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Abstract—In this work, we develop MrPhi, an optimized MapReduce framework on a heterogeneous computing platform, particularly
equipped with multiple Intel Xeon Phi coprocessors. To the best of our knowledge, this is the first work to optimize the MapReduce
framework on the Xeon Phi. We first focus on employing advanced features of the Xeon Phi to achieve high performance on a single
coprocessor. We propose a vectorization friendly technique and SIMD hash computation algorithms to utilize the SIMD vectors. Then
we pipeline the map and reduce phases to improve the resource utilization. Furthermore, we eliminate multiple local arrays but use low
cost atomic operations on the global array to improve the thread scalability. For a given application, our framework is able to
automatically detect suitable techniques to apply. Moreover, we extend our framework to a heterogeneous platform to utilize all
hardware resource effectively. We adopt non-blocking data transfer to hide the communication overhead. We also adopt aligned
memory transfer in order to fully utilize the PCle bandwidth between the host and coprocessor. We conduct comprehensive
experiments to benchmark the Xeon Phi and compare our optimized MapReduce framework with a state-of-the-art multi-core based
MapReduce framework (Phoenix++). By evaluating six real-world applications, the experimental results show that our optimized
framework is 1.2 to 38x faster than Phoenix++ for various applications on a single Xeon Phi. Additionally, the performance of four
applications is able to achieve linear scalability on a platform equipped with up to four Xeon Phi coprocessors.

Index Terms—Xeon Phi, Intel Many Integrated Core architecture (MIC), coprocessors, MapReduce, parallel programming, high performance

computing, heterogeneous computing

1 INTRODUCTION

OWADAYS, many applications require high perfor-

mance computing. We have witnessed the success of
coprocessors in speeding up applications, such as graphics
processors (GPUs) [1], [2], [3]. In order to fully utilize
the capability of those architectures, developers either use
coprocessor specific programming languages (such as
CUDA [4]) or adopt some simplified general-purpose paral-
lel programming frameworks, such as MapReduce [5]. In
this work, we follow the second direction to develop a Map-
Reduce framework on state-of-the-art coprocessors.

Intel has released the x86 accelerator named Xeon Phi. It
offers a much larger number of cores than conventional
CPUs, while its architectural design is based on x86. Particu-
larly, an Intel Xeon Phi coprocessor 5110P integrates 60 cores
on a chip, with four hardware threads per core. The thread
execution on the Xeon Phi does not suffer from the branch
divergence problem. Different threads are able to execute
different progarm paths without significant overhead (het-
erogeneous threads). Furthermore, it highlights the 512-bit
width vector processing units (VPUs) for powerful SIMD
processing. Besides, L2 caches are fully coherent through
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ring-based interconnection. It also provides low cost atomic
operations. However, as designed as a coprocessor, the
Xeon Phi has limited main memory (8 GB for our evaluated
product Xeon Phi 5110P).

While Xeon Phi has been just released, it has already
demonstrated its promising adoptions. A number of studies
have demonstrated its performance advantage [6], [7], [8],
[9], [10]. The supercomputer STAMPEDE [11] and Tianhe-2
[12] also have equipped the Xeon Phi coprocessors to unlock
its hardware capability for scientific computing. Instead of
optimizing individual applications like previous studies [6],
[7], we investigate a productivity programming framework
to facilitate users to implement data analytics tasks cor-
rectly, efficiently, and easily on Xeon Phi.

MapReduce [5] is a popular programming framework for
parallel or distributed computing. It was originally pro-
posed by Google for simplified parallel programming on a
large number of machines. Users only need to define map
and reduce functions according to their application logics.
The MapReduce runtime automatically distributes and
executes the task on multiple machines [5] or multiple pro-
cessors in a single machine [13], or GPUs [14]. Thus, this
framework reduces the complexity of parallel programming
and the users only need to focus on the sequential imple-
mentations of map and reduce functions.

As Xeon Phi is based on the x86 architecture, one might
suggest adopting existing state-of-the-art multi-core based
MapReduce frameworks, such as Phoenix++ [15]. However,
we find that Phoenix++ cannot fully utilize the hardware
capability of Xeon Phi as Phoenix++ is not aware of the
advanced hardware features of Xeon Phi. First, Phoenix++
pays little attention to utilize VPUs, which is critical for the
performance on the Xeon Phi [6], [7]. Second, Phoenix++
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Fig. 1. The basic workflow of a MapReduce framework.

has high average memory access latency due to the
relatively small L2 cache (512 KB) per core. Third, the rela-
tively small memory capacity (8 GB) may limit the thread
scalability. Unawareness of those hardware features results
in significant performance loss, as we demonstrated in
Section 5. On the other hand, nowadays, a heterogeneous
computing platform equipped with multiple accelerators,
e.g. Xeon Phi coprocessors, is common. Unfortunately,
Phoenix++ is unable to be deployed on such a platform to
utilize all resource.

To address the above-mentioned deficiencies as well as
fully utilize Xeon Phi hardware capabilities, we develop
MrPhi (pronounced as Mr. Phi), the first optimized MapRe-
duce framework on Xeon Phi with following contributions.

e Our framework is highly optimized to utilize the
Xeon Phi’s hardware features, including four major
techniques:

— Vectorization friendly map

— SIMD hash algorithms

—  Pipelining for map and reduce phases
- Eliminating local arrays.

e Our framework is able to run on a heterogeneous
platform equipped with multiple Xeon Phi coproces-
sors. To efficiently utilize all hardware resources on
such a platform, we adopt:

— Dynamic scheduling
— Non-blocking data transfer
- Aligned memory transfer.

The rest of the paper is organized as follows. We intro-
duce the background in Section 2. Section 3 gives detailed
implementation on a single Xeon Phi coprocessor. The
design on a heterogeneous platform is described in Section
4. The experimental results are presented in Section 5. We
conclude this paper in Section 6.

2 BACKGROUND

In this section, we first introduce the MapReduce frame-
work and Xeon Phi coprocessor. Then we identify the chal-
lenges of developing the MapReduce framework on the
Xeon Phi.

2.1 MapReduce Framework
MapReduce is a popular framework for simplified parallel
programming. We briefly introduce its programming model
and workflow in this section.

