low standby

power consumption, high density, fast access speed, etc.

Among these NVMs, PCM is considered as a competitive

alternative of DRAM. Prior research has demonstrated that

PCM based NVM main memory can significantly improve

memory energy-efficiency, compared to DRAM counterpart.
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On the other hand, researchers also pointed out that optimiza-

tion techniques are required to overcome limitations of NVM

main memory [18], [13], [14], [21], [16].

Most prior research focuses on improving write performance

and lifetime of NVM main memory. Only a few of them

address the security challenge caused by its non-volatility [4],

[10]. Different from traditional DRAM memory, data stored in

NVM main memory can be retained after power-off because

of its non-volatility. On the one hand, it provides advance

of being restored instantly when the system is powered on

next time, but on the other hand, non-volatility makes these

data more vulnerable to be attacked by malicious attacks.

For example, an attacker can physically remove the main

memory and extract sensitive information from it through a

memory scanning [4]. This security problem is severer as

mobile computing systems, such as tablets and smart phones,

become more and more popular nowadays.

Recently, two approaches have been proposed to solve

this security problem using data encryption. Chhabra et al
proposed i-NVMM, which selectively encrypted data in NVM

using AES algorithm [4]. In order to mitigate timing and

energy overhead of encryption and decryption, i-NVMM only

encrypted cold data that are not frequently accessed during

runtime execution. The hot data is not protected until the

execution is over or the system is powered down. One critical

problem of this technique is that the hot data, which may

be more sensitive than cold part, are not protected. For

example, if the NVM memory is pulled out during run-time

execution, the hot data are exposed directly to attackers. In

order to fully protect all data in NVM memory, Kong et
al introduced a counter-mode XOR based encryption [10].

Instead of encrypting data directly with AES, this technique

calculates a crypto-PAD with AES for each memory line.

Then, data is encrypted by XOR the crypto-PAD. However,

the counter information used to calculate crypto-PAD has to

be stored with data in NVM main memory for decryption. In

addition, the overhead of AES algorithm cannot be avoided.

Besides non-trivial overhead, these approaches are not op-

timized for NVM main memory because of three reasons.

First, these two approaches have a common limitation that

the encryption process can harm the lifetime of NVM main

memory due to extra write operations caused by encryption.

The efficiency of write reduction techniques for NVM main

memory is significantly degraded. Second, the wear-leveling

techniques for NVM memory are never considered during

encryption. Actually, the address re-mapping process in wear-

leveling can also be considered as a type of data encryption,
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which can be leveraged to reduce design complexity of en-

cryption. Third, the attack mode in previous mode is not well

defined so that some encryption features are overemphasized.

With a well-defined attacked mode, the requirements can

be relaxed with the same protection strength. The detailed

discussion of these issues can be found in Section II.

To overcome these limitations of prior work, we need to find

an encryption scheme to satisfy following key requirements.

1) Security All data in memory must be encrypted during

execution against potential runtime attacks.

2) Overhead Both design complexity and runtime tim-

ing/power overhead should be moderate.

3) Compatibility Encryption method should work well

with other optimization techniques for NVM.

In order to achieve these design goals, we propose an

efficient run-time XOR based encryption scheme in this work.

The contribution of our design can be concluded as follows,

• Our encryption scheme can provide run-time protection

for all data in memory.

• AES hardware is avoided so that both design complexity

and timing/power overhead is significantly reduced.

• We present a clear attack model and prove that our

scheme can achieve the same protection strength as prior

approaches using AES algorithm.

• Our encryption scheme is totally compatible with partial

write and redundant write techniques and there are not

extra writes induced.

• Our encryption scheme can reuse hardware of wear-

leveling component of NVM to reduce design complexity.

• We provide comprehensive evaluation by comparing dif-

ferent approaches. The results show that our method can

outperform prior approaches, in respect of performance,

power consumption, and lifetime of NVM memory.

The rest of this paper is organized as follows. Section II

prepares preliminary knowledge of NVM main memory and

XOR based encryption. We introduce our encryption scheme

in Section III. Note that we move most detailed mathematical

derivation to Appendix to make it easy to be understood.

Comprehensive evaluation is presented in Section IV. We

conclude our paper in Section V, followed by the Appendix

section.

II. PRELIMINARIES

In this section, we present related background to help un-

derstand our encryption scheme and corresponding discussion.

It includes (1) write reduction techniques that can be affected

by prior encryption approaches and wear-leveling techniques

that can be leveraged by our encryption, (2) basic framework

of PAD-XOR based encryption method.

A. Write Reduction and Wear-leveling Techniques

The limited write cycle is a well known problem of NVM

main memory. For example, a PCM cell’s write cycle is

in the range of 106 ∼ 108 with different technologies [14],

[16]. NVM main memory design may wear out within several

months without any optimization. There has been extensive

research on how to improve lifetime of NVM memory. These

works can be categorized into either write reduction or wear

leveling techniques, which are described as follows.

a) Write Reduction: The purpose of this method is try

to reduce the number of updated bits to NVM main memory

in each write operation. Lee et al proposed the method of

partial write that only the cache lines written back from last

level cache (LLC) are updated in a memory line [11]. In

DCW method [21], old data in NVN main memory is first

read out and compared with new data bit by bit. Then, only

the modified bits are updated in the write operation. The

Flip-N-write technique is proposed base on DCW method to

further reduce number of updated bits by calculating hamming

distance between write data and old data [5]. These techniques

can effectively reduce write intensity up to 85% [21], [5].

