
2106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 2017

Scale-Free Sparse Matrix-Vector Multiplication
on Many-Core Architectures

Yun Liang, Member, IEEE, Wai Teng Tang, Ruizhe Zhao, Mian Lu,
Huynh Phung Huynh, and Rick Siow Mong Goh

Abstract—Sparse matrix-vector multiplication (SpMV) is one
of the most important kernels for many applications. In this
paper, we study the implementation of SpMV for scale-free
matrices on many-core architectures including graphic processing
units and Xeon Phi coprocessors. We first propose a hardware
oblivious implementation for heterogeneous many-core proces-
sors using OpenCL. Our OpenCL implementation uses a novel
SpMV format called hybrid COO+CSR (HCC), which employs
2-D jagged partitioning to balance the workload among a large
number of cores and improve the data locality. Moreover, the
OpenCL implementation is designed to be parametric, which
allows systematic performance tuning. We conduct experiments
to evaluate the efficiency of our hardware oblivious implementa-
tion. Experiments show that it achieves comparable performance
to the Intel MKL and state-of-the-art OpenCL-based ViennaCL
library implementation. Although the OpenCL implementation
provides functional portability for heterogeneous systems, it fails
to take advantage of the low-level architectural features. To fur-
ther improve the performance, we propose a hardware conscious
implementation using the native parallel programming language.
We use the Xeon Phi platform as a case study. In our hardware
conscious implementation, we ensure that the HCC format effi-
ciently utilizes the vector process units on Xeon Phi by employing
low-level intrinsics, and improve the overall performance through
locality-aware block mapping, and intrablock tiling. Experiments
using a wide range of representative scale-free matrices demon-
strate that compared with the OpenCL-based hardware oblivious
implementation, the hardware conscious implementation achieves
2.2× speedup on average. Compared with MKL, the hardware
conscious implementation achieves 3.1× speedup on Xeon Phi.

Index Terms—Graphic processing unit (GPU), performance
optimization, sparse matrix-vector multiplication (SpMV),
Xeon Phi.

Manuscript received June 20, 2016; revised December 4, 2016; accepted
February 23, 2017. Date of publication March 10, 2017; date of current version
November 20, 2017. This work was supported in part by the National Natural
Science Foundation of China under Grant 61672048, and in part by the Project
CARCH201502 from the State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences. This paper
was recommended by Associate Editor M. T. Kandemir. (Corresponding
author: Yun Liang.)

Y. Liang is with the Center for Energy-Efficient Computing and
Applications, School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China, and also with the Collaborative
Innovation Center of High Performance Computing, National University of
Defense Technology, Changsha 410073, China (e-mail: ericlyun@pku.edu.cn).

R. Zhao is with the Center for Energy-Efficient Computing and
Applications, School of EECS, Peking University, Beijing 100871, China.

W. T. Tang, M. Lu, H. P. Huynh, and R. S. M. Goh are with the A*STAR
Institute of High Performance Computing, Singapore 138632.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2681072

I. INTRODUCTION

SPARSE matrix-vector multiplication (SpMV) is a critical
kernel that finds applications in many high performance

computing and embedded systems domains including struc-
tural mechanics, machine learning, embedded vision, and data
mining. Many algorithms use SpMV iteratively for their com-
putation. For example, the conjugate gradient method [1]
uses SpMV to solve a symmetric system of linear equations,
whereas the PageRank algorithm [2] uses SpMV to determine
the ranks of Web pages. SpMV computation is a performance
bottleneck for many of these algorithms [3]–[5]. However,
efficient implementation of the SpMV kernel remains a chal-
lenging task due to its irregular memory access behavior.

In this paper, we focus on optimizing SpMV for scale-
free sparse matrices for many-core architectures. Scale-free
sparse matrices arise in many practical applications, such as
in the study of Web links, social networks, and transportation
networks [6]. Unlike sparse matrices from engineering appli-
cations, which are more regular in nature (i.e., the number of
nonzeros in each row is similar), a sparse matrix that exhibits
scale-free properties is highly irregular. It has many rows with
very few nonzeros but has only a few rows with a large num-
ber of nonzeros. As such, SpMV computation on such matrices
is particularly challenging due to the highly irregular distribu-
tion of nonzeros. Many existing implementations such as Intel
MKL perform well for regular matrices, but are inefficient for
scale-free sparse matrices due to the imbalanced workloads
and poor data locality.

In the recent years, graphic processing units (GPUs) and
Intel Xeon Phi are becoming popular hardware platforms for
performance acceleration. In general, these platforms feature a
large number of cores. For example, Intel Xeon Phi 5110P con-
tains 60 cores and AMD FirePro S9150 GPU contains more
than one thousand cores. At the same time, emergence of the
OpenCL programming model has lowered the entry barrier for
heterogeneous system programming and provides portability
across architectures, where the same OpenCL code can be exe-
cuted across a variety of processors including CPUs and GPUs.
Nevertheless, even though different architectures can be pro-
grammed using the same OpenCL programming model, they
still have distinct architectural features. For example, Xeon
Phi features 512-bit Single Instruction Multiple Data (SIMD)
vector processing units (VPUs), which do not exist on GPUs.

The goals of this paper are two folds. First, we design
an efficient and portable SpMV implementation for scale-
free matrices using OpenCL. This hardware oblivious

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:ericlyun@pku.edu.cn
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

LIANG et al.: SCALE-FREE SpMV ON MANY-CORE ARCHITECTURES 2107

implementation is portable to different heterogeneous systems.
We demonstrate its efficiency and portability on Xeon Phi
and GPU. Although the OpenCL implementation provides
functional portability, it fails to utilize the distinct low-level
architecture features on different platforms. Hence, second, we
study the tradeoff between portability and efficiency. We will
use the Xeon Phi platform as a case study. We then propose
a hardware conscious SpMV implementation for scale-free
matrices using the native parallel programming language on
Xeon Phi. We optimize its performance by utilizing the
underlying low-level programming interfaces and architectural
features, which cannot be exploited at the OpenCL level.

To achieve the first goal, we design an efficient SpMV for-
mat called hybrid COO and CSR format (HCC), which is
applicable to different many-core architectures for scale-free
matrices. HCC is designed for proper load balancing and cache
optimization. It achieves this by employing a 2-D jagged par-
titioning to equally partition the nonzeros into blocks. The
hardware oblivious version is based on OpenCL for portability.
We understand that execution of the same OpenCL program
varies on heterogeneous architectures. Hence, the hardware
oblivious implementation is designed with a set of param-
eters that can be tuned for different architectures. For the
second goal, we use Xeon Phi as a case study and implement
a hardware conscious version that exploits low-level archi-
tecture features, such as the SIMD intrinsics available on
Xeon Phi. In particular, we design a prefix-sum computation
using SIMD intrinsics, and also employ optimization tech-
niques such as locality-aware block mapping, and intrablock
tiling. Note that all these optimizations are not supported in the
high-level OpenCL model. We find that with these low-level
optimizations, the performance of the hardware conscious
implementation achieves substantial improvement compared to
the hardware oblivious implementation. Hence, we argue that
OpenCL model provides portability for heterogeneous systems
and is easier to maintain, but its performance can be lim-
ited due to the lack of low-level architectural feature support.
For high performance, hardware conscious optimization is still
required. This paper has the following contributions.

1) We design an efficient and portable SpMV format called
HCC for scale-free matrices on many-core architectures
including GPUs and Xeon Phi coprocessors. The hard-
ware oblivious implementation is designed with a set of
parameters for performance portability on heterogenous
architectures.

2) We study the tradeoff between portability and effi-
ciency. We use Xeon Phi as a case study and design a
hardware conscious implementation. The hardware con-
scious implementation employs a group of low-level
architecture-aware optimizations.

Experiments using a wide range of representative scale-free
matrices demonstrate that our OpenCL-based hardware obliv-
ious implementation is comparable to the Intel MKL imple-
mentation on Xeon Phi and gives better portability on Xeon
Phi and GPU compared to the state-of-the-art OpenCL-based
ViennaCL library implementation. The hardware conscious
implementation further improves the performance of the
hardware oblivious implementation by 2.2X. A preliminary

Fig. 1. Comparison of regular and scale-free matrices. x-axis: nonzeros
per row, y-axis: frequency. (a) FEM/cantilever. (b) Stanford. (c) Mouse-gene.
(d) R-MAT (18, 16).

version of this paper appears in [7]. In this paper, we extend
the implementation for Xeon Phi to a hardware oblivious
implementation using OpenCL for both GPU and Xeon Phi.