Programming model. The input of a MapReduce job is
specified by users, usually in the form of an array. The
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TABLE 1
Specification of an Intel Xeon Phi 5110P
Cores 60 x86 cores
Threads 4 hardware threads per core
Frequency 1.05 GHz per core
Memory size 8 GB in total
L1 cache 32 KB data + 32 KB instructions
per core
L2 cache 512 KB per core

Vector processing unit
Peak performance

32 512-bit vector registers per core
1.01 TFLOPS of double precision
computation

output is a set of key-value pairs. A user specifies a MapRe-
duce job mainly by two functions, which are map and reduce.
With the user-defined functions, a MapReduce framework
first applies the map function to every element in the input
array and generates a set of intermediate key-value pairs
(map phase). After the map phase, the reduce function is
applied to all intermediate pairs with the same key and gen-
erates another set of result key-value pairs (reduce phase).
Finally, the result key-value pairs are ordered (optional)
and then output. The detailed programming model is pre-
sented in the original MapReduce paper [5].

MapReduce workflow. The MapReduce framework was
originally designed for distributed computing [5]. Later, it
was extended to other architectures such as multi-core CPUs
[13], [15], [16], [17], GPUs [14], [18], [19], the coupled CPU-
GPU architecture [20], FPGA [21] and Cell processors [22].
These different MapReduce frameworks share the common
basic workflow, but differ in detailed implementation.

Fig. 1 illustrates the workflow of a MapReduce frame-
work. At the beginning, a split function divides the input
data across workers. On multi-core CPUs, a worker is han-
dled by one thread. A worker usually needs to process mul-
tiple input elements. Thus the map function is applied to the
input elements one by one. Such an operation of applying
the map function for an input element is called a map
operation. Each map operation produces intermediate key-
value pairs. Then a partition function is applied to these key-
value pairs. Then in the reduce phase, each reduce operation
applies the reduce function to a set of intermediate pairs
with the same key. Finally the results from multiple reduce
workers are merged and output.

Compared with existing work, our MrPhi [23] is the first
work for optimizing MapReduce on Xeon Phi. We propose
specific optimization techniques that have not been thor-
oughly studied on other architectures before, such as the
vectorization friendly map. On the other hand, this paper
extends the design of our previous MrPhi to a platform
equipped with multiple Xeon Phi coprocessors. Our frame-
work is able to run on either a heterogeneous computing
server with one host and multiple accelerators or a cluster,
as long as MPI communication is supported.

2.2 Intel Xeon Phi Coprocessor

Intel Xeon Phi coprocessor was recently released in Novem-
ber 2012. The Xeon Phi is based on the Intel Many Inte-
grated Core Architecture (MIC). In this work, we conduct
our experiments on the Xeon Phi 5110P. Table 1 summarizes
its hardware features. Note that a Xeon Phi coprocessor
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should be attached to a host (conventional CPUs). Therefore
the host and Xeon Phi have their own separate memory
spaces with communication via the PCle bus using special-
ized programming interfaces, e.g., MPL

Xeon Phi coprocessor is relatively new to the HPC
community, but has already attracted a number of
researchers. As one of the most important HPC bench-
mark, Linpack has been ported and optimized on the
Xeon Phi [7]. Similarly, another fundamental HPC algo-
rithm SpMV has been carefully studied as well [8]. More-
over, Xeon Phi has been exploited to accelerate other
scientific applications, such as molecular dynamics [6],
FFT [9] and simulation of the critical Ising model [10].
Supercomputers, such as STAMPEDE [11] and Tianhe-2
[12] have also been equipped with Xeon Phi coprocessors
to improve their performance.

Compared with conventional Xeon CPUs, Xeon Phi has a
few unique features, such as 512-bit SIMD vectors and ring-
based coherent L2 caches. It is important to understand
these features in order to achieve high-performance on
Xeon Phi. In the following, we briefly introduce the major
features of the Xeon Phi.

512-bit vector processing units. Xeon Phi features wide
512-bit VPUs on each core. It doubles the vector width com-
pared with the latest Intel Xeon CPU. Furthermore, it pro-
vides new SIMD primitives, such as scatter/gather.
Therefore, utilizing VPUs effectively is the key to deliver
high performance. The VPUs can be either exploited by
manual implementations using SIMD instructions or auto-
vectorization by the Intel compiler. The auto-vectorization
tries to identify loops that can be vectorized to use SIMD
VPUs at compilation time.

Multiple Instruction, Multiple Data (MIMD) Massive thread
parallelism. Each core of the Xeon Phi supports up to four
hardware hyper-threads. Thus, there are 240 threads in
total. The MIMD thread execution allows different threads
to execute different instructions at any time. Thus, we can
assign different workloads to different threads to improve
the hardware resource utilization.

Coherent L2 caches with ring interconnection. Each core on
Xeon Phi has a 512 KB L2 unified cache. All the caches on
the 60 cores are fully coherent. They are interconnected by a
512-bit wide bidirectional ring bus. If a L2 cache miss occurs
on a core, the requests are forwarded to the caches on other
cores via the ring network. If there is a cache on other cores
containing the data, the data will be transferred to the cur-
rent core via the ring. Compared with the main memory
accesses caused by cache misses, data forwarding via the
ring network is less expensive.

Low cost atomic operations in DRAM. Atomic data types
are well supported on the Xeon Phi. When the conflict rate
of data accesses is low and the data is stored in DRAM, the
operations on atomic data types do not have significant
overhead. Therefore, it is reasonable to exploit atomic oper-
ations when the conflict rate is low and memory accesses
are random.

However, the memory size of the Xeon Phi is relatively
small, which is only 8 GB for our Xeon Phi 5110P. This may
become a bottleneck for some applications. We demonstrate
such an issue for particular applications and use low cost
atomic operations to address it in Section 3.5.
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2.3 Challenges of a Shared Memory MapReduce
Framework on Xeon Phi

State-of-the-art shared memory MapReduce frameworks on
multi-core platforms (Phoenix++ [15]) are designed to have
flexible intermediate key-value storage containers and effec-
tive combiner implementation. These techniques reduce
memory storage requirement and traffic. However, we have
identified three major performance issues of Phoenix++
when porting it onto Xeon Phi.

e  Poor VPU usage. Phoenix++ takes little advantage of
the VPUs on Xeon Phi. The compiler is unable to vec-
torize the code effectively. This suggests we should
either rewrite the code in a suitable way to assist the
auto-vectorization or manually re-implement algo-
rithms using SIMD intrinsics.

o High average latency of memory accesses. Key-value
pairs are hold by certain data structures, such as
hash table. There are a large number of random
memory accesses on such a data structure. As the
local L2 cache per core on the Xeon Phi is small
(512 KB per core), this results in high cache misses
and high average latency of a memory access.

o Limited memory size. Due to the limited memory
(8 GB) on the Xeon Phi, we find that Phoenix++ is
unable to handle the array container efficiently when
the array is large. Specifically, not all threads are
able to be utilized in this case.

