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ABSTRACT

The key to high performance on GPUs lies in the mas-
sive threading to enable thread switching and hide the la-
tency of function unit and memory access. However, run-
ning with the maximum thread-level parallelism (TLP) does
not necessarily lead to the optimal performance due to the
excessive thread contention for cache resource. As a re-
sult, thread throttling techniques are employed to limit the
number of threads that concurrently execute to preserve the
data locality. On the other hand, GPUs are equipped with
a large register file to enable fast context switch between
threads. However, thread throttling techniques that are de-
signed to mitigate cache contention, lead to under utilization
of registers. Register allocation is a significant factor for
performance as it not just determines the single-thread per-
formance, but indirectly affects the TLP.

The design space of register allocation and TLP presents
new opportunities for performance optimization. However,
the complicated correlation between the two factors inevitably
lead to many performance dynamics and uncertainties. In
this paper, we propose Coordinated Register Allocation and
Thread-level parallelism (CRAT), a compiler-based perfor-
mance optimization framework. In order to achieve this goal,
CRAT first enables effective register allocation. Given a reg-
ister per-thread limit, CRAT allocates the registers by ana-
lyzing the lifetime of variables. To reduce the spilling cost,
CRAT spills the registers to shared memory when possible.
Then, CRAT explores the design space by first pruning the
design points that cause serious L1 cache thrashing and regis-
ter under utilization. After that, CRAT employs a prediction
model to find the best tradeoff between the single-thread per-
formance and TLP. We evaluate CRAT using a set of repre-
sentative workloads on GPUs. Experimental results indicate
that compared to the optimal thread throttling technique, our
framework achieves performance improvement up to 1.79X
(geometric mean 1.25X).
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1. INTRODUCTION

The high performance on Graphics Processing Units
(GPUs) is realized through massive threading to enable fast
context switch between threads and latency hiding. Modern
GPUs support concurrently executing thousands of threads.
Switching between threads occurs so frequently on GPUs
that the execution contexts of threads have to be stored within
on-chip memories. Therefore, GPUs employ a large register
file (RF) to store the variables of threads to provide the maxi-
mal context switching capability. For example, each stream-
ing multiprocessor (SM) on NVIDIA GTX680 is equipped
with a 256 KB register file, which is larger than the total size
of L1 cache and shared memory (64 KB) on an SM. More
importantly, the register file capacity of GPUs also increases
with each new generation [1].

The massive threading of GPUs is a strength for perfor-
mance acceleration, but places extreme loads on the cache
subsystem. The large number of concurrent threads com-
pete for the limited shared cache capacity, leading to high
cache contention and thus low cache hit rate [2, 3]. As a re-
sult, running with the maximum number of threads does not
necessarily give the optimal performance. Thread throttling
techniques are designed to mitigate the excessive cache con-
tention by limiting the number of threads that concurrently
execute [2, 3]. Recently, thread throttling has been used to-
gether with cache bypassing to further improve the cache
performance [4]. The granularity of thread throttling can
vary from fine-grained (warps) [2] to coarse-grained (thread
blocks) [3]. Figure 1 (a) demonstrates the benefits