The remainder of this paper is organized as follows. We
introduce background details on scale-free SpMV, many-core
architectures, the OpenCL programming model, as well as
the motivation for a high performance SpMV implementation
for scale-free matrices in Section II. Details for the hard-
ware oblivious implementation are presented in Section III,
and in Section IV for the hardware conscious implementa-
tion on Intel Xeon Phi. We conduct experiments in Section V.
Finally, Section VI discusses the related work and Section VII
concludes this paper.

II. BACKGROUND

A. Scale-Free Sparse Matrices

The occurrence of sparse matrices or equivalently, networks
exhibiting scale-free nature in practical settings, is attributed to
a self-organizing behavior called preferential attachment which
has attracted a lot of studies [6]. In a scale-free network, the
distribution of the number of connections to each node (i.e., the
degree of the graph) follows that of a power law. Equivalently,
this means that for a scale-free matrix, the distribution of the
nonzeros per row of the matrix follows the power law. Fig. 1
shows the differences between regular and scale-free matri-
ces in terms of the distribution of the nonzeros per row of a
matrix. The plots are logarithmic in both axes; the horizontal
axis denotes the number of nonzeros per row and the ver-
tical axis denotes the number of rows having that specified
number of nonzeros. Fig. 1(a) demonstrates a matrix from the
engineering sciences (e.g., constructed using Finite Element
Method (FEM)). Such matrices tend to have multimodal dis-
tributions and their structures are more regular in nature. We
will call these matrices “regular matrices.” In contrast, matri-
ces such as those derived from Web graphs [see Fig. 1(b)] and
networks [see Fig. 1(c)] tend to exhibit scale-free properties,

2108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 2017

i.e., their distribution of nonzeros per row follow the power
law. These matrices are termed “scale-free matrices.” As a
comparison, Fig. 1(d) shows the distribution of the nonze-
ros per row of a scale-free sparse matrix generated from a
Kronecker graph model [8]. In this recursively defined model,
two key parameters, s and e, define a scale-free R-MAT(s, e)
matrix. For a given s and e, a square matrix with dimensions
2s × 2s and an average number of nonzeros per row (e) is
obtained. One can see that Fig. 1(b) and (c) look very similar
to Fig. 1(d), whereas there is no resemblance at all between
the regular matrix in Fig. 1(a) and the R-MAT in Fig. 1(d).

B. Many-Core Architecture

Recently, many-core architectures have become popular for
accelerating scientific applications. Such architectures usually
consist of tens to thousands of cores on a chip. Two rep-
resentative product families are GPUs and Intel’s Xeon Phi
coprocessors. However, apart from having many cores, these
two architectures are vastly different in their design and have
distinct hardware features.

The Intel Xeon Phi coprocessor is based on the Intel many
integrated core architecture. In this paper, we use the Xeon
Phi 5110P coprocessor, which integrates 60 cores on the same
package, each running at 1.05 GHz. Up to four hardware
threads per core are supported, and a maximum limit of 240
threads can be scheduled on the coprocessor. Every core in the
processor contains a local 64 KB L1 cache, and a 512 KB L2
unified cache. All the 512KB L2 caches on the 60 cores are
fully coherent via the tag directories, and are connected by a
512-bit wide bidirectional ring bus. When an L2 cache miss
occurs on a core, requests will be forwarded to other cores
via the ring network. One of the major features of Xeon Phi
is the wide 512-bit VPU present on each of the cores, effec-
tively doubling the 256-bit vector width of the latest Intel Xeon
CPUs. To achieve high performance on Xeon Phi, it is crucial
to utilize the VPUs effectively. Additionally, Xeon Phi sup-
ports low cost atomic operations that can be used for efficient
parallel algorithm implementations.

Another representative many-core architecture is the GPU.
One GPU usually consists of tens of multiprocessors, each of
which contains hundreds of cores. In total, there are thousands
of cores for a typical modern GPU. Each multiprocessor has a
local L1 cache, and an L2 cache that is shared among all the
multiprocessors. GPU threads have very low context switching
overheads. Thus, GPUs are designed for massive threading in
order to maximize throughput. An algorithm with massive data
parallelism can generally fit very well into GPU’s architecture.
The smallest thread scheduling and management unit on the
GPU is a group of threads, called a warp (32 threads) on
NVIDIA GPUs and a wavefront (64 threads) on AMD GPUs.
Coalesced memory access within a thread group is essential
for achieving high memory bandwidth utilization on the GPU.

C. Programming Model

To program the various many-core architectures, different
vendors have designed native programming frameworks or lan-
guages to support their own products. For example, Intel’s

Fig. 2. Performance of MKL CSR SpMV for regular and scale-free matrices.

Cilk Plus compiler can be used for development on Xeon
Phi, whereas CUDA is developed by NVIDIA to support GPU
computing on NVIDIA GPUs.

On the other hand, there are also programming models
or standards that are portable to different many-core archi-
tecture, such as the OpenCL programming model. Today,
OpenCL is supported on most of the heterogeneous many-core
architectures. OpenCL defines a smallest processing unit as
a work-item. Work-items are then grouped into work-groups.
Multiple work-groups can be executed concurrently by the
underlying scheduling system. However, the way that the
OpenCL model is mapped to the underlying hardware varies
across different architectures. On the GPU, each work-group is
scheduled on one multiprocessor. Work-items within a work-
group are organized based on wave-fronts (similar to the
CUDA warps). Wavefronts are executed by the GPU using
multiple cores within the same multiprocessor in an SIMD-like
style. On the other hand, on Xeon Phi, each work-group is han-
dled by one thread. The parallelism of multiple work-items
within a work-group is exploited using SIMD vectorization.
These differences between platforms affect the implementation
and performance tuning on heterogeneous architectures.

D. Motivation

We first evaluate the state-of-the-art SpMV implementation
for scale-free matrices on many-core architecture. In particular,
we evaluate Intel’s MKL (denoted as MKL) [9] on Intel Xeon
Phi. But similar conclusions can be drawn on other many-core
architectures, such as GPUs. The MKL implementation uses
CSR format.

Fig. 2 compares the performance of MKL for both regular
and scale-free matrices. The dotted lines denote the theo-
retical performance. As we can see, MKL works well for
regular matrices, but not for most of the scale-free matrices.
Specifically, MKL achieved 11.3 Gflops on average for regular
matrices but only 2.6 Gflops for scale-free matrices. Hence,
there is a necessity to develop high-performance SpMV algo-
rithm for scale-free matrices on many-core architectures. MKL
performed better for the last two scale-free matrices compared
with the other scale-free matrices. The reason is because these
two matrices are denser than the other scale-free sparse matri-
ces. However, with a better implementation, the performance
for these two matrices can be improved further.

LIANG et al.: SCALE-FREE SpMV ON MANY-CORE ARCHITECTURES 2109

Fig. 3. HCC format with 2-D jagged partitioning. Nonzeros are first equally
divided into Np vertical panels, and then within a vertical panel, further
partitioning into Nb blocks. There are Np × Nb blocks in total.

III. HARDWARE OBLIVIOUS IMPLEMENTATION

USING OPENCL

In this section, we provide the details of our hardware
oblivious implementation of SpMV (y = y + A · x) for
scale-free matrices on many-core processors. A new format
called HCC is devised and the details of the portable OpenCL
implementation and performance tuning are presented.

A. HCC Format and OpenCL Implementation

We first develop an HCC format for scale-free matrices
on many-core architectures. This format has two important
features. First, it achieves workload balance by grouping
equal number of nonzeros into blocks. Second, it improves
data locality by 2-D partitioning. We call such a partitioning
approach as 2-D jagged partitioning.