As a result, running Phoenix++ directly on the Xeon
Phi does not give good performance. In our framework,
we propose various techniques to address these perfor-
mance issues.

3 OpPTiMIZED MAPREDUCE ON XEON PHI

In this section, we present our optimized MapReduce
framework MrPhi for the Xeon Phi. We focus on the optimi-
zation on a single Xeon Phi in this section.

3.1 Overview

MrPhi adopts state-of-the-art techniques from the shared
memory MapReduce framework as well as specific optimi-
zations for the Xeon Phi coprocessor. Overall, we adopt the
Phoenix++’s design as shown in the paper [15] to imple-
ment the basic MapReduce workflow as shown in Fig. 1.
There are two major techniques taken from Phoenix++
adopted in our framework, which are efficient combiners
and different container structures. We briefly introduce the
two techniques and refer readers to the original Phoenix++
paper [15] for more details.

e Efficient combiners. Each map worker maintains a
local container. When an intermediate key-value
pair is generated by a map function, the reduce oper-
ator is immediately applied to that pair based on the
local container. This step is performed using a
combiner. Therefore, a map operation in fact consists
of two components, which are the computation
defined in the map function and combiner execution.
After that, the local results stored in each local con-
tainer are merged to a global container in the reduce
phase. Our MrPhi adopts this similar design but
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Fig. 2. Proposed techniques (in dark box) and their applicability in MrPhi
for three different containers.

with particular improvements (Section 3.5). Note
that both local and global containers are stored in the
main memory of Xeon Phi.

o Different container structures. MrPhi supports all
three data structures for containers implemented in
Phoenix++, which are hash table, array and common
array.The array container is efficient when the keys
are integers and in a fixed range. The common array
container is designed for the application that gener-
ates exactly one key-value pair per input element.
The major difference between the array and common
array is that there is no local container and combiner
for the common array. Results in the common array
are directly written out by each map worker to a
global array without any conflicts. The hash table
container is used when the array and common array
containers are unavailable.

More importantly, we propose four optimization techni-
ques specifically for Xeon Phi, which are wvectorization
friendly map phase, SIMD hash, pipelined map and reduce, and
eliminating local arrays. These four techniques are not always
applicable to all containers in all cases. Fig. 2 shows how
these optimization techniques fit into the different compo-
nents of the MapReduce framework with different contain-
ers. We introduce these techniques in details in this section.

o  Vectorization friendly map phase. MrPhi implements
the map phase in a vectorization friendly way, which
clears the dependency between map operations. By
doing this, the Intel compiler is able to automatically
vectorize multiple map operations to take advantage
of VPUs successfully.

e  SIMD parallelism for hash computation. Hash computa-
tion is parallelized by SIMD intrinsics.

e Pipelined execution for map and reduce phases. In gen-
eral, the user-defined map function contains heavy
computation workload, while the reduce function
has many memory accesses [15]. In order to better
utilize the hardware resource with hyperthreading,
we pipeline the map and reduce phases based on the
MIMD thread execution.
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e  Eliminating local arrays. For the array container, if
the array is large, it will introduce a number of
performance issues due to the local arrays. We
address these issues by eliminating local arrays but
employing low overhead atomic operations on the
global array.

Note that these techniques are not applicable for all cases
and may introduce overhead. Our framework is able to
either automatically detect whether a specific technique is
applicable or provides helpful suggestions to users at com-
pilation time.

3.2 Vectorization Friendly Map Phase

Utilizing VPUs is critical to high performance on the Xeon
Phi. For the MapReduce framework itself, except the hash
computation (presented in Section 3.3), there is little chance
to employ SIMD instructions. However the user-defined
map function has potential for auto-vectorization regardless
of the usage of loops within the function. For the case of
functions containing loops, we leave the compiler to iden-
tify opportunities for auto-vectorization within the map
function. Our main focus is on the challenge of vectorizing
map functions that do not contain loops.

Recall that in the map phase, each thread processes mul-
tiple map operations. We use directives to guide the com-
piler to vectorize multiple map operations. Listing 1 shows
the basic idea. emit_intermediate is a system-defined function
to perform combiners. The #pragma ivdep (line 3) tells the
compiler to vectorize this for-loop if there is no dependency.

Listing 1. Vectorization for multiple map operations.

1 //N: the number of map operations in the worker
2 //elems: the input array
3 # pragma ivdep
4 for (1=0; 1 <N; i++) {
5 //the inlinedmap function
6 map (data_t elems[i]){
7 ... //some computation
8 emit_intermediate (key, value) ;
9 .
10 1}
11 }

This auto-vectorization can be effective if there is no
dependency among map operations (from line 6 to 10 in
Listing 1). However, in Phoenix++, if multiple emit_inter-
mediate operations are performed concurrently, the exe-
cution will cause the conflict on a local container. This
conflict exists for both array and hash table containers.
Fig. 3a illustrates an example where map operations fail
to be vectorized due to the dependencies between multi-
ple emit_intermediate operations for an array container.

We propose a vectorization friendly technique to address
this issue. Instead of performing the combiner for each inter-
mediate pair generated by emit_intermediate immediately, we
buffer a number of pairs. Writing to the buffer is indepen-
dent for each map operation. When the buffer is full, we call
the combiner for those pairs sequentially. Fig. 3b demon-
strates this vectorization friendly map. Our vectorization
friendly map clears the dependency among map operations
and thus auto-vectorization by the compiler is possible.
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The vectorization friendly map is useful when the
multiple map operations can be vectorized (no loop in
the map function). On the other hand, this technique
introduces overhead due to the temporary buffer. There-
fore, if this technique is enabled but the map operations
cannot be vectorized, it will hurt the performance. Since
we rely on the compiler to enable vectorization, the
framework itself does not know whether the map opera-
tions will be vectorized until the compilation for a spe-
cific application. If the map operations can be vectorized
based on the printout from Intel compiler about vectori-
zation eligibility, then it is worthwhile to adopt this tech-
nique. Due to the clear output by the compiler and our
clean design of the interface, it is straightforwards for
users to enable or disable this technique.

3.3 SIMD Parallelism for Hash Computation

Hash computation is a key component in the MapReduce
framework as well as a fundamental building block for
many other applications, such as database and encryption
systems. We observed that the auto-vectorization often
failed due to the complex logic for hash computation. Thus,
we chose to manually implement the hash computation
using SIMD instructions.