Prior encryption techniques, however, can severely degrade

efficiency of these techniques. It is because both these ap-

proaches are based on AES algorithm. It means that the whole

memory line need to be re-encrypted even when only one bit is

updated in a write operation. Corresponding evaluation can be

found in Section IV. Note that some data encoding techniques

are also proposed for write reduction [19]. The impact of

encryption on these techniques is complicated to discuss

quantitatively and is not included due to page limitation.
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Fig. 1. An example of address mapping based on Feistel Network[14].

b) Wear Leveling: Even with write reduction techniques,

some cells in NVM memory may wear out faster than the

others due to non-uniform write intensity [21]. Thus, the

wear leveling techniques are also necessary to balance write

intensity. Various techniques, such as table based re-mapping,

Start-gap, Security Refresh, etc., are proposed for wear level-

ing [21], [14], [16]. Although design details are different, the

fundamental rule behind these techniques is the memory ad-

dress re-mapping between logic address and physical address.

In other words, memory addressing is periodically changed

so that write intensity is uniformly distributed throughout

the whole memory space. An example of address mapping

based on Feistel Network is illustrated in Figure 1. Inter-

estingly, these wear leveling techniques are also employed

to protect NVM from the attack that try to wear out NVM

memory through malicious repeat updates to same cells. In

Section III-D, we show that the wear-leveling can be leveraged

for data encryption in our scheme to reduce design complexity.



B. PAD-XOR based Encryption Method
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Fig. 2. Illustration of PAD-XOR based Encryption Framework.

The PAD-XOR based encryption method has been widely

adopted in prior work [10], [15], [17]. The main advantage is

that it can overlap the PAD generation process with memory

fetching time to mitigate the encryption impact on perfor-

mance. The illustration of such a framework is demonstrated

in Figure 2. For encryption, some status variables, such as

data address, are first used to generate crypto-PAD in the PAD

generator. Then, the crypto-PAD XOR with plain-data (a.k.a.

data to be encrypted) to get cipher-data (a.k.a encrypted data).

The decryption is the reverse process of the encryption. The

plain-data can be restored by XOR of cipher-data and the same

crypto-PAD.

Kong’s work is a encryption design of PAD-XOR based en-

cryption method. However, this work is inefficient for several

reasons. First, the crypto-PAD is generated with AES algo-

rithm. Since the timing overhead of AES is really high [10],

[4], the PAD generation delay may not be fully hidden by

data fetching time. Second, a counter is used to provide status

variables for encryption. Thus, the counting numbers used for

encryption have to be stored with cipher-data in NVM memory

for decryption. Despite of extra storage, the crypto-PAD of a

memory line is changed with each write operation and induces

extra updates. Third, as mentioned in last subsection, it can

degrade efficiency of write reduction techniques and cannot

reuse hardware of wear-leveling.

III. ENCRYPTION SCHEME

In this section, we first declare a feasible attack model to

NVM main memory and introduce the definition of security

strength. Then, the detailed encryption scheme is introduced.

Note that we move most mathematical derivation to Appendix

to make it concise and easy to follow. At last, we introduce

the architecture of a NVM main memory with our encryption

component integrated. In addition, the combination of encryp-

tion and wear-leveling is presented.

A. Attack Model & Security Strength

In this work, a reasonable attack model is based on the

following assumptions to facilitate the attack.

• The attacker has the right to write specific data into NVM

main memory as a normal user. These data can be used

in later attack.

• NVM main memory can be physically obtained by at-

tacker either during runtime execution or after power-off.

• NVM main memory can be plugged into an attack system

which can scan out all cipher-data for attack.

• Sensitive data are stored in the memory line, the logical

and physical addresses of which are denoted as LA
and PA, respectively. The corresponding crypto-PAD for

encryption of sensitive data is denoted as CP.

With these conditions, the goal of the attacker is to find out

sensitive plain-data from cipher-data retained in NVM memory

using statistical or computing methods. First, it can be proved

that statistical method cannot work. The details can be found

in VI-B of Appendix. The basic flow of computation attack is

as follows,

• Step 1 The attacker reads cipher-data from the memory

line with any logical address LA′ and physical address

PA′. The corresponding crypto-PAD for encryption of

sensitive data is denoted as CP′.
• Step 2 Obviously, it should be ensured that PA has been

scanned by the attacker. In the worst case, the attacker

needs to scan the whole NVM main memory.

• Step 3 The next step is to remove the protection of crypto-

PAD (CP′) through computing to get the sensitive plain-

data. Detailed mathematical description can be found in

VI-B of Appendix.

Conventionally, an encryption mechanism is considered as

broken when the possibility of retrieving sensitive plain-data is

greater than a predefined threshold number Prth. This number

is normally set as 0.9 in real cases [9]. In this work, we use

total computation required to achieve this threshold probability

to present the strength of security. Assume that the possibility

of retrieving sensitive plain-data with one computation is Pr0.

The total computation required to break encryption can be

approximated as 1
Pr0

[12]. For example, the computation of

Kong’s counter-mode approach is 2128, using a 128-bit key in

AES algorithm [12], [6].