Fig. 3 shows the layout of the 2-D jagged partitioning.
Nonzero elements are equally partitioned into a number of
jagged 2-D blocks. The 2-D blocks are organized hierarchi-
cally. It first divides the nonzeros among a number of panels.
The nonzeros in each panel are then further partitioned equally
into a number of blocks that are layout vertically in that panel.
A panel is essentially a partitioning of the matrix such that
the number of nonzeros in each vertical panel is balanced.
Likewise, a block is a vertical partitioning of each panel so
that the number of nonzeros in each block within the panel is
balanced. Within each block, the nonzero elements are further
logically grouped into segments. We use the term segment to
refer to each logical sub-unit within a block. The same work-
items in a work-group can compute for several segments in
a block. Overall, the organization of the HCC format can be
described using three levels—panel, block, and segment. For
ease of reference, Table I provides the definitions of the termi-
nology used by our HCC format. We will describe how these
are mapped onto the OpenCL abstractions of work-groups and
work-items in the following.

In essense, the 2-D jagged partitioning scheme used by HCC
ensures a balanced workload by dividing the nonzeros equally
among all the blocks, which can be processed by different
cores in many-core processors in parallel. It also helps to
improve the locality and thus the cache hit ratio. A low cache

TABLE I
DESCRIPTION OF TERMS USED

TABLE II
TUNABLE PERFORMANCE PARAMETERS

hit ratio will pose a serious challenge for SpMV, and this
is especially true for scale-free sparse matrices (as shown in
Section V). For SpMV (y = y+A ·x) computation, there exists
data reuse opportunity for the x vector. In our HCC format, the
vertical panels are designed to improve the temporal locality
for the x vector as each panel requires an adjacent block of
rows in the x vector. This helps to reduce the possibility that
elements in x are evicted from the cache by the conflicting
accesses when they are visited again. The blocks within each
panel, on the other hand, help to improve the cache locality
of the output y vector.

The HCC format requires a few data structures to assist in
the SpMV computation. First, each nonzero element contains a
tuple with two data—the double-precision floating-point value
of the nonzero, and the column index of the nonzero. These are
stored contiguously in the val array and col_idx array, respec-
tively, and padded to the size of a work-group for OpenCL
implementation. We also use the seg_ptr array to keep track of
the segments containing elements that span different rows. For
such segments, the end-of-row positions are indicated using a
bit field, which is stored in the eor_arr array, and their cor-
responding row indices are stored in the row_idx array. Other
auxiliary book-keeping data structures include the start seg-
ments start_seg and the end segments end_seg processed by
each work-group. The HCC format combines the benefits of
both COO and CSR formats. On one hand, being similar to
COO, HCC format can partition the workload equally among
the threads. On the other hand, being similar to CSR, HCC
format saves the storage space as most of the row indices need
not be stored.

Next, we describe how the HCC format is mapped to
the OpenCL implementation. For ease of reference, Table II
defines the different parameters used in our OpenCL imple-
mentation. Suppose there are Np panels and each panel
contains Nb blocks. Then, there are Np × Nb blocks in total.

2110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 2017

Algorithm 1 SpMV Computation of y = Ax+ y Using HCC
Format

Computation phase:
1: v← start_seg
2: (vidx, sidx, ridx) ←load initial values for workgroup gi
3: set tmp_y to temporary array for current panel
4: while v < end_seg do
5: col← load(&col_idx[vidx])
6: val← load(&val_arr[vidx])
7: inp← gather(&x[0], col)
8: if v = seg_ptr[sidx] then
9: acc← reduce_add(res)

10: res← val× inp
11: res[0]← res[0]+ acc
12: eor ← load(&eor_arr[sidx])
13: res← prefix_sum(res, eor)
14: row← load(&row_idx[ridx])
15: scatter(&tmp_y[row], res)
16: sidx← sidx+ workgroup_size
17: ridx← ridx+ count(eor)
18: else
19: res← res+ val× inp
20: end if
21: vidx← vidx+ workgroup_size
22: v← v+ 1
23: end while
24: wg_row[gi]← load(&row_idx[ridx])
25: wg_val[gi]← res[workgroup_size-1]

Update phase:
26: tmp_y[wg_row[gi]]← tmp_y[wg_row[gi]]+ wg_val[gi]

Merge phase:
27: y← sum tmp_y arrays from all panels

Fig. 4. Illustration where computation for two blocks are assigned to two
work-groups. WG means work-group.

To process a block, we use Ng work-groups where each
work-group contains Ni work-items. Each work-group will be
responsible for a given sequence of data determined by an
associated start and end segment pointer (denoted by start_seg
and end_seg). Hence, the work-group and its work-items will
start computation from a given segment and continue until the
end of segment is reached. Note that the segment size is equal
to Ni. Np, Nb, Ng, and Ni are tunable performance parameters.
Fig. 4 illustrates an example where two blocks are assigned
to two work-groups.

Algorithm 1 shows the details of how SpMV is computed
using the data structures just described. The algorithm consists
of three phases: computation phase, update phase, and merge
phase. Lines 1–25 describes the computation phase for each
block shown in Fig. 3.

Lines 5–7 load the column index, matrix value and input
value. The branch condition in line 8 checks if the group con-
tains elements spanning different rows. If all the elements
belong to the same row, then the result is computed and
accumulated in res. Otherwise, it is necessary to perform a
reduction followed by a prefix sum in lines 9–13. The result
is written to the tmp_y array in line 15 because each panel

has an associated temporary array. At the end of the loop
(line 25), each work-group will write the last element of the
prefix sum and its associated row to two small wg_row and
wg_val arrays. These temporary arrays are used to avoid the
potential data conflicts when different work-groups write their
last prefix sum value to the same row. These temporary values
are then written to the tmp_y array in the update phase. This
is implemented with a separate kernel as OpenCL enforces a
synchronization point between the kernel launches. Finally, in
the merge phase, the temporary arrays from different panels
are merged into the final y array.

B. Performance Tuning

Algorithm 1 presents the backbone of the OpenCL imple-
mentation. However, the final achieved performance depends
on various parameters such as the number of panels (Np),
and the number of workgroups (Ng). These parameters impact
the performance due to two reasons. First, depending on
the distribution of the nonzeros, different matrices prefer
different settings of these parameters. Second, the vendor
implementation of the OpenCL run-time on different archi-
tectures varies. This will affect how the OpenCL abstraction
of work-groups get assigned to the actual underlying hard-
ware resources. For example on Xeon Phi, one work-group is
mapped to one hardware thread by the compiler, whereas on
GPUs one work-group will be assigned and executed by one
multiprocessor.

Consequently, the optimal parameter setting varies for
different matrices and architectures. Hence, we design a
parametric OpenCL implementation, which not only enables
performance tuning for different matrices on a specific archi-
tecture but also better portability across heterogeneous archi-
tectures. We categorize the performance parameters into two
categories.

1) Parallelization Granularity: Table II lists the four tun-
able performance parameters related to the parallelization
granularity in our OpenCL implementation. Parameters Np and
Nb affect the organization of the HCC format; parameters Ng

and Ni determine how the nonzeros in the HCC format are
mapped to the OpenCL model. In addition, these parameters
are interdependent. In practice, we find that Ng and Ni are
sensitive to different hardware architectures, but have small
variations across different matrices for the same hardware
architecture. On the other hand, the optimal values of Np and
Nb depend on both the architecture and matrix properties.

2) Mapping From Nonzeros to Work-Items: Parameters Ng

and Ni determine the number of work-groups for a block
and the number of work-items in a work-group. Based on
the OpenCL APIs and hardware features, we consider the
following two mappings.

1) Coalesced Mapping: This is similar to the coalesced
memory access in CUDA programming. All the work-
items in a work-group access consecutive nonzeroes.
Therefore, one work-item processes one nonzero ele-
ment at a time.

2) Vectorized Mapping: OpenCL features a vector load
(vloadn) function that is used to read vectors from

LIANG et al.: SCALE-FREE SpMV ON MANY-CORE ARCHITECTURES 2111

(a) (b)

Fig. 5. (a) Coalesced and (b) vectorized mapping from nonzeros to
work-items.

memory for generic data types, where n represents the
number of elements in the built-in vector type (n = 2,
4, 8, or 16). We use the vloadn function to implement
our vectorized mapping, where each work-item accesses
multiple nonzeros. In our implementation, we let one
work-item access eight nonzeros at a time.