SIMD hash computation for native data types, such as
integer and float, is straightforward. The same procedure
is applied to different input elements, which fully employs
the SIMD feature. However, it is challenging to process
variable-sized data types, such as text strings. Overall,
various hash functions for strings, such as bkdr [24], FNV
[25] and djb2 [26], have the similar workflow, which pro-
cesses characters one by one. Listing 2 illustrates the code
of bkdr hash, which is used in our Word Count and
Reverse Index applications. The challenge lies in effi-
ciently handling different input words with variable
lengths. Furthermore, SIMD instructions only can be app-
lied to special VPU vector registers. Yet another challenge
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Fig. 4. The workflow of SIMDH-Stream.

lies in efficiently packing the string data from memory
into these vector registers.

Listing 2. The code of bkdr hash functions for strings

1 int hash (char* str) {

2 int s =131;

intv=0;

while (*str) v=v*s + (*str++);
return v& OX7FFFFFFF;

N U1~ W

We propose two SIMD hash computation algorithms.
The first one is easy to implement and fully takes advantage
of SIMD scatter/gather, but may lead to low SIMD hard-
ware utilization. The second one improves the SIMD hard-
ware utilization but at expense of high control flow
overhead. In the following, we name these two implementa-
tions as SIMDH-Padding and SIMDH-Stream.

3.3.1 SIMDH-Padding

It contains multiple rounds and each round processes char-
acters from 16 consecutive strings in parallel. The intuition
is that within each round, we treat 16 strings as equal-length
strings with the length L,. L, is equal to the number of char-
acters in the longest string among the 16 strings. If a string
is shorter than L,, we pad this string with empty characters.
Note that this padding is implemented using masks for
efficiency.

SIMDH-Padding has low control overhead due to its
simplicity. It takes full advantage of SIMD instructions and
is also able to utilize the SIMD gather for data packing.
However, it underutilizes the computation resource due to
the padding of empty characters.

3.3.2 SIMDH-Stream

This algorithm does not divide strings to groups for differ-
ent rounds. Instead, we continuously feed the SIMD units
with strings. We treat the input strings as a stream. In Fig. 4,
the zero (\0) denotes the end of a string. Suppose we pro-
cess two strings (16 strings in practice) in parallel using two
SIMD units. The input array contains four strings: “This”,
“is”, “Xeon”, “Phi”. First, we start to process words “This”
and “is”. In the third iteration, the word “is” in the second
unit has been fully processed. Then we immediately pack
the first character “X” from next word “Xeon” into the sec-
ond unit and continue the process. Then in the fifth itera-
tion, the word “This” has been fully processed in the first
unit. We pack the first character “P” from the word “Phi”
into the first unit.

For the data packing, we adopt a prefix-sum based
method as well as utilizing SIMD primitives. First, we use
one SIMD instruction to find which characters are zero in
the vector and then store the result in a mask vector. Then
we perform prefix-sum on the mask vector to obtain the
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index of next strings to process. Finally, the SIMD gather is
used to collect the characters. In order to allow fast prefix-
sum computation we use a lookup table. Since each vector
contains 16 32-bit elements, we store the prefix-sum result
for eight elements instead of 16 elements for space effi-
ciency. As a result, a lookup table of 2° entries with the size
of around 2 KB is used, which can fit into the cache.

Compared with SIMDH-Padding, SIMDH-Stream intro-
duces more complex control flow for data packing. SIMDH-
Padding simply checks whether the 16 packed characters are
all equal to zero in each iteration. If it is true, then we pack all
first characters of the next 16 strings to the vector. These
actions can be finished by two SIMD instructions (one com-
parison and one gather). However, in SIMDH-Stream, we
check characters in the vector one by one for each iteration. If
a character is zero, then we load the first character of the next
unprocessed string to the vector. There is no direct SIMD
instruction for this process. However, SIMDH-Stream does
not waste computing resources on empty characters. We
evaluate these two algorithms in Section 5.2.

3.4 Pipelined Map and Reduce Phases

Pipelined map and reduce has been adopted in the MapRe-
duce framework for distributed computing [27]. Condie
et al. show that since the intermediate data is delivered to
downstream operators more promptly, it is able to improve
resource utilization. We propose to pipeline map and
reduce phases on the Xeon Phi based on the MIMD thread
execution. The primary purpose is to overlap the
computation-intensive and memory-intensive workloads to
improve the resource utilization. MapReduce workloads
are an ideal candidate for pipelining as the user-defined
map functions are usually computation-intensive, while the
reduce phase to construct the global container is memory-
intensive. This technique is more effective for the hash table
container than the array container. Because the time taken
by the reduce phase using the array container is usually too
short for any advantage to be obtained from pipelining.

We design a producer-consumer model to pipeline the
map and reduce phases. There are three major data struc-
tures, which are local hash tables, a global hash table, and
partition queues. Specifically, each map worker has a local
hash table. The local table works on a pre-allocated fixed-
size small buffer, e.g., smaller than the L2 cache, in order to
improve the cache efficiency. When a local hash table is full,
key-value pairs stored in this table are partitioned and
pushed into corresponding queues. Meanwhile, one reduce
worker works on one queue to merge the key-value pairs to
the final global hash table.

If the final global hash table is very small, e.g., smaller
than the L2 cache, the non-pipelined model will be more
efficient. The major reason is the reduce phase will be too
short to take advantage of pipelining because of the small
hash table. On the other hand, the pipelined model introdu-
ces storage overhead. Our producer-consumer model is
adaptable to this case. Recall that we allocate a fixed-size
buffer (smaller than the L2 cache) for the local hash table. If
the final hash table is smaller than this buffer, no data will
be fed to the reduce worker (the consumer) until the map
phase is finished. This way, our pipelined model essentially
degrades to a non-pipelined model as we expected.
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3.5 Eliminating Local Arrays

Recall that in order to support efficient combiners, Phoenix++
uses a local container for each worker in the map phase. Then
the local containers are merged in the reduce phase for the
final result. Such local containers are adopted for the hash
table and array container (the common array directly writes
their result to a global array without any conflicts). This
design is efficient when the container size is small. However,
it will introduce performance issues when the container
becomes large. An alternative is to eliminate local containers
and directly update the global container with low-cost atomic
operations for combiners when the container size is large.

The technique of eliminating local arrays is applied to the
array container, because the atomic data types only support
basic arithmetics while the hash table usually requires more
complex data types and operations, such as text strings and
memory allocation.