B. Design of PAD Generator

In Kong’s approach, the status variables needed for encryp-

tion and decryption (e.g. counter, logic page ID, etc.) have to

be stored in NVM main memory with cipher-data. Despite of

the storage overhead, the information is also retained in NVM

and may be leveraged during an attack. One straightforward

solution is to store all these information in volatile memory,

such as SRAM or registers. However, the overhead for volatile

memory is not trivial. For example, about 50MB SRAM is

required for a 4G NVM main memory in Kong’s approach. In

order to solve this problem without inducing significant design

overhead, we propose a novel design of PAD generator, as

illustrated in Figure 3.

Physical 
Address

Randomizer
sub-PAD Table [1:K]

Combiner

crypto-PAD

sub-PAD 0
sub-PAD 1
sub-PAD 2
sub-PAD 3
……
sub-PAD N

…
Address

SEL [1:K]

…… ……

Selected sub-PADs

Fig. 3. Structure of PAD generator.

Our design of PAD generator is composed of three main

components including K sub-PAD Tables, a Randomizer, and

a Combiner. The functions of these components are introduced



as follows. In order to simplify description, we assume that

there are 2N memory lines in the whole NVM main memory

and the size of each memory line is M-Byte.

sub-PAD Table This is the component storing information

to generate crypto-PAD. Each table is made by volatile mem-

ory (e.g. SRAM) that contains (N+1) binary sequences named

as sub-PADs in this work. For the ith sub-PAD table, these

sub-PADs are denoted as (Si
0,S

i
1, . . . ,S

i
N). The size of each

sub-PAD is equal to that of a memory line (a.k.a. M-Byte).

The factor K is related to the security strength requested. The

security strength can be increased with a larger K. However,

the storage overhead is also increased at the same time. The

optimization analysis is shown in Section IV-C. These sub-

PADs are randomly generated when the system is initialized,

and are unknown to any users. Note that there are various

methods of generating these sequences. For example, we can

use random number generator (RNG) [16], which can generate

random numbers using machine noise.

Randomizer This component is used to generate selection

signals used by sub-PAD tables. As shown in Figure 3, the

input of randomizer is the physical address of a memory line

containing requested data. The selection signal is generated

individually for each sub-PAD table. For example, SELi is

a N-bit binary number for ith sub-PAD table. It is denoted

as (ai
1,a

i
2, . . . ,a

i
(N)). Since the address is an N-bit binary

sequence, the transformation from the address to SELi can

be considered as a N → N mapping process. There are

various realizations for such a randomizer. For example, the

Feistel Network mentioned in Section II can be employed,

as illustrated in Figure 1. Note that the randomizer also needs

secret keys that are stored in volatile memory and are randomly

generated at power-on.

Combiner This component is used to calculate the final

crypto-PAD based on the sub-PADs selected by K selection

signals. The calculation is described as follows,

CP =CP1 ⊕CP1 ⊕CP2 . . .⊕CPK (1)

CPi = Si
0 ⊕ (ai

1 ·Si
1)⊕ (ai

2 ·Si
2)⊕ . . .⊕ (ai

N ·Si
N) (2)

, where we have (i = 1,2, ..,K). Here, CP refers to the final

crypto-PAD; CPi refers to the XOR result of sub-PADs from

ith sub-PAD table.

We can find that the combiner is composed of an array of

XOR gates. There is a design trade-off between performance

and hardware overhead. The more XOR gates we have, the

less latency we can achieve to generate the crypto-PAD. The

hardware overhead is increased at the same time. Since the

process of generating crypto-PAD can be overlapped with

data fetching from NVM main memory, we can optimize the

number of XOR gates to reduce hardware overhead without

inducing timing overhead. The related analysis can be found

in Section IV-C.

With this crypto-PAD generator, our encryption design can

satisfy the three requirement listed in Section I. First, since

both sub-PADs and mapping relationship are unknown to

users, our design can achieve a high security strength easily.

The detailed proof is introduced in Section VI. Second, the

mapping process is faster than AES algorithm and storage

overhead of sub-PAD table is trivial. The detailed analysis is

presented in evaluation section. Third, the encryption process

does not induce extra write intensity and has no impact on

write reduction techniques. It is because the crypto-PAD cor-

responded to each physical address is fixed and the calculation

of crypto-PAD from sub-PADs only involves XOR operations.

Thus, the unmodified bits in write data are kept the same after

encryption. More important, we can find that the function

of randomizer in PAD generator is similar to that used in

wear-leveling design [14], [16]. It provides the potential co-

operation and hardware reuse between encryption and wear-

leveling components in NVM main memory, as introduced in

the next subsection

C. NVM Main Memory with Encryption
The architecture of NVM main memory is shown in Fig-

ure 4(a). Both wear-leveling and our encryption components

are included in memory controller. Note that we hide other

functional components of memory controller in the Figure

to make it clear to read. The overlap between these two

components represents hardware reuse. The operations of

NVM main memory is described as follows,

• Initialization During the initialization power-on, sub-

PADs are randomly generated and stored in sub-PAD

table located in memory-controller. At the same time,

both mapping relationships in wear-leveling components

and encryption components are also initialized randomly

(i.e. keys of wear-leveling and encryption components are

randomly generated) .

• Write operation
– Step 1 When there is a write back from last level

cache (LLC), the physical address of corresponding

memory line is output from wear-leveling component

and sent to the crypto-PAD generator.