Fig. 5 illustrates the coalesced and vectorized mapping
together with their work-group and work-item organizations
using an example. In this example, we assume there are two
work-groups per block (Ng = 2) and four work-items per
work-group (Ni = 4). We also assume there are eight nonze-
ros per row. Fig. 5(a) shows that with the coalesced mapping,
consecutive work-items process the consecutive nonzeros in
multiple rounds. Instead, in Fig. 5(b), nonzeros are first orga-
nized as vectors (two nonzeros form a vector in this example),
and each work-item loads and processes one vector at once.

The performance of the two mapping mechanisms depend
on the OpenCL implementations on different hardware archi-
tectures. We expect that the coalesced mapping will be more
effective for GPU as it can benefit from the high memory
bandwidth on GPU. On the other hand, the vectorized map-
ping is more efficient on Xeon Phi because it can utilize the
VPUs available on the cores.

IV. HARDWARE CONSCIOUS IMPLEMENTATION

ON INTEL XEON PHI

Although the hardware oblivious implementation based on
OpenCL provides functional portability for heterogeneous
systems, it fails to take advantage of the low-level architecture
features. In order to study the tradeoff between portabil-
ity and performance acceleration capability, we propose a
hardware conscious implementation using the native parallel
programming model. We use the Xeon Phi platform as a case
study. Our native implementation is developed using C++
with OpenMP and intrinsics. Specifically, we particularly
focus on the low-level architecture optimization techniques
that are unavailable in OpenCL, but are supported by native
implementation.

Note that the native implementation has similar tunable
parameters as the OpenCL based implementation. However, in
the OpenMP programming model, there are only threads rather
than work-groups and work-items. We use Nt to denote the
number of threads used for processing one block. Therefore,
there are three tunable parameters in the native implementa-
tion, which are Np, Nb, and Nt.

A. Performance Bottleneck Analysis

In order to develop an efficient hardware conscious imple-
mentation, we first need to understand the performance bot-
tlenecks and resource utilization of the state-of-the-art native
SpMV implementation. The Intel VTune profiler [10] is
used to analyze the performance bottlenecks of the MKL
implementation in detail.

We first collect the average clocks per instruction (CPIs)
for each of the matrices as shown in Fig. 6(a). The ideal CPI
is 4 [10] on our Xeon Phi platform. However, the achieved
average CPI of MKL for scale-free matrices is about 13, indi-
cating that MKL is inefficient for scale-free matrices, and that
there exists a large room for improvement. To achieve high
performance on Xeon Phi, it is also crucial to use the VPU
effectively [10]. We examine the vector utilization efficiency
of MKL in Fig. 6(b). The vectorization intensity (VI) met-
ric is defined as the average number of active elements per
VPU instruction executed. The maximum value for VI is 8
for double-precision elements. However, the average vector-
ization intensity achieved by MKL for scale-free matrices is
only about 3.4, which is less than half of the ideal value.

Furthermore, because SpMV is inherently memory bound,
its overall performance critically depends on the performance
of the memory hierarchy. Therefore, we also investigate the
average latency of memory accesses. In Fig. 6(c), we observe
that the L1 cache hit rates are generally much lower than 95%.
A hit in the L1 cache takes only one cycle, whereas an L1
miss results in additional 20 cycles to fetch data from the L2
cache. Therefore, it is important to improve data locality to
increase L1 cache hit rate.

Similarly, when an L2 cache miss occurs, a penalty of more
than 250 cycles is incurred to fetch data from a remote cache
or from main memory. Unfortunately, although Xeon Phi has
L1 hit metrics, it does not provide any metric for measuring
L2 hit rate. As a workaround, the profiler provides a derived
metric called the estimated latency impact (ELI) to give an
approximate gauge of L2 cache performance. ELI estimates
the average penalty in cycles for each L1 cache miss (estimated
using the number of cycles needed to fetch data from memory
divided by the number of L1 misses) and a threshold of 145
cycles is prescribed by Intel [10]. This threshold is obtained
by averaging the cycles needed to fetch data from L2 cache
and from memory.

Fig. 6(c) shows that for most matrices, the ELI is much
higher than the prescribed threshold. This is an indication that
the L2 cache hit ratio is likely to be low for these matri-
ces, resulting in long delays to fetch data from main memory
instead of from cache. The ELI of matrices connectus, soc-
sign-epinions, human_gene2, and mouse_gene, on the other

2112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 2017

(a) (b) (c) (d)

Fig. 6. Performance of MKL. (a) CPI. (b) VI. (c) L1 cache hit rate. (d) ELI.

hand, are observed to be below the prescribed threshold. This
is because the ELI is only a derived metric and is not fully
accurate for L2 cache performance (see [10] for more details).
Other effects such as a high L1 miss rate can distort the met-
ric (since the denominator of ELI is the number of L1 misses)
and result in an artificially low ELI value as in the case of
these matrices. Thus, the ELI metric only provides an indica-
tion of potential problems in L2 performance, and should be
interpreted together with the CPI and L1 hit rate metrics.

In summary, MKL suffers from low VI and poor cache
performance for scale-free matrices. In the following, we will
describe a hardware conscious implementation that remedies
these problems by utilizing the low-level architectural features
of Xeon Phi.

B. Native Implementation and Optimization

Our hardware conscious implementation performs several
optimizations including vectorization, prefix sum computa-
tion using SIMD intrinsics, locality-aware block mapping to
hardware threads, and intrablock tiling.

1) Vectorizing the HCC Format: The VPU is one of the
key architectural features on the Intel Xeon Phi coprocessor.
The 512-bit wide VPU allows us to process eight nonze-
ros in parallel. In order to efficiently utilize the VPUs, we
group nonzeros together to the vector length supported by
the coprocessor. This is similar to the vectorized mapping of
the OpenCL implementation (see Section III-B). Therefore,
in addition to the 2-D jagged partitioning, the nonzero ele-
ments in each block are grouped into vectors of eight elements.
As we will show in the experiments later, this improves the
VI by reducing the empty slots in a vector operation.

2) SIMD Segmented Prefix Sum: The HCC format entails
tightly packing the nonzero values into vectors so that they can
be efficiently processed by the VPUs. However, the packed
nonzero values may cross row boundaries (i.e., when groups
of values are from different rows). Hence, we have imple-
mented an SIMD segmented prefix sum operation using Intel
Intrinsics [10] to calculate the values that are to be written
out to the y vector. Fig. 7(a) shows the basic structure of
the segmented prefix sum that is used in our implementation.
This operation can be implemented with three vector addi-
tions. The efficiency of this implementation is made possible
by the enhanced SIMD capabilities supported on Xeon Phi,

(a) (b)

Fig. 7. SIMD segmented prefix-sum. (a) Basic structure of segmented prefix
sum operation with all adders turned on. (b) Using precomputed masks to
turn off adders for vector with group elements of (3, 2, 3).

such as the swizzle (_mm512_swizzle_pd) and masked add
(_mm512_mask_add_pd) operations.

To allow this operation to support computing prefix sums
for groups of elements, three masks have to be precomputed
to disable adders so that elements belonging to different rows
are not summed together. As an illustration, consider a vector
v where each of its element v0 to v7 contains the product of
the values from the matrix and the input vector. Furthermore,
assume that the vector contains elements that are from different
rows and are grouped into three groups (v0, v1, v2), (v3, v4),
and (v5, v6, v7), and each group corresponds to elements from
different rows. Fig. 7(b) shows the final structure that is used
to calculate the prefix sum in this example. The purpose of
the three precomputed masks, mask1, mask2, and mask3 is to
turn off the appropriate adders associated with each mask as
shown in Fig. 7(b). Note that four adders are associated with
each mask. mask1 would be set to the binary value 10101010 if
all adders were turned on. Given the grouping in the example
above, the three precomputed masks would have the binary
values 10000010, 11000100, and 00010000, respectively. The
result of the segmented prefix sum is [(v0, v0+v1, v0+v1+v2),
(v3, v3 + v4), (v5, v5 + v6, v5 + v6 + v7)]. End-of-row values
such as the third element v0 + v1 + v2 are then written out to
the output vector.