Based on the low overhead of atomic data types on
the Xeon Phi, using the global array directly is more effi-
cient when the array becomes large. There are two major
advantages.

Thread scalability. Due to the relatively small memory size
on the Xeon Phi (8 GB), the thread scalability can be limited
when using local arrays. Note that the local array is allo-
cated in the memory of Xeon Phi. Suppose the local array
size is L bytes, and the available memory is M bytes, then
the maximum number of concurrent threads for the map
phase is [%]. As an extreme example of using Bloom filter
in bioinformatics [28] (evaluated in Section 5), if the whole
human genome is used, the local array size is around
3.7 GB. In such a case, only two threads can be used on the
Xeon Phi employing local arrays.

Cache efficiency. If the array is small enough to fit into the L2
cache, using local arrays has good cache efficiency. However,
when the array becomes large, random memory accesses on
local arrays have poor data locality. Eliminating the local
arrays by using the global array for combiners improves
cache efficiency by taking advantage of the ring interconnec-
tion between the L2 caches. Specifically, when using local
arrays, every L2 local cache miss should cause a memory
access. On the contrary, when using the global array directly,
the global array is shared across multiple cores. When a L2
cache miss occurs on one core, the data may be copied from
another core’s L2 cache to avoid the memory access.

Our framework automatically determines whether the
local arrays are eliminated. Specifically, we consider cache
efficiency - our framework only keeps the local arrays if
they fit in the L2 caches and eliminates them otherwise.

3.6 Summary of Optimization Techniques

In this section, we propose four Xeon Phi specific optimiza-
tion techniques. We summarize their applicability for a
given application in Table 2. Note that all suitable techni-
ques except vectorization friendly map are performed auto-
matically. Enabling the vectorization friendly map, if
necessary (according to the output at compile-time), only
requires modifying one line of code.

4 MAPREDUCE ON HETEROGENEOUS PLATFORMS

In this section, we present the extension of our optimized
MapReduce framework on a single Xeon Phi coprocessor
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TABLE 2

Applicability of Optimization Techniques for a Given Application
Technique Available containers Applicability Major consideration for applicability
Vectorization friendly map All Vectorizable map function SIMD vectorization
SIMD parallelism for hash Hash table Always applicable N/A
Pipelined map and reduce Hash table Hash table size larger than L2 Cache efficiency
Eliminating local array Array Local array size larger than L2 cache Cache efficiency

[23] to a heterogeneous platform equipped with hardware
accelerators. Note that though our evaluation platform in
this study is a server equipped with multiple Xeon Phi cop-
rocessors, we generalize our design to run on a heteroge-
neous platform with various types of coprocessors.

4.1 System Design

We define a heterogeneous computing platform as a host
equipped with a few hardware accelerators. The hardware
accelerators communicate with the host via PCle or net-
working. Normally, the host is a conventional CPU, and the
accelerators can be one or multiple Xeon Phi, GPU, FPGA,
and any other coprocessors. On such a platform, both the
input and output data of a MapReduce application reside in
the host’s memory. Our target is that the MapReduce frame-
work is will be able to utilize all hardware resource (both
the host and accelerators) on such a platform.

According to the previous study of MapReduce on multi-
ple GPUs, the major performance issues are the workload
imbalance and data transfer overhead [19]. We propose
three techniques to solve these problems.

1) Dynamic data scheduling is used to balance workloads
on all processors. The input data is partitioned into
relatively small chunks. When a computation pro-
cess is available, it will fetch a chunk of data and
process.

2)  We fully pipeline the communication and computa-
tion. Non-blocking data transfer is employed for input
data prefetching and sending partial result data back
to the host. Double buffering is used to enable the non-
blocking data transfer.

3) We use aligned memory transfer to transfer data
between the host and accelerators. This technique
significantly increases the communication band-
width specifically between the host and Xeon Phi
COProcessors.

In our design, there are three kinds of processes running
on the host or accelerators, which are input data split and
sending process (), MapReduce task computation process
(C), and result merge process (A/). Table 3 summarizes the
placement of these processes and symbols used throughout
the paper. Fig. 5 shows how these three processes are coor-
dinated to achieve dynamic data scheduling and pipelining.

TABLE 3
Processes and Their Placement
Process Placement Symbol
Input data split and sending Host 1y,
MapReduce task computation =~ Host, accelerators Cy, C,
Result merge Host My,

We introduce the three processes in details with an example
of word count.

MapReduce computation process (Cy, and C,). The entire sys-
tem is essentially driven by the MapReduce computation
process. Fig. 5 illustrates three major steps in this process.
Overall, it starts with requesting an input chunk from the
input buffer manager (step 1). This buffer manager adopts
prefetching (step 2 and 3) to hide the data transfer overhead.
Once the data is ready, it performs the local MapReduce job
based on this data chunk (step 4). When the MapReduce is
done, the result key-value pairs are merged into a partial
result buffer (step 5). The partial result manager employs
asynchronous data sending to send result to the process M
when the partial result buffer is full (step 6).

Using the word count application as an example, the
computation processs first requests a certain amount of text
from the input buffer manager (steps 1, 2, and 3). When the
input data is ready, it performs MapReduce, and then pro-
duces pairs of words and counts (step 4). These pairs pro-
duced based on the current input chunk are denoted as R;.
Furthermore, the process maintains a buffer storing partial
results (denoted as R,). Then R; is merged into the buffer
with partial result R, (step 5). Step 1-5 are repeated to pro-
cess multiple input chunks from the input buffer manager.
However, when the partial result buffer is full, the partial
result R, will be sent to the result merge process (M) on
the host (step 6).

Input data split and sending process (I,). When a request
is received from any MapReduce computation process
(step 2), it performs a split function and sends a data chunk
back (step 3). Note that the split function here (denoted as
split” in Fig. 5) can be the same function as the split within a
MapReduce job (as shown in Fig. 1), but with a coarser
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| I
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Fig. 5. The system design of MapReduce on a heterogeneous platform.
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granularity to generate larger chunks. For example, for the
word count, the split” here generates 1 million words each
time for a MapReduce task. While the split within the Map-
Reduce task (step 4) may generate 1,000 words each time.

Result merge process (M;). When it receives any partial
results from process Cj, or C, (step 6), it will apply the
reduce function to merge the partial results with the existing
results stored in its process. When all Cj, and C,, processes
are done, the final results are held by this process. The result
merge here is similar to the partial result merge (Step 5).
However, the input partial results are from MapReduce
computation processes.