– Step 2 After the crypto-PAD is generated based

on SEL from sub-PAD selector, the cipher-data is

calculated by an XOR operation between original

write data and crypto-PAD.

– Step 3 The cipher-data is updated to NVM memory

array with write reduction technique, such as DCW.

• Read operation
– Step 1 When there is a read request from LLC, the

address of corresponding memory line is sent to sub-

PAD selector. Physical address of the memory line

is calculated through wear-leveling component at the

same time.

– Step 2 The crypto-PAD is generated in parallel with

data fetching process from NVM memory array. The

original data is calculated by an XOR operation

between cipher-data and crypto-PAD.

– Step 3 The original data is sent to LLC.

• Normal Shutdown When the system is powered off

normally, user has two options:

– Option 1 When the user wants to keep data in NVM

main memory for later restoration, we need to store



status of PAD generator, including sub-PAD tables,

keys used for mapping in randomizer, etc. These

information also need to protected in NVM main

memory. For example, user can provide a password

to encryption them before shutdown. Note that this

encryption is not the responsibility of our encryption

design.

– Option 2 If the user do not want to keep data in

NVM main memory, no extra operations are needed.

Those information in PAD generator disappear after

power-off.

• Wear Leveling During the wear leveling process, a logic

address can be re-mapped to a different physical address.

This process is similar to that in a NVM main memory

without encryption. The data in old physical address are

read out then written into the new physical address. After

using encryption, the only difference is that data are

decrypted first in the read operation and encrypted in the

write one. Obviously, the encryption/decryption process

is transparent to the wear-leveling component.

D. Encryption Architecture

NVM Cell Arrays

Wear-leveling 
Component

Encryption 
Component

LA

PA Encrypted Data

Memory Boundary

Memory Controller

Data from/to LLC

E

(a)

SEL[1:K]

Combiner

Randomizer

Wear-leveling

sub-PAD 
Table[1:K]

LA Data from/to LLC

P.A. b-PA

ombin
XOR

crypto-PAD

Encrypted Data

sub-PADs

(b)

A.

Fig. 4. Illustration of overall architecture.

The design details of encryption component is enlarged

in Figure 4(b). We can find that the input of encryption

component is physical address output from wear leveling

component. Since the mapping between logic addresses and

physical addresses in wear-leveling component is also un-

known to users, it can help increase the computation needed

to break the cipher-data. In fact, the mapping in wear-leveling

component is similar to the function of randomizer in en-

cryption component. Thus, encryption component can leverage

the wear-leveling component to reduce the design complexity

of its own randomizer. We provide two case studies with

two popular wear-leveling techniques, namely Start-Gap and

Security Refresh [14], [16].

• Case for Start-Gap Since the address mapping of Start-

Gap is also based on Feistel Network, it can be directly

used by randomizer. For example, a 3-stage Feistel Net-

work is used in wear leveling of prior approach. The stage

of Feistel Network used for randomizer can be reduced

by three to achieve the same security strength.

• Case for Security Refresh When the Security Refresh is

employed as wear leveling, the stage number of Feistel

Network used to achieve the same security strength can

be reduced by two. The detailed proof can be found in

VI-B of Appendix.

IV. EVALUATION

In this section, we first introduce experimental setup. Then,

we compare our design using a fixed configuration with other

approaches. At last, we provide a detailed sensitivity analysis

with various configurations.

A. Experiment Setup

We evaluate performance with a full system cycle accurate

simulator gem5 [3]. The system is configured as one Intel i5-

like processor, similar to those used in modern products[2]. A

PCM based NVM main memory is employed for evaluation.

The detailed parameters of processor and memory hierarchy

are listed in Table I. We select 15 workloads from SPEC

CPU 2006 benchmark suite for simulation on gem5. For each

simulation, one billion instructions are executed. We assume

that both PCM and CMOS technologies nodes are 45nm.

In order to evaluate energy consumption, we record exact

read operations and updated bits in each write operations to

calculate the dynamic energy of NVM main memory. The

static power of NVM main memory is extracted from the

tool NVSim [7]. The dynamic and static energy of encryption

logic are generated by synthesis tool and calibrated with prior

approaches to provide a fair comparison [4], [10].
TABLE I

DETAILED SIMULATION SETUP.

Processor Configuration

2GHz, Issue Width:8, Fetch Width:8, INT/FP FUs:8/8
LD/ST: 24/24, Branch penalty: 6cycles
ROB entries: 192, Fetch Q: 56, INT/FP registers: 128/128

Cache Configurations

DL1/IL1: 32/32KB, 2-way, 64B, R/W: 2/2-cycle, private
L2: 1MB, 8-way, 64B, R/W: 10/10-cycle, share

Memory Configurations

4GB, PRAM, Security Refresh Wear leveling, 256Byte per line
1333MHz, 160/320-cycle ave. lat., Write Buffer: 16-entry

We compared results of four memory systems with different

encryption designs, in respect of performance, lifetime, energy

consumption, and hardware overhead. The baseline is a NVM

main memory without using data encryption. The second sys-

tem is the one that directly encrypts data with AES algorithm

using 128-bit key (labeled as Direct-AES). The third NVM
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Fig. 5. Comparison of performance overhead with different designs.

main memory uses PAD-XOR based encryption method as

introduced in Kong’s work and is labeled as AES-PAD. The

forth system employs our PAD-XOR based encryption scheme

using a 9-stage Feistel Network as randomizer together with

a single-level Security Refresh as the wear-leveling technique.