3) Locality-Aware Block Mapping: On Xeon Phi, hardware
threads in the same core share the same L2 cache. Hence,
how work-groups are mapped to the hardware threads affects
data locality and thus the performance. For the OpenCL-based
runtime implementation by Intel, each work-group is assigned
to one hardware thread on Xeon Phi. Furthermore, the exact

LIANG et al.: SCALE-FREE SpMV ON MANY-CORE ARCHITECTURES 2113

(a) (b)

Fig. 8. Examples of mapping work-groups to hardware threads on Xeon Phi,
assuming one block is handled by one work-group (Ng = 1).

Fig. 9. Examples of intrablock tiling.

way in which work-groups are mapped to hardware threads
is vendor-specific (e.g., round-robin or random) and is not
disclosed in the case of Xeon Phi. As an illustration, Fig. 8
compares two different mapping schemes. In this example,
work-groups are logically arranged in column-major order.
Fig. 8(a) maps consecutive four work-groups to the same core
while Fig. 8(b) maps the work-groups in the same diagonal
to the same core. The mapping scheme shown in Fig. 8(a) is
clearly better because better locality can be achieved since the
different workgroups on the same core can share references to
the input vector.

The OpenCL model does not provide an interface for
programmers to directly control the mapping between work-
groups and hardware threads. On the other hand, for the native
implementation on Xeon Phi, we can manually assign the
work-groups to specific threads and cores. In our implementa-
tion, we assign consecutive blocks along the column to threads
that belong to the same core as shown in Fig. 8(a). We will
show in the experiments that this mapping scheme results in
better data locality.

4) Intrablock Tiling: Apart from the 2-D jagged partition-
ing, we also perform intrablock tiling as shown in Fig. 9 for
better L1 cache locality. In intrablock tiling, each block is
further divided into smaller nonoverlapping sub-blocks called
tiles and the nonzeros are then organized and grouped accord-
ing to these tiles so that the computation will move from one
tile to the next.

The optimal tile size (r × c) depends on the L1 data
cache size (32 KB on Xeon Phi). We determine r and c
through empirical evaluation. 2-D jagged partitioning together
with intrablock tiling reduce the cost of gathering from the
input vector x and the cost of scattering to the output vec-
tor y. The tiling is implemented with the help of low cost
atomic operations on Xeon Phi. Note that for the OpenCL
implementation, intrablock tiling is not feasible due to the
absence of support for atomic floating point operations in the
OpenCL model.

TABLE III
LIST OF SPARSE MATRICES USED FOR EVALUATION. COLUMNS ARE

DIMENSIONS, TOTAL NO. OF NONZEROS (nnz), AVERAGE (AVG),
AND MAXIMUM (MAX) NONZEROS PER ROW

V. EVALUATION

In this section, we first evaluate the performance of our
hardware oblivious implementation that is implemented using
OpenCL on two different many-core architectures: 1) GPU
and 2) Xeon Phi. Then, we evaluate the performance of our
hardware conscious implementation that is implemented using
the native programming model on Xeon Phi.

A. Experimental Setup

Experiments are conducted on two hardware platforms
equipped with the Intel Xeon Phi 5110P coprocessor (referred
to as Xeon Phi) and AMD FirePro S9150 GPU (referred to as
GPU). We use ten real-world scale-free sparse matrices from
the University of Florida sparse matrix collection [11] listed in
Table III. These scale-free matrices are from different applica-
tion domains such as Web graphs, gene networks, or citation
networks.

As presented previously in Section III, the hardware obliv-
ious implementation is implemented using OpenCL. We will
refer to the execution of this implementation on Xeon Phi and
GPU as Phi_CL and GPU_CL, respectively. For the hardware
conscious implementation that uses the native programming
model for Xeon Phi, we refer to it as Phi_native. As there
are different design choices and tunable parameters shown
in Sections III and IV, we will report performance num-
bers with the best configuration, unless specified otherwise.
We also compare the performance of our implementation
with the state-of-the-art SpMV implementations. On Xeon
Phi, we compare with the Intel MKL’s CSR implementation
(denoted as MKL) [9]. We also compare with the state-of-
the-art OpenCL-based SpMV library, ViennaCL [12], which
is able to run on both GPU and Xeon Phi.

The metric Gflops is used to measure performance and
is calculated using 2nnz/t where t is the execution time of
the SpMV kernel in seconds. Higher Gflops indicates better
performance. In addition, we use the Intel VTune profiler [10]
to investigate the execution efficiency of Phi_native.

B. Results of OpenCL-Based Hardware
Oblivious Implementations

We first evaluate the performance of GPU_CL and
Phi_CL in detail. We also systematically explore the design

2114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 2017

TABLE IV
OPTIMAL PARAMETERS UNDER DIFFERENT ARCHITECTURES

Fig. 10. Performance of GPU_CL and Phi_CL by varying the number of
panels (Np) for (a) stanford and (b) connectus.

space related to performance tuning that was described in
Section III-B. For reference, Table IV shows the optimal
parameters for the different tunable parameters in Table II and
for the matrices in Table III.

1) Parallelization Granularity: From Table IV, we observe
that the behavior of the matrices can be roughly divided into
two groups, one where the average number of nonzeros in each
row are small, and the other where the average and maximum
nonzeros are large. In the following, we will use the Stanford
and connectus matrices as representative examples to illus-
trate the behavior of parameter tuning on these two groups of
matrices.

Figs. 10–13 show the performance results for Stanford and
connectus when varying the tunable parameters for different
architectures. Fig. 10(a) shows that for the Stanford matrix,
both GPU_CL and Phi_CL achieve the best performance when
Np = 1. Instead, the optimal Np values for the connectus
matrix are 4 and 32, respectively, on GPU and Xeon Phi
[Fig. 10(b)]. The reason that the optimal Np value for con-
nectus is larger than that for Stanford is because the average
number of nonzeros per row for connectus is much greater
than that of Stanford. Therefore, it is more advantageous to
have more panels for connectus since this will improve data
locality when accessing the input vector. Fig. 11(a) and (b)
shows that for Phi_CL, the optimal Nb values are 236 for
both matrices.

Based on the results shown in Figs. 10–13 and Table IV,
three conclusions can be drawn. First, by comparing the
two different curves within each figure, we notice that the

Fig. 11. Performance of GPU_CL and Phi_CL by varying the number of
blocks (Nb) for (a) stanford and (b) connectus.

Fig. 12. Performance of GPU_CL and Phi_CL by varying the number of
work-groups per block (Ng) for (a) stanford and (b) connectus.

Fig. 13. Performance of GPU_CL and Phi_CL by varying the number of
work-items per work-group (Ni) for (a) stanford and (b) connectus.

performance trends on both the GPU and Xeon Phi vary sig-
nificantly. For instance, as shown in Fig. 11, the optimal Nb

values are 8 for both matrices for the GPU_CL case. However,
the optimal values are 236 for both matrices when executing
on the Xeon Phi. Note that the optimal value of Ng for Phi_CL
are 1 for both matrices (see Fig. 12), which implies that each
block is handled by one work-group (essentially by one hard-
ware thread on the Xeon Phi). On the GPU, work-groups are
further divided into wavefronts. A large number of wavefronts
can help to overlap the computation and memory operations
and reduce memory stall. Thus, more work-groups are required
for the GPU compared to Xeon Phi.

Second, we notice that the optimal values for these param-
eters vary for different matrices on the same platform. For
instance, Fig. 10 shows that the optimal value of Np for
Stanford and connectus are 1 and 4 on the Xeon Phi. Different
values of Np can result in different performance as the num-
ber of panels affects the L2 cache locality, especially when
the average nonzeros per row are large.

LIANG et al.: SCALE-FREE SpMV ON MANY-CORE ARCHITECTURES 2115

(a) (b)

Fig. 14. Performance of (a) GPU_CL and (b) Phi_CL with coalesced and
vectorized mapping.

Third, we can also observe that certain parameters are
dependent on the hardware architecture. For instance, for
GPU_CL, the optimal work-item value (Ni) is 256 which is
the maximum number of work-items supported by the GPU.
This is expected as the GPU hides memory latency using a
large number of work-items. Therefore, on the GPU, as the
number of work-items increases, the increased computation
workload can better overlap memory accesses, resulting in
higher performance. On the other hand, for Phi_CL, the opti-
mal Nb and Ni values are always 236 and 1, respectively. This
is because first, the OpenCL runtime does map work-groups
and work-items directly to hardware threads on Xeon Phi.
Second, the maximum number of hardware threads allowable
on Xeon Phi is 236.