As shown in Fig. 5, the workload balance is achieved by
partitioning the input data into chunks and each chunk is
requested by a computation process. On the other hand, the
key to pipelining lies in employing non-blocking data trans-
fer in the input buffer manager for prefetching and partial
result manager to send the result back to /}, asynchronously.

4.2 Non-Blocking Data Transfer

Non-blocking data transfer is employed by both the input
buffer manager and partial result manager (Step 3 and 6 in
Fig. 5). They use the same approach, double buffering, to
pipeline the computation and data transfer. The double
buffering requires two buffers, with one used to receive the
next data chunk while the other to process the current data
chunk. With the double buffering, computation and data
transfer can be overlapped.

4.3 Aligned Memory Transfer

We find that the PCle bandwidth between the host and
Xeon Phi is sensitive to memory alignment with a 64 byte
boundary. The bandwidth with aligned memory is 13x
higher than that with misaligned memory (see Fig. 8b in
Section 5). As many applications have user-defined split’
functions, such as word count, aligned memory transfers
are unable to be guaranteed by our system directly. We
propose an approach to decompose a memory transfer
into two transfers: the first transfer is for the first few bytes
(< 64 bytes) with misaligned memory; the second transfer is
for the major part with aligned memory.

4.4 Instantiation of Different Containers

Recall that our MrPhi implements three different containers,
which are hash table, array, and common array. Overall, our
design for heterogeneous platforms is adaptive to all con-
tainers. The application programming interface is the same
for three containers. However, the difference of containers
behind the framework does affect the performance.

Our optimization techniques, including non-blocking
data transfer and aligned memory transfer, are proposed to
hide the communication overhead. However, the effective-
ness of these techniques depends on the workload. If the
data transfer dominates the whole workload, its overhead
cannot be perfectly hidden. As a result, it leads to poor per-
formance scalability.

Particularly, the common array container usually intro-
duces much more data transfer workload than the hash
table and array containers. For an application with NV input
elements, the common array will generate exactly N result
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TABLE 4
Benchmark Applications

Application Container Applied optimization
Monte Carlo Common array  Vectorization friendly map
Black Scholes ~ Common array ~ Vectorization friendly map
Word Count Hash table SIMD hash, pipelining
Reverse Index  Hash table SIMD hash, pipelinine
Histogram Array Eliminating local arrays
Bloom Filter Array Eliminating local arrays

key-value pairs. Recall that, in Fig. 5, if the partial result
buffer is full in the MapReduce computation process, it will
send the partial result back to the host’s result merge
process. This will cause a problem for the common array
container. Specifically, when the input data size increases,
the partial result will be sent back more frequently than the
hash table and array containers. For hash table, it usually
generates much fewer key-value pairs than the input ele-
ments. For example, in our experiments (Table 5 in Section
5), the ratio between the result key-value pairs and input
elements for Word Count is around 0.0014. For the array
container, since the array size is fixed, the partial result will
never be sent back until all input elements have been proc-
essed. Therefore, the percentage of data transfer workload
for the common array based applications is normally higher
than those based on the hash table or array containers. Con-
sequentially, the performance scalability will also be worse
for the common array based applications. Our experimental
results in Section 5.4 verify this conclusion.

5 EXPERIMENTAL EVALUATION

Hardware setup. We conduct our experiments on a platform
equipped with four Intel Xeon Phi 5110P coprocessors. The
hardware specification of each Xeon Phi has been
summarized in Section 2.2. Additionally, our host contains
two 8-core Intel Xeon E5-2687W CPUs, and each of which
has 16 threads. The L2 and L3 cache sizes on each CPU pro-
cessor are 2 and 20 MB, respectively.

Benchmark applications. We choose six MapReduce appli-
cations as shown in Table 4. Specifically, Histogram, Word
Count, and Reverse Index are the sample applications from
Phoenix++. We implement Monte Carlo and Black Scholes,
which follow the GPU-based parallel implementations [4].
We also implement the building phase of Bloom Filter, which
simulates its use in bioinformatics [28].

Implementation detail. MrPhi is developed using C++.
Pthreads is used for thread parallelization on a single Xeon
Phi. MPI is used to coordinate the communication between
the host and Xeon Phi coprocessors to implement the het-
erogeneous MapReduce model. This is because MPI is the
popular programming interface for the communication
between the host and Xeon Phi. Additionally, we organize
the threads in a scatter way such as thread ¢ belongs to core
(¢ mod 60), where 60 is the number of cores.

For the experiments, we first characterize the performance
of the Xeon Phi coprocessor. Then we study the performance
impact of our various optimization techniques on a single
Xeon Phi and perform end-to-end performance comparison
with state-of-the-art multi-core based MapReduce framework
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Fig. 6. Arithmetic throughput with and without SIMD.

(Phoenix++). Finally, we show the scalability of MrPhi using
multiple Xeon Phi coprocessors as well as the capability
of using the host. By default, the number of threads per core
is set to the one that gives the best performance, unless
specified otherwise.

5.1 Characterizing the Xeon Phi Coprocessor

SIMD and peak performance. We evaluate the performance of
SIMD processing for computation-intensive workloads. We
adopt the benchmarks from the previous study [29] to mea-
sure the arithmetic throughput for double precision num-
bers. Fig. 6 shows that the 5-11x speedups can be achieved
by employing SIMD processing. On the other hand, the the-
oretical peak performance of around 1 Tflops is almost
achieved by fused multiply-add when there are 240 threads.

SIMD scatter and gather. We evaluate the new SIMD scat-
ter/gather instructions (_mmb512_i32scatter_ps and _mm512_
i32gather_ps) on Xeon Phi. We let each thread perform inde-
pendent scatter or gather, and then measure the memory
bandwidth. The scatter writes the data from a vector to given
memory locations, while the gather reads the data from given
memory locations to a vector. For each thread, we make
the memory locations randomly distributed in a fixed-size
memory space. We vary this memory space size per thread to
study the performance. Note that each thread’s memory
space is not overlapped with another thread’s.

Fig. 7 shows that when the memory size is small enough to
fit into the local L2 cache, SIMD scatter and gather are up to
3.4x faster than their scalar versions and are able to achieve
high memory bandwidth. However, when the data size
becomes large, the SIMD scatter and gather do not help the
performance since the performance is dominated by the mem-
ory latency due to cache misses. This suggests that it is worth-
while to exploit the SIMD scatter/gather when the memory
accesses are distributed over a small range of addresses.