It should be addressed that our design also works well with

other wear-leveling techniques. The results of forth system is

labeled with Rand-PAD. Note that we do not include results

of i-NVMM approach because it cannot achieve a run-time

protection to all data in NVM main memory.

B. Comparison of Experimental Results

All results in this section are based on configuration in

Table I, In addition, four sub-PAD tables are used in PAD gen-

erator. We optimize PAD generator considering performance

and area overhead (a.k.a. Case-2 in Subsection IV-C).

1) Performance Evaluation: We compare performance

overhead caused by encryption in Figure 5. All results are nor-

malized to baseline without using any encryption techniques.

Obviously, memory encryption and decryption processes have

impact on latency of read and write on the main memory.

For the case of Direct-AES, the performance is degraded as

AES encryption and decryption latency are directly added to

latency of write and read operations, respectively. For the case

of AES-PAD, the performance overhead is moderate because

both decryption and encryption latency can be partially hidden

with data fetching and updating processes in read and write

operations, respectively. However, due to long latency of

AES algorithm (e.g. 190-cycle), the overhead cannot be fully

covered. On average, the performance overhead is about 2%.

The results also demonstrate the performance overhead

using our encryption method is trivial because we avoid using

AES algorithm. The latency of generating crypto-PAD in our

design can be fully hidden by data fetching and updating. The

only extra latency comes from the XOR operation to generate

cipher-data. Thus, the average overhead for all workloads is

only 0.1%.

2) Lifetime Evaluation: The encryption algorithms like

AES, involve data diffusion to keep data security. The data

diffusion, however, leads to write amplification which sig-

nificantly amplify write overhead. Since crypto-PAD for a

physical address is fixed before attack, there are no extra write

induced with our encryption design.
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Fig. 6. Comparison of write reduction for different designs
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Fig. 7. Comparison of energy overhead for different designs.

We compare our work with Direct-AES and AES-PAD

cases, when the DCW technique is employed for all work-

loads, as shown in Figure 6. The y-axis represents the

normalized total number of write bits reduction. We also

provide the case without using any encryption method as the

baseline. The results prove that our encryption method does

not incur extra write intensity. As a comparison, the number

of write bits reduction is reduced by about 30% percent on

average, when AES algorithm is used in encryption. Since the

lifetime of NVM memory is only related to write intensity. We

can conclude that using our encryption method can increase

the lifetime of NVM memory by 67% compared to those

approaches using AES algorithm.

3) Energy Evaluation: The system using our security

scheme can also benefit from low energy consumption of

our light-weight encryption process, compared to other ap-

proaches. In addition, the write energy reduction is reduced

because there are no extra write induced with our encryp-

tion scheme. We conduct the experiment with configurations

provided by previous works [4][1], and compare energy con-

sumption for cases of Direct-AES encryption, AES-PAD based

method, and our RAND-PAD. The total energy consumption

including encryption and decryption energy is shown in Fig-

ure 7. The results show that total memory energy overhead is

about 4% on average with our encryption method, compared

to the baseline without using any encryption. For comparison,

the average energy overhead of AES-PAD is about 29%.

4) Hardware Area Evaluation: The extra design overhead

of our scheme is also lower than those of designs using



TABLE II
AREA AND STORAGE COST COMPARISON

Direct AES AES-Pad Rand-Pad

Logic Part Transistors(K) 591.1 591.4 462.1

Extra Logic Area (mm2) 2.0 2.0 1.5

Extra Memory Storage 8MB SRAM 65MB NVM 25.1KB SRAM

TABLE III
COMPARISON AMONG DIFFERENT DESIGN CONFIGURATIONS

Config. Design Storage Area Combiner C-/P-Data
Overhead Overhead Latency Latency

(KB) (mm2) (cycle) (cycle)

Case-1 25.1 6.2 10 1
4G 256B Case-2 25.1 1.5 39 1

Case-3 25.1 1.1 51 5

Case-1 28.1 6.6 11 1
32G 256B Case-2 28.1 1.7 43 1

Case-3 28.1 1.2 57 5

Case-1 92.1 23.3 9 1
4G 1024B Case-2 92.1 1.5 36 1

Case-3 92.1 1.0 47 18

Case-1 336.1 84.5 8 1
4G 4096B Case-2 336.1 1.3 33 1

Case-3 336.1 0.9 43 73

AES algorithms. To encrypt the NVM main memory of 4GB

size, the extra storage for sub-PAD table is only about 25KB
SRAM. The capacity needed for our scheme and relative

mechanisms are list in Table II. The parameters used here

are obtained from prior works [4], [1].

We evaluate overhead of logic part by calculating total

numbers of transistor used. In addition, the area overhead

is also estimated using synthesis tool. We compare these

numbers in Table II. The total transistor numbers for cases

of Direct AES and AES-PAD are similar (about 590K). It

means that most overhead comes from the realization of AES

algorithm. For our encryption design, about 462K transistors

are needed because we avoid using AES algorithm. Note that

the whole memory line is encrypted in parallel in our design.