2) Coalesced Versus Vectorized: As discussed in
Section III-B, we designed two ways to map the nonzeros
to work-items: coalesced and vectorized mapping. Fig. 14(a)
shows that on average the coalesced mapping are 3.3× faster
than the vectorized mapping on the GPU. This is because the
GPU architecture favors a coalesced memory access pattern
since adjacent multiple memory requests can be merged into
one memory request and take advantage of the GPU’s high
memory bandwidth. On the other hand, on the Xeon Phi,
Fig. 14(b) shows that the vectorized mapping is on average
2× faster than the coalesced mapping. This is because that
Xeon Phi can deliver high memory bandwidth when using
the SIMD instructions for memory loads and stores used in
the vectorized mapping.

Overall, the above results imply that the same OpenCL
implementation exhibits variations for different matrices and
architectures. To achieve high performance, performance tun-
ing is essential for different matrices on a specific platform.
More importantly, an OpenCL implementation with tunable
performance parameters enables both a portable and an effi-
cient implementation on heterogeneous architectures.

C. Results of Hardware Conscious Implementation
on Xeon Phi

We next evaluate the performance of Phi_native in detail.
For each optimization employed by Phi_native, we conduct
experiments to evaluate its effectiveness. In particular, for each
optimization X, we compare two implementations—the opti-
mized version with all the optimizations enabled (Phi_native),

(a) (b)

Fig. 15. Performance impact of (a) SIMD segmented prefix and (b) optimized
block mapping.

Fig. 16. Performance impact of intrablock tiling.

and the implementation with X disabled but with all other opti-
mizations enabled (denoted as Phi_native_w/o_X). For all the
experiments in this section, we use the optimal setting for the
tunable parameters (Np, Nb, and Nt).

1) SIMD Segmented Prefix Sum: To study the impact of
this optimization, we replace the SIMD segmented prefix
sum computation with standard C implementation for the
same functionality (denoted as w/o SIMD prefix-sum), and
compare its performance with Phi_native. Fig. 15(a) shows
the difference with and without this optimization. On aver-
age, Phi_native achieves 1.2X speedup. The SIMD segmented
prefix sum optimization accelerates performance by improving
the vectorization efficiency.

2) Locality-Aware Block Mapping: To study the impact of
this optimization, we conducted an experiment to simulate
random block mapping (e.g., in a vendor-specific OpenCL
implementation). Fig. 15(b) shows that locality-aware block
mapping is able to give up to 1.76X speedup compared to ran-
dom block mapping. The optimized block mapping arranges
the blocks in column-major order. By doing so, consecutive
blocks are mapped to the same core, and this allows exploita-
tion of the locality of input vector x. On the other hand, a
random block mapping will fail to exploit this locality.

3) Intrablock Tiling: Fig. 16 compares the performance
when intrablock tiling is disabled. On average, intrablock tiling
achieves 1.1X performance speedup.

D. End-to-End Performance Comparison

1) Hardware Oblivious Implementation: We first com-
pare our OpenCL-based hardware oblivious version with
ViennaCL [12], which is the state-of-the-art OpenCL-based

2116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 2017

(a) (b)

Fig. 17. Performance comparison between OpenCL-based implementations
and ViennaCL on the GPU and Xeon Phi. (a) GPU_CL versus ViennaCL.
(b) Phi_CL versus ViennaCL versus MKL.

(a) (b)

Fig. 18. (a) Performance comparison for Phi_native, Phi_CL, and MKL.
(a) Phi_native versus Phi_CL. (b) Phi_native versus MKL.

SpMV implementation. ViennaCL uses an adaptive CSR for-
mat for SpMV [13]. Fig. 17(a) shows the comparison of
GPU_CL and ViennaCL on the GPU. For most of the matri-
ces, GPU_CL and ViennaCL achieve similar performances.
However, due to the additional book-keeping data structures
such as the bit field array eor, ViennaCL performs slightly
better for a few matrices. On the other hand, GPU_CL outper-
forms ViennaCL for matrices such as wiki-Talk and connectus.
Fig. 17(b) shows the performance comparison of Phi_CL and
ViennaCL on the Xeon Phi. On average, Phi_CL achieves
4.9X speedup over ViennaCL. The speedup arises from the
fact that Phi_CL adopts the vectorized mapping on Xeon Phi
but ViennaCL uses a mapping that is similar to coalesced
mapping. Vectorized mapping can better utilize the VPUs on
Xeon Phi. Overall, GPU_CL has better portability compared to
ViennaCL. This is because GPU_CL is designed with tunable
parameters including parallelization granularity and nonzeros
mapping schemes, which allows the OpenCL model to adjust
to different architectures.

We also compare Phi_CL with MKL on Xeon Phi. The
results are shown in Fig. 17(b). As shown, Phi_CL achieves
a performance that is comparable to MKL.

2) Hardware Conscious Implementation: Fig. 18(a) shows
a comparison of the performance between Phi_native and
Phi_CL. As of the low-level optimizations, Phi_native
achieves 2.2X speedup on average relative to Phi_CL. When
compared against MKL, Phi_native achieves on average 3.1X
speedup as shown in Fig. 18(b). The speedup numbers for the
different matrices are shown in Table V.

The good performance of Phi_native comes from the
improved resource utilization on Xeon Phi. Fig. 19(a) shows

TABLE V
SPEEDUPS ACHIEVED BY PHI_NATIVE RELATIVE TO PHI_CL AND MKL

that the CPI of Phi_native has significantly improved com-
pared with MKL. For most of the matrices, they are close
to the ideal CPI value on Xeon Phi. Fig. 19(b) shows that
the VI has been improved by about 38%. This improvement
is attributed to the vectorized mapping as well as the SIMD
segmented prefix sum.

Fig. 19(c) and (d) shows that the cache efficiency is
improved as well. The L1 hit rate of Phi_native has sig-
nificantly increased from 60% (MKL) to 90% on average.
Similarly, the ELI values of Phi_native are generally lower
than the prescribed threshold of 145, which likely indicates
better L2 cache performance. As discussed earlier, because
ELI is a derived metric with the number of L1 misses as its
denominator, the value could be artificially inflated such as
in the case of human_gene2 and mouse_gene where the L1
miss rate is very low. Nevertheless, we observe in Fig. 18(b)
that the performance of these matrices under Phi_native has
improved compared to MKL. This observation is supported by
the improvement in the CPI, VI, and L1 hit rate metrics as
shown in Fig. 19. The L2 cache performance is also likely to
be improved for these matrices although this is not reflected
by the ELI metric.

Overall, improvement in cache efficiency is attributed to our
2-D jagged partitioning scheme, optimized mapping scheme
from blocks to hardware threads, as well as tiling.

E. Discussion

Our hardware oblivious implementation based on OpenCL
achieves both efficiency and portability. On each tested plat-
form, it delivers high performance. Specifically, on the GPU
it achieves comparable performance to ViennaCL; on Xeon
Phi it achieves comparable performance to MKL. Moreover,
our OpenCL implementation maintains the high performance
when porting to different architectures. This is attributed to
the tunable performance parameters, which allow the OpenCL
implementation to adapt to different architectures. In contrast,
ViennaCL which is portable to different architectures gives
high performance on the GPU, but performs badly on the
Xeon Phi.

While the OpenCL implementation provides portability, it
prevents us from utilizing the low-level architectural features.
Thus, we further use Xeon Phi as a case study and design

LIANG et al.: SCALE-FREE SpMV ON MANY-CORE ARCHITECTURES 2117

(a) (b) (c) (d)

Fig. 19. Performance profiling of Phi_native and MKL. (a) CPI. (b) VI. (c) L1 cache hit rate. (d) ELI.

TABLE VI
STORAGE OVERHEADS OF HCC COMPARED WITH COO AND CSR

a hardware conscious implementation using the native pro-
gramming model. Experiments show that hardware conscious
implementation Phi_native achieves 2.2X speedup on average
compared to the hardware oblivious implementation Phi_CL.
Hence, there exists a tradeoff between portability and effi-
ciency for the SpMV kernel. OpenCL-based implementation
offers portability and good performance. However, to target
higher performance, hardware conscious implementation for
the specific platform is still necessary.