Atomic data types. We study the performance of atomic
operations within the context of our usage pattern where
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Fig. 7. Comparison between SIMD and scaler scatter/gather.
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Fig. 8. (a) The random memory access bandwidth with native and atomic
data types. (b) PCle bandwidth between the host and Xeon Phi with dif-
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there are many random memory accesses on a large array
with a very low conflict rate. We design our experiment to
randomly update elements in an array with 32 million inte-
gers. Fig. 8a shows that using the native and atomic data
types do not have much performance difference. We con-
sider the overhead of atomic operations hidden by the mem-
ory latency. This suggests that when the memory accesses
are random with a low conflict rate, using atomic data types
on the Xeon Phi is a reasonable choice. Our optimization of
eliminating the large local arrays follows this suggestion.

Aligned data transfer between the host and Xeon Phi. We inves-
tigate the PCle bandwidth between the host and Xeon Phi
coprocessor with different memory address alignments.
Fig. 8b shows that only 64-byte aligned memory
addresses are able to fully utilize the PCle bandwidth (around
6 GB/sec). For other misaligned memory addresses, the band-
width is around 13x lower than that with 64-byte aligned
address. This suggests that data transfer with aligned
addresses is crucial to maximize the PCle bandwidth.

Thread initialization overhead. We find the thread initiali-
zation overhead on the Xeon Phi is high compared to con-
ventional CPU (0.75 vs 0.067 millisecond per thread).
Therefore, we implement a thread pool and only initialize
the threads once.

5.2 Evaluation of Optimization Techniques

In this section, we evaluate the performance impact of our
proposed techniques on a single Xeon Phi coprocessor.
When we evaluate a specific technique, we evaluate the
optimized implementation (with all applicable techniques
enabled, denoted as Opt.) and the other implementation
without this specific technique. We will evaluate our four
techniques one by one, which are vectorization friendly
map (Fig. 9), SIMD hash computation (Fig. 11), pipelined
map and reduce (Fig. 12) and eliminating local arrays
(Figs. 13 and 14).
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Fig. 9. Performance impact of vectorization friendly map for Monte Carlo
and Black Scholes.
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Vectorization friendly map. Fig. 9 shows the performance
impact of vectorization friendly map for Monte Carlo and
Black Scholes with data size varied. It shows that the vecto-
rization friendly map can improve the performance by 2.5-
42x and 3.0-3.6x for Monte Carlo and Black Scholes,
respectively. For those two applications, the map phase
dominates the overall performance (>99 percent). Therefore
the vectorization for the map phase can greatly improve the
overall performance.

SIMD parallelism for hash computation. We first evaluate
the performance of hash computation separately using a
single thread. Fig. 11a shows the performance result of
pure hash computation with the input data size varied.
We use the same data set as that used in the Word Count
application. This shows that the SIMDH-Padding and
SIMDH-Stream achieve the speedup of up to 2.8 and 2.2x
over the scalar hash, respectively. Though SIMDH-Padding
wastes computation resource due to the padding, it
achieves better performance.

To investigate the performance difference between
SIMDH-Padding and SIMDH-Stream, we study their time
breakdown. Fig. 10 shows that their running time is decom-
posed to SIMD hash, Gather/Scatter and Others. SIMD
hash is the SIMD intrinsics working on vectors. In our case
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of bkdr hash [24], there are two SIMD intrinsics per vector.
Fig. 10 shows that SIMDH-Padding takes almost double the
time to execute the SIMD hash compared to SIMDH-Stream.
This is because SIMDH-Padding works on additional empty
characters due to the padding. From our further investiga-
tion, this number is consistent to the padding efficiency
(48 percent). However, SIMDH-Padding takes less time for
Gather/Scatter than SIMDH-Stream. SIMDH-Padding has
only one gather instruction per vector, while SIMDH-
Stream has five gather/scatter instructions per vector.
The more gather/scatter instructions come from the more
complex control flow. The Others part represents the over-
head of memory management and control flow operations
(besides gather and scatter).

We further show the performance impact of using the
SIMD hash for Word Count in Fig. 11b. It shows the overall
performance is slightly improved (around 6 percent). The
insignificant improvement is because the hash computation
is not the performance bottleneck of the application.
Instead, the random memory accesses from hash table
building has poor cache efficiency [30], which dominates
the overall performance.

Pipelined map and reduce. Word Count and Reverse Index
are able to take advantage of pipelined map and reduce. We
report the results of Reverse Index as Word Count has a
similar conclusion. We use the data set in Phoenix++ for
evaluations, which contains 78,355 files and 307,921 links in
total. Fig. 12a shows the elapsed time with the number of
threads varied. It shows that the overall performance is
improved by around 8.5 percent. We further decompose the
time as shown in Fig. 12b. This shows that for the map and
reduce phases only, the pipelining technique improves the
performance by around 14 percent. However, due to the
storage overhead, the memory cleanup phase of the
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TABLE 5
Data Sets for End-to-End Performance Comparison
Application Data set
Word Count Input data size: 500 MB
Reverse Index #files; 78,355 ; #links: 307,921 ; size: 1 GB
Monte Carlo #paths: 800 million
Black Scholes #options: 352 million
Histogram #unique keys: 16 million; #elements: 256 million

#elements: 30 million; #entries: 300 million
(Arabidopsis chromosome 1)

Bloom Filter

pipelined map and reduce is more expensive and offsets the
overall performance improvement.

Eliminating local arrays. By eliminating local arrays, the
thread scalability for the map phases can be improved.
Fig. 13 demonstrates such scenarios. The sizes of each local
array are 64 and 40 MB for the Histogram and Bloom Filter,
respectively. Fig. 13 shows that the largest numbers of
threads when using local arrays are 120 for Histogram and
Bloom Filter, due to the limited memory size (8 GB). On the
contrary, if local arrays are eliminated, more threads can be
used. As a result, by eliminating local arrays, it achieves a
speedup of up to 2.1 and 1.6 x for Histogram and Bloom Fil-
ter, respectively. Note that, with the different sizes of arrays,
the available number of map threads for using local arrays
is different. Therefore, the performance improvement from
eliminating local arrays varies across different data sets.

In Fig. 13, we also observe that when using the same
number of threads, our optimized implementation still out-
performs the implementation using local arrays. This is
because of the improved data locality. We further study this
problem. We vary the data size of each array (note that the
Opt. solution only has one global array). In this experiment,
we exclude the impact from the thread scalability and make
the two implementations (Opt. and w/o local arrays) be
able to employ the same number of threads. Fig. 14a shows
that when the array size is small enough to fit into the L2
cache, using local arrays is more efficient. This is because
the global array has the overhead of cache coherence. How-
ever, when the array becomes larger, using global arrays
outperforms local arrays by up to 34 percent. In such a case,
both local and global arrays suffer from cache misses. How-
ever, the optimized solution can take advantage from the
ring interconnection for better cache efficiency (Section 3.5).