The overhead can be further reduced if the XOR is completed

in multiple steps. The latency, however, will be increased at

the same time. The extra storage required are also compared in

Table II. The storage overhead of encryptions of first two cases

comes from internal storage required by AES. The overhead

of our design, however, is significantly reduced because we

only need to store the sub-PAD tables.

C. Sensitivity Analysis
In the last subsection, memory system configuration and

design parameters of our encryption component are fixed

for evaluation. Obviously, the metrics of security strength,

performance, energy consumption, and area overhead can be

affected by various memory system configurations and encryp-

tion design parameters. In order to provide the comprehensive

evaluation for different scenarios, we analyze the sensitivity

of design metrics for these design factors.

As shown in Table III, we discuss sensitivity of storage

overhead, extra hardware design, and latency of generating

crypto-PAD for different memory configurations and designs

of PAD generator. We first introduce three possible PAD

generator designs, which have different realizations of sub-

PAD combiner and calculation of cipher-data.

• Case-1 For the combiner design, each combination oper-

ation is processed with the granularity of a memory line

size (M-Byte). It means that an operation like S0 ⊕ S1

in Equation (2) is processed with 8M XOR gate at the

same time. Similarly, the calculation of cipher-data is also

processed with the same granularity. In other words, the

XOR operation between crypto-PAD and plain-data is

also processed with 8M.

• Case-2 The processing granularity of combination op-

erations is equal to a word size (4-Byte). It means

that an operation like S0 ⊕ S1 is completed in multiple

rounds ( M
4 ). For the calculation of cipher-data, the process

granularity is still kept as a memory line size.

• Case-3 In this design, the processing granularity for both

combination operation and calculation of cipher-data is

set to a word. Compare to Case-2, the difference is that

calculation of cipher-data is completed in M
4 rounds.

These three design styles have an impact on hardware

overhead and performance, which are compared in Table III. A

larger processing granularity requires more XOR gates, which

result in more extra transistors. For example, the area overhead

is increased from 1.1mm2 to 6.2mm2 when we use Case-1

design instead of Case-3 design, with a 4GB NVM memory

and the memory line size set to 256B. On the other hand, the

latency of combining crypto-PAD is reduced to 11-cycle, and

the latency of calculating cipher-data is reduced to 1-cycle.
The trade-off between performance and hardware overhead

should be explored to obtain an optimized design. For a read

operation, the combination of sub-PADs can be processed in

parallel with data fetching. Since combination latency can

be hidden by data fetching, the read performance is not

improved after using design of Case-1 or Case-2. The latency

of calculating plain-data, however, is added to that of a read

operation. Thus, for a read operation, the design of Case-2

is preferred. The case for write operation is different because

both latencies from combination of sub-PADs and calculation

of cipher-data are added. Fortunately, the extra latency of

encryption is trivial compared to that of a write operation.

In addition, the write operation is not in the critical path of

data access. Consequently, we select Case-2 as the optimal

design, which is used for evaluation in previous subsection.
The impact of memory capacity and memory on design

overhead is also compared in Table III. We can find that

the storage overhead increases significantly with the size of

a memory line. It is because the storage overhead mainly

comes from the sub-PAD Table. Since the size of a sub-PAD is

equal to that of a memory line, the storage overhead increases

linearly with the memory line size. For the similar reason, the

logic overhead increases at the same time with Case-1.
Figure 8 demonstrates the relationship between security

strength and design factors including memory capacity, mem-

ory line size, and number of sub-PAD tables. Note that the

log based z-axis represents the lower-bound of computation

needed to break encryption. We have following two obser-

vations based on the results. First, the security strength is

close related to the number of sub-PAD tables (a.k.a K in
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Equation (1)). We can find that the computation to break

encryption increases exponentially as K increases from 1 to

4. The reason is because the space of mapping function of

randomizer is increased exponentially with K. The results

show that, in order to achieve a comparable computation to

prior approach (e.g. 2128), we should set the number of sub-

PAD tables at least to 4. Second, the security strength improves

as the memory capacity increases. It is because the space

of mapping function of randomizer increases polynomially

with the total number of memory lines. Since the number of

memory lines increases with the memory capacity when the

size of a memory line is fixed, computation required to break

the encryption increases at the same time. For the same reason,

the security strength is also improved when we decrease the

size of a memory line with the memory capacity fixed.

There is a trade-off between security strength and storage

overhead for encryption. Apparently, the storage overhead

increases when we have more sub-PAD tables. In addition,

it also increases when have more memory lines because the

entry. The related results of storage overhead can be found in

Figure 9. Fortunately, the storage overhead can be controlled

within 60KB for different configurations. Consequently, the

storage overhead is not a critical issue for our design. As a

summary, we select the optimized encryption design with the

following configuration. We choose Case-2 design for PAD

generator. The number of sub-PAD tables is set to 4. The

memory line size is equal to 256-Byte.

V. CONCLUSION

The security challenge caused by non-volatility of NVM be-

comes a critical obstacle for adoption of NVM main memory.

Data encryption is necessary to protect NVM main memory

from malicious attacks. However, the schemes directly use

AES algorithms are inefficient because they are not optimized

based on features of NVM main memory. The encryption

proposed in this work can overcome the limitations in prior

approaches with trivial overhead in respect of performance,

energy consumption, and hardware area. More important, the

lifetime of NVM main memory will not be affected.
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VI. APPENDIX

All symbols used for derivation are listed in Table IV. To

quantitatively analyze the security strength, we set up system

configurations as follows, N = 24,M = 256,K = 4. We use

a 24-bit-width 9-sage Festel Network in this case. Thus, we

need 4 sets of 12-bit-width keys (totally 36 keys).