Finally, we take a look at the storage overheads required by
our new format. Table VI shows the amount of storage space
required by HCC compared to the standard COO and CSR
formats, respectively. On average, we find that HCC takes up
about 80% of the space required by COO due to savings in not
having to store all the row indices. Compared to CSR, HCC
takes up on average about 102% of the storage space required
by CSR, i.e., an extra 2% overhead which is not significant
compared to the performance advantage discussed earlier.

VI. RELATED WORK

A. Performance Optimization for Many Core Architecture

In the recent years, we have witnessed the success of
many core architecture including GPUs and Intel Xeon Phi.
However, tuning many core architecture for high performance
was not a trivial task. Analytical performance models have
been proposed to predict the performance improvement
or identify the performance bottlenecks [14], [15]. Thread
structures (e.g., the number of workitems and workgroups)
are the first-order parameters that affect the performance.

Yang et al. [16] proposed to merge workitems and work-
groups based on memory reuse. Kayiran et al. [17] observed
that running with the maximum number of workgroups does
not always guarantee the optimal performance due to resource
contention such as caches. Therefore, thread throttling tech-
niques has been combined with cache bypassing to reduce
the cache contention [18]. The state-of-the-art performance
optimization techniques also focused on thread and warp
scheduling, cache optimization, register allocation optimiza-
tion, multitasking, control divergence, etc. [19]–[27].

B. SpMV Optimization on Many Core Architecture

As accelerators such as the GPU and Xeon Phi have also
become important in high performance computing, there has
recently been much work on optimizing SpMV on these newer
platforms. Bell and Garland [28] developed efficient imple-
mentations of SpMV computation for the COO, CSR, and
ELLPACK formats. Further developments sought to improve
SpMV performance based on the ELLPACK format, for
instance ELLR-T assigns multiple threads for each row of a
matrix [29], sliced-ELLPACK reorders a matrix and paritions
the rows into slices of similar lengths [30], and blocked-
ELLPACK which adds block optimizations to ELLPACK [31].
Other implementations such as yaSpMV [32] extends COO
and uses blocked compression to improve performance,
whereas Greathouse and Daga [13], [33] proposed a novel
CSR scheme that is adaptive. Ashari et al. [34] proposed an
adaptive SpMV algorithm based on the standard CSR format
but reduced thread divergence by combining similar rows into
groups. Su and Keutzer [35] developed a Cocktail representa-
tion that partitions a matrix into submatrices and uses a dif-
ferent format for each submatrix. For the Xeon Phi many-core
coprocessor, an early study by Saule et al. [36] showed that
register blocking did not work as well on Xeon Phi, whereas
Liu et al. [37] developed a format called ESB which is
based on the ELLPACK format. Kreutzer et al. [38] proposed
to use a variant of sliced ELLPACK as an SIMD-friendly
data format. The format combines long-standing ideas from
general-purpose graphics processing units and vector computer
programming.

C. Portability Optimization for Many Core Architecture

Cross-platform portability is becoming an important issue
due to the presence of different many-core architectures.

2118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 2017

For instance, Calore et al. [39] implemented a portable
OpenCL Lattice-Boltzmann application for GPU and Xeon
Phi many-core platforms. Banaś and Krużel [40] studied the
performance portability of finite-element numerical integration
codes on the GPU and Xeon Phi. O’Boyle et al. [41] presented
a compiler framework to automatically generate optimized
OpenCL code from data-parallel OpenMP programs for GPUs.
On SpMV, Liu and Vinter [42] proposed the CSR5 format
and provided native implementations on each of the platforms.
Like these work, ours is also focused on cross-platform porta-
bility. However, unlike their work, we looked in detail into
SpMV computation for scale-free matrices, as well as studied
the tradeoffs between performance and portability.

Many of the prior studies did not focus on SpMV for
scale-free matrices, unlike this paper which is concerned with
optimizing SpMV for scale-free matrices that arise from and
are important in many studies on networks [7]. For these matri-
ces, we developed a hardware oblivious implementation using
OpenCL and a hardware conscious implementation on Intel
Xeon Phi.

VII. CONCLUSION

The performance and portability of SpMV plays an impor-
tant role for many different applications. In this paper, we
focus on SpMV implementation for scale-free matrices on het-
erogeneous many-core architectures. We propose two imple-
mentations with tradeoffs in efficiency and portability. One
is a hardware oblivious implementation based on OpenCL.
This implementation is designed with a novel HCC for-
mat and performance tuning parameters. Another one is a
hardware conscious implementation using the native program-
ming language on Xeon Phi. This implementation employs
low-level architecture-aware optimizations. Experiments using
a wide range of representative scale-free matrices demon-
strate that our hardware oblivious implementation based on
OpenCL achieves comparable performance to the Intel MKL
on Xeon Phi and state-of-the-art OpenCL-based ViennaCL
library on GPU. Our OpenCL implementation maintains good
performance across GPU and Xeon Phi platforms. In compari-
son, our hardware conscious implementation further improves
the performance by 2.2X on Xeon Phi. Compared with MKL,
the hardware conscious implementation achieves 3.3X speedup
on Xeon Phi. Hence, we conclude that OpenCL model offers
good performance and portability for heterogeneous systems,
but hardware conscious optimization on specific platform is
still necessary for high performance.

REFERENCES

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, PA, USA: Soc. Ind. Appl. Math., 2003.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the Web,” Stanford Digit. Library, Tech. Rep.
SIDL-WP-1999-0120, 1999.

[3] E.-J. Im, “Optimizing the performance of sparse matrix-vector multi-
plication,” Ph.D. dissertation, Dept. Comput. Sci., Univ. California at
Berkeley, Berkeley, CA, USA, 2000.

[4] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix com-
putations via data compression,” in Proc. 20th Annu. Int. Conf.
Supercomput. (ICS), Cairns, QLD, Australia, 2006, pp. 307–316.

[5] S. Williams et al., “Optimization of sparse matrix-vector multipli-
cation on emerging multicore platforms,” in Proc. ACM/IEEE Conf.
Supercomput. (SC), Reno, NV, USA, 2007, pp. 1–12.

[6] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[7] W. T. Tang et al., “Optimizing and auto-tuning scale-free sparse matrix-
vector multiplication on Intel Xeon Phi,” in Proc. 13th Annu. IEEE/ACM
Int. Symp. Code Gener. Optim. (CGO), San Francisco, CA, USA, 2015,
pp. 136–145.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive
model for graph mining,” in Proc. SIAM Int. Conf. Data Min.,
Lake Buena Vista, FL, USA, 2004, pp. 442–446.

[9] Intel Math Kernel Library. [Online]. Available:
https://software.intel.com/en-us/intel-mkl

[10] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High-Performance
Programming. Amsterdam, The Netherlands: Morgan Kaufmann, 2013.

[11] T. A. Davis and Y. Hu, “The University of Florida sparse matrix col-
lection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, Nov. 2011.
[Online]. Available: http://www.cise.ufl.edu/research/sparse/matrices/

[12] ViennaCL—Linear Algebra Library Using CUDA OpenCL and
OpenMP. [Online]. Available: http://viennacl.sourceforge.net/

[13] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multipli-
cation on GPUs using the CSR storage format,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal. (SC), New Orleans, LA, USA,
2014, pp. 769–780.

[14] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” in Proc. 36th
Annu. Int. Symp. Comput. Archit. (ISCA), Austin, TX, USA, 2009,
pp. 152–163.

[15] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and
W.-M. W. Hwu, “An adaptive performance modeling tool for GPU
architectures,” in Proc. 15th ACM SIGPLAN Symp. Principles Pract.
Parallel Program. (PPOPP), Bengaluru, India, 2010, pp. 105–114.

[16] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU compiler for
memory optimization and parallelism management,” in Proc. 31st ACM
SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), Toronto,
ON, Canada, 2010, pp. 86–97.

[17] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor
less: Optimizing thread-level parallelism for GPGPUs,” in Proc. 22nd
Int. Conf. Parallel Archit. Compilation Tech. (PACT), Edinburgh, U.K.,
2013, pp. 157–166.

[18] X. Chen et al., “Adaptive cache management for energy-efficient
GPU computing,” in Proc. 47th Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO), Cambridge, U.K., 2014, pp. 343–355.