To confirm the cache efficiency, Fig. 14b further shows
the estimated memory latency impact. Measuring the mem-
ory latency impact was suggested by Intel to investigate the
cache efficiency. It is an approximation of the number of
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clock cycles devoted to each L1 cache miss. Fig. 14b shows
the consistent trend of increased memory latency impacting
the elapsed time (Fig. 14a).

5.3 MrPhi vs. Phoenix++ on the Xeon Phi

Now we show the end-to-end performance comparison
between our MrPhi and Phoenix++ [15], which is state-of-
the-art MapReduce framework on multicore platforms.
We compare their performance on a single Xeon Phi since
Phoenix++ is unable to run on multiple Xeon Phi coproces-
sors. We use large data sets for evaluations, which are sum-
marized in Table 5.

Fig. 15 shows the performance comparison between
MrPhi and Phoenix++. Since the largest numbers of avail-
able threads for Histogram and Bloom Filter are less than
60 threads, we use dashed lines to represent their perfor-
mance with more than 60 threads. Fig. 15 shows that, for
Monte Carlo and Black Scholes, which take advantage of
vectorization in MrPhi, they are up to 2.7 and 4.6x faster
than their counterparts in Phoenix++. For Word Count and
Reverse Index that are based on the hash table, MrPhi can
achieve a speedup of up to 1.2x. Furthermore, by eliminat-
ing local arrays, MrPhi is able to achieve a speedup of up to
38 and 18x for Histogram and Bloom Filter, respectively.
Note that these two speedup numbers are better than those
reported in Fig. 13. This is because Phoenix++ has some
implementation issues for large arrays, which lead to worse
thread scalability as well as worse performance. In sum-
mary, our MrPhi can achieve a speedup of 1.2 to 38x over
Phoenix++ on Xeon Phi.

5.4 Performance on the Heterogeneous Platform

In this section, we evaluate our MrPhi on the heterogeneous
platform using all Xeon Phi coprocessors as well as the host.
For each application, we further increase the input data size
from the number listed in Table 5 until its speedup is stable
for each experiment.

Performance on multiple Xeon Phi coprocessors. Fig. 16
shows the performance scalability with the number of Xeon
Phi coprocessors increased. This shows that for most appli-
cations, including Word Count, Reverse Index, Histogram
and Bloom Filter, their speedups are almost linearly propor-
tional to the number of coprocessors, which show the excel-
lent scalability. On the other hand, Monte Carlo and Black
Scholes have the scalability factor of around 0.45. Recall that
Monte Carlo and Black Scholes utilizes a common array
container, which needs to send back their partial result to
the host frequently (as described in Section 4.4). As a result,
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Fig. 15. Performance comparison between MrPhi and Phoenix++ on the Xeon Phi.
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Fig. 16. Performance speedup with the number of Xeon Phi coprocessors varied.

the data transfer overhead is unable to be hidden and leads
to poor performance scalability. Nevertheless, for Monte
Carlo and Black Scholes, the performance speedup is still
proportional to the number of Xeon Phi coprocessors with a
sub-linear scalability. It achieves around 2x speedup when
there are four Xeon Phi coprocessors used.

Performance improvement with the host. Our MrPhi frame-
work is able to utilize multiple coprocessors as well as the
host for the heterogeneity. Fig. 17 demonstrates the extra
performance gained (16-67 percent) by using the host’s
resource. Note that due to the different hardware features,
e.g., number of cores and cache size, the performance com-
parison between the Xeon Phi and host varies with applica-
tions. The purpose of Fig. 17 is to demonstrate the
capability of our framework for utilizing the host’s resource.
Additionally, it also shows the applications such as Monte
Carlo and Black, which suffer more from memory transfer
overhead, will benefit less from the host’s power. The rea-
son is that data transfer overhead offsets the computation
speedup for those applications.

5.5 Summary and Lessons Learnt
In this section, we summarize our major findings and les-
sons learnt from developing MrPhi.

First, direct code porting from existing programs is
unlikely to result in high performance on Xeon Phi. The
direct code porting eases the development burden, but it
may not utilize Xeon Phi effectively. By comparing our
result with directly porting Phoenix++, we find our opti-
mized MrPhi framework is 1.2 to 38 x faster.

Second, it is essential to exploit advanced hardware fea-
tures on Xeon Phi. The major reason of the inefficiency for
ported Phoenix++ on Xeon Phi is because their implementa-
tion is unaware of the unique hardware features on Xeon
Phi, e.g., 512-bit SIMD vectors. Redesign of algorithms or
data structures is required to take advantage of the hard-
ware features.

Third, we do realize that Xeon Phi has several limita-
tions, which may introduce difficulties for designing high-
performance applications. For example, SIMD intrinsics
are inflexible and difficult to use effectively. This greatly
increases the coding complexity for large-scale programs. In
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Fig. 17. Performance improvement with the host. Four Xeon Phi copro-
cessors are used.
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addition, the small L2 cache on each core also makes Xeon
Phi inefficient when handling random memory accesses.

Fourth, for applications employing multiple Xeon Phi
coprocessors, hiding data transfer overhead is important.
We believe our careful design of different kinds of processes
employing non-blocking data transfer and aligned memory
transfer techniques are applicable to other applications on
multiple Xeon Phi.

6 CONCLUSION

In this work, we develop MrPhi, the first MapReduce frame-
work optimized for the Intel Xeon Phi coprocessor. In
MrPhi, in order to take advantage of VPUs, we develop a
vectorization friendly technique for the map phase and
SIMD hash computation. We also pipeline the map and
reduce phases to better utilize the hardware resource. Fur-
thermore, we eliminate local arrays to improve the thread
scalability and data locality. Our framework is able to auto-
matically identify suitable techniques to optimize a given
application. Additionally, MrPhi is able to run on a hetero-
geneous platform to utilize the resource from all
coprocessors as well as the host. Our experimental results
show that MrPhi is able to achieve a speedup of 1.2 to 38x
over Phoenix++ for different applications on a single Xeon
Phi. Good performance scalability, e.g., linear scalability for
four applications, is also demonstrated on a platform
equipped with up to four Xeon Phi coprocessors.
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