TABLE IV
SYMBOLS USED IN THIS WORK

Symbol Description
N Length of address
M Size of a memory line (Byte)
K Number of sub-PAD tables
LA Logical address of sensitive data before attack
PA Physical address corresponded to LA before attack
PLA Sensitive data at LA
CPA Retained cipher-data at PA before attack
SEL Selection signal of sub-PAD tables for PA before attack
CPSEL Crypto-PAD generated by SEL before attack
SELi Selection signal of the ith sub-PAD table before attack

ai
j jth bit of the SELi before attack

Si
j jth sub-PAD from the ith sub-PAD table before attack

CPi
SELi

= Si
0 ⊕ (ai

1 ·Si
1)⊕ (ai

2 ·Si
2)⊕ . . .⊕ (ai

N ·Si
N)

LA′ Logical address the attacker read from during attack
PA′ Physical address of LA during attack. (Note that PA′ = PA)
P′

LA′ Data that attacker read out from LA′ during attack
C′

PA′ Namely CPA
SEL′ Selection signal of sub-PAD tables for PA′ during attack
CP′

SEL′ Crypto-PAD generated from SEL′ during attack
SEL′

i Selection signal of the ith sub-PAD table during attack

a′ij jth bit of the SEL′
i during attack

S′ij jth sub-PAD from the ith sub-PAD table during attack

CP′ j
SEL′i

= S′i0 ⊕ (a′i1 ·S′i1)⊕ (a′i2 ·Si
2)⊕ . . .⊕ (a′iN ·S′iN)

During the attack described in subsection III-A, we have the

following relationship among data and addresses. Note that the

read and write operation must go through our encryption com-

ponent. Thus, the decryption in read is similar to encryption

in write. It prevents attacker directly getting the cipher-data:

P′
LA′ = PLA′ ⊕CPSEL ⊕CP′

SEL′ (3)

Since we have K = 4 for the sub-PAD table design, the crypto-

PAD CPSEL and CP′
SEL′ are described in following equations.

CPSEL =CP1
SEL1

⊕CP2
SEL2

⊕CP3
SEL3

⊕CP4
SEL4

(4)

SEL = (SEL1,SEL2,SEL3,SEL4) (5)

CP
′
SEL′ =CP

′1
SEL′1

⊕CP
′2
SEL′2

⊕CP
′3
SEL′3

⊕CP
′4
SEL′4

(6)

SEL
′
= (SEL

′
1,SEL

′
2,SEL

′
3,SEL

′
4) (7)

A. Basic Properties

We first introduce two properties of our encryption design,

which are used for derivation in the rest of this section.

Property 1: The value of each bit of crypto-PAD follows

the Bernoulli distribution.

As shown in Equation (1) (2), assume that there are r sub-

PADs selected from all sub-PAD tables to generate the crypto-

PAD. For any bit of crypto-PAD, the possibility that it is equal

to bit ’1’ is calculated as,

r/2

∑
i=0

(
r
2i

)
(

1

2
)2i(

1

2
)r−2i =

1

2
(8)

Property 2: We can assume that each crypto-PAD is

spatially and temporally unique.

For spatially uniqueness, the proof by contradiction is

provided as follows. Let CPi and CPj denote crypto-PADs for

ith and jth memory lines (i �= j), respectively. we can prove

the possibility that CPi =CPj is near zero. From Equation (2),

we get

CPi = Si1 ⊕Si2 ⊕ . . .⊕Sir1
(9)

CPj = S j1 ⊕S j2 ⊕ . . .⊕S jr2
(10)

If CPi =CPj, we have

Si1 ⊕Si2 ⊕ . . .⊕Sir1
⊕S j1 ⊕S j2 ⊕ . . .⊕S jr2

= 0 (11)

Similar to proof of Property 1, the possibility that any bit

of two crypto-PADs are equal to each other is

(r1+r2)/2

∑
k=0

(
r1 + r2

2k

)
(

1

2
)2k(

1

2
)r1+r2−2k =

1

2
(12)

Since all bits of sub-PADs are independent from each other,

the possibility that all bits of two crypto-PADs are equal can

be calculated as ( 1
2 )

8×M . Note that 8×M represents the total

number of bits in each crypto-PAD (a.k.a. length of a memory

line). This possibility is extremely small for a normal design

of NVM main memory, since the length of a memory line is

normally large than 256-Byte.

For temporal uniqueness, it means that the possibility that

CPi =CP′
j is also near to zero. The proof is similar to that for

spatial uniqueness.

B. Security Analysis

Based on the two properties in previous subsection, our

crypto-PAD can hide partial information of plain-data so that

the data read out by attacker do not have statistical correlation

to be used for attack [17]. Thus, the break process can only be

achieved through computing instead of using statistical attack.

For computational analysis, the attack is based on Equa-

tion (3) and the character of XOR operation. It means that



CPSEL and CP′
SEL′ can only be eliminated by doing XOR

among readout data [15]. According to Equation (4) and (6),

CPi or CP′i (i = 1,2, ..,K) should be eliminated. In order to

describe the computation attack, we introduce adjoint vector

of SELi as −−→
SELi = [ai

1,a
i
2, . . . ,a

i
N ]

T (13)

Then, the elimination of CPi
SELi

is based on Theorem 1 and

it’s similar with CP′i
SEL′i

.