[19] V. Narasiman et al., “Improving GPU performance via large warps and
two-level warp scheduling,” in Proc. 44th Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO), Porto Alegre, Brazil, 2011, pp. 308–317.

[20] X. Xie, Y. Liang, G. Sun, and D. Chen, “An efficient compiler frame-
work for cache bypassing on GPUs,” in Proc. Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, 2013, pp. 516–523.

[21] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang, “Coordinated static
and dynamic cache bypassing for GPUs,” in Proc. IEEE 21st Int. Symp.
High Perform. Comput. Archit. (HPCA), Burlingame, CA, USA, 2015,
pp. 76–88.

[22] Y. Liang, X. Xie, G. Sun, and D. Chen, “An efficient compiler frame-
work for cache bypassing on GPUs,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 34, no. 10, pp. 1677–1690, Oct. 2015.

[23] A. Jog et al., “Orchestrated scheduling and prefetching for GPGPUs,”
in Proc. 40th Annu. Int. Symp. Comput. Archit. (ISCA), Tel Aviv-Yafo,
Israel, 2013, pp. 332–343.

[24] X. Xie et al., “Enabling coordinated register allocation and thread-
level parallelism optimization for GPUs,” in Proc. 48th Int. Symp.
Microarchit. (MICRO), Waikiki, HI, USA, 2015, pp. 395–406.

[25] M. Gebhart et al., “Energy-efficient mechanisms for managing thread
context in throughput processors,” in Proc. 38th Annu. Int. Symp.
Comput. Archit. (ISCA), San Jose, CA, USA, 2011, pp. 235–246.

[26] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen,
“Efficient GPU spatial-temporal multitasking,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 3, pp. 748–760, Mar. 2015.

[27] Y. Liang, M. T. Satria, K. Rupnow, and D. Chen, “An accurate GPU
performance model for effective control flow divergence optimization,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 7,
pp. 1165–1178, Jul. 2016.

[28] N. Bell and M. Garland, “Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors,” in Proc. Conf. High Perform.
Comput. Netw. Storage Anal. (SC), Portland, OR, USA, 2009, pp. 1–11.

https://software.intel.com/en-us/intel-mkl
http://www.cise.ufl.edu/research/sparse/matrices/
http://viennacl.sourceforge.net/

LIANG et al.: SCALE-FREE SpMV ON MANY-CORE ARCHITECTURES 2119

[29] F. Vázquez, J. J. Fernández, and E. M. Garzón, “Automatic tuning of the
sparse matrix vector product on GPUs based on the ELLR-T approach,”
Parallel Comput., vol. 38, no. 8, pp. 408–420, Aug. 2012.

[30] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning
sparse matrix-vector multiplication for GPU architectures,” in Proc. 5th
Int. Conf. High Perform. Embedded Archit. Compilers (HiPEAC), Pisa,
Italy, 2010, pp. 111–125.

[31] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on GPUs,” in Proc. 15th ACM SIGPLAN
Symp. Principles Pract. Parallel Program. (PPOPP), Bengaluru, India,
2010, pp. 115–126.

[32] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: Yet another
SpMV framework on GPUs,” ACM SIGPLAN Notices, vol. 49, no. 8,
pp. 107–118, Aug. 2014.

[33] M. Daga and J. L. Greathouse, “Structural agnostic SpMV: Adapting
CSR-adaptive for irregular matrices,” in Proc. IEEE 22nd Int. Conf.
High Perform. Comput. (HiPC), Bengaluru, India, 2015, pp. 64–74.

[34] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and
P. Sadayappan, “Fast sparse matrix-vector multiplication on GPUs for
graph applications,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal. (SC), New Orleans, LA, USA, 2014, pp. 781–792.

[35] B.-Y. Su and K. Keutzer, “clSpMV: A cross-platform OpenCL SpMV
framework on GPUs,” in Proc. 26th ACM Int. Conf. Supercomput. (ICS),
Venice, Italy, 2012, pp. 353–364.

[36] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance evaluation of
sparse matrix multiplication kernels on Intel Xeon Phi,” in Parallel
Processing and Applied Mathematics (Lecture Notes in Computer
Science). Heidelberg, Germany: Springer, 2014, pp. 559–570.

[37] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” in
Proc. 27th Int. Conf. Supercomput. (ICS), Eugene, OR, USA, 2013,
pp. 273–282.

[38] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A uni-
fied sparse matrix data format for efficient general sparse matrix-vector
multiplication on modern processors with wide SIMD units,” SIAM J.
Sci. Comput., vol. 36, no. 5, pp. C401–C423, 2014.

[39] E. Calore, S. F. Schifano, and R. Tripiccione, “A portable OpenCL lattice
Boltzmann code for multi-and many-core processor architectures,” Proc.
Comput. Sci., vol. 29, pp. 40–49, Dec. 2014.

[40] K. Banaś and F. Krużel, “OpenCL performance portability for Xeon
Phi coprocessor and NVIDIA GPUs: A case study of finite element
numerical integration,” in Proc. Euro Par Parallel Process. Workshops,
Porto, Portugal, 2014, pp. 158–169.

[41] M. F. P. O’Boyle, Z. Wang, and D. Grewe, “Portable mapping of
data parallel programs to OpenCL for heterogeneous systems,” in Proc.
IEEE/ACM Int. Symp. Code Gener. Optim. (CGO), Shenzhen, China,
2013, pp. 1–10.

[42] W. Liu and B. Vinter, “CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proc. 29th ACM Int.
Conf. Supercomput. (ICS), Irvine, CA, USA, 2015, pp. 339–350.

Yun Liang (M’10) received the B.S. degree
in software engineering from Tongji University,
Shanghai, China, and the Ph.D. degree in computer
science from the National University of Singapore,
Singapore, in 2004 and 2010, respectively.

He was a Research Scientist with the University of
Illinois Urbana-Champaign, Urbana, IL, USA, from
2010 to 2012. He has been an Assistant Professor
with the School of Electronics Engineering and
Computer Science, Peking University, Beijing,
China, since 2012. His current research interests

include heterogeneous computing, embedded system, and high level
synthesis.

Dr. Liang was a recipient of the Best Paper Award in International
Symposium on Field-Programmable Custom Computing Machines
(FCCM’)11 and the Best Paper Award Nominations in CODES+ISSS’08,
FPT’11, DAC’12, and ASPDAC’16. He serves as a Technical Committee
Member for Asia South Pacific Design Automation Conference, Design
Automation and Test in Europe, International Conference on Compilers
Architecture and Synthesis for Embedded System, International Conference
on Computer Aided Design, and International Conference on Parallel
Architectures and Compilation Techniques.

Wai Teng Tang received the bachelor’s (with Hons.)
degree in electrical engineering, and the Ph.D.
degree in bioimaging from the National University
of Singapore, Singapore.

He is currently a Research Scientist with the
Institute of High Performance Computing, Agency
for Science, Technology and Research, Singapore.
His current research interests include modeling and
simulation and big data analytics.

Ruizhe Zhao is currently pursuing the undergrad-
uation degree with the School of EECS, Peking
University, Beijing, China.

His current research interests include computer
architecture and FPGA technology.

Mian Lu received the bachelor’s degree in soft-
ware engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2007,
and the Ph.D. degree in computer science from the
Hong Kong University of Science and Technology,
Hong Kong, in 2012.

He is currently a Scientist with the Institute of
High Performance Computing, A*STAR, Singapore.
His current research interests include embedded
system, high performance computing, and big data
analytics.

Huynh Phung Huynh received the Ph.D. degree in
computer science from the National University of
Singapore, Singapore, in 2010.

His current research interests include embed-
ded system and high performance computing
research such as developing productivity tools for
GPU/many-core computing and big data analytics.

Rick Siow Mong Goh received the Ph.D. degree
in electrical and computer engineering from the
National University of Singapore, Singapore.

He is the Director of the Computing Science
Department, A*STAR Institute of High Performance
Computing, Singapore, where he leads a team of
over 70 scientists in performing world-leading sci-
entific research, developing technologies to com-
mercialization, and engaging and collaborating with
industry. His current research interests include high
performance computing, distributed computing, data

analytics, interactive interaction technologies, computational social cognition,
discrete event simulation, parallel and distributed computing, and performance
optimization and tuning of applications on large-scale computing platforms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