Theorem 1: CPi
SELi

can only be eliminated by XOR oper-

ation when the following two conditions are satisfied:

(
−−→
SELi +

r

∑
j=1

−−−→
SEL j

i ) = 0 (mod2) (14)

r mod 2 = 1 (15)

Proof: Based on Equation (14), each sub-PAD except Si
0

appears even times in the following expression

CPi
SELi

⊕CPi
SEL1

i
⊕CPi

SEL2
i
. . .⊕CPi

SELr
i

(16)

Since we have r mod 2 = 1, Si
0 also appears even times in

the expression. Thus, we have

CPi
SELi

⊕CPi
SEL1

i
⊕CPi

SEL2
i
. . .⊕CPi

SELr
i
= 0 (17)

According to Property 2, we can quickly know that the the

inverse theorem of above is true.

For instance, if SELi = 6 = (1,1,0), SEL1
i = 1 = (0,0,1),

SEL2
i = 4 = (1,0,0), SEL3

i = 3 = (0,1,1), so
−−→
SELi +

∑3
j=1

−−−→
SEL j

i = 0 (mod2), namely [1,1,0]T can be linearly ex-

pressed by[0,0,1]T , [1,0,0]T , [0,1,1]T , thus CPi
6⊕CPi

1⊕CPi
4⊕

CPi
3 = 0 and CPi

6 is eliminated.

There is one extreme case that we need to address. If we

XOR all the readout data together, the pad will be eliminated

because that their sum must be 0 and there are even number

of memory lines. According to Thereon 1, the CP and CP’

would be eliminated. The result is equal to the XOR of all

plain-data before attack. If the attacker knows all other plain-

data except the sensitive one to attack, the sensitive data can

be obtained. However, it is impossible that the attacker get all

other plain-data.

Based on Theorem 1, we can calculate the computation of

breaking our encryption design under different configurations.

Conclusion 1: If the mapping from PA to SELi (i =
1,2, ..,K) is truly random, the lower bound of computation

is 27N .

Proof: Because of the independence between CP(′)i (i =
1,2, ..,K) (when K = 4, there are 8 in total), when us-

ing Thereon 1 to eliminate CP or CP’, adjoint vectors of

SEL(′)
i i (i = 1,2, ..,K) are in different linear spaces. Based

on Equation (3), to break the encryption, the adjoint vector of

[SEL,SEL′]T also needs to satisfy Equation (14). Since SEL(′)
i

is random and independent, this happens with a possibility of

2−7N . So the computation to break encryption is at least 27N .

Conclusion 2: When the randomizer is implemented with

an 11-stage Feistel Network (FN), the lower bound of com-

putation is 2132. It means that such a design can achieve the

similar security strength as an approach based on AES with a

128-Bit key.

Proof: If we the attacker cannot differentiate the FN from

an ideal randomizer, the computation is at least 27N = 2168 >>
2132. Otherwise, the attacker needs a specific amount of

queries to distinguish FN from an ideal randomizer [12]. The

query refers to a < PA, SEL > pair. The queries are obtained

based on the inverse theorem of Theorem 1.

In order to calculate the lower bound of computation, we

relax the constraints for the attacker. We assume that the

attacker can write data to the whole memory space. To simplify

the discussion, we further assume attacker write all zeros to

the whole memory space. Then, Equation (3) is changed to

P′
LA′ =CPSEL ⊕CP′

SEL′ (18)

Based on Equation (18), the computation to get one query is

at least 22KN . This is because for CPi
SELi

(i = 1,2, ..,K) or

CP
′ j
SEL′j

( j = 1,2, ..,K). they are independent from each other

and the computation to get one query for each is 2N . Since we

have K = 4, the total computation to get a query is 2192, which

is even larger than that (2132) using brutal force to break FN

directly.

So far, we provide security analysis without using any

wear-leveling techniques. When the wear-leveling is induce,

the input of FN (a.k.a physical address) is also unknown to

any users. Thus, extra effort is needed to identify the PA
correlated to LA′ to attack. In other words, we can reduce the

design complexity of randomizer to achieve the same level of

security strength. As a consequence, we have the following

conclusions.

Conclusion 3: When the randomizer is implemented with a

9-stage Feistel Network (FN) and a single-level Security Re-

fresh is used for wear leveling, the lower bound of computation

is 2132.

Proof: With wear leveling, Equation (3) becomes:

P′
LA′ =C′

PA′ ⊕CP′
SEL′ = PLA ⊕CPSEL ⊕CP′

SEL′ (19)

We simplify address mapping of Security Refresh as PA =
LA⊕Ks, and Equation (19) becomes

P′
LA′ = PLA′⊕Ks ⊕CPSEL ⊕CP′

SEL′ (20)

Similar to proof of conclusion 2, we need another computation

of 2N to identify the PA correlated to LA′ to attack. Thus, we

can reduce the randomizer to a 9-stage FN to achieve the

similar security strength as an approach based on AES with

a 128-Bit key. It is because the the computation to break a

9-stage FN is 29×12 = 2108 ).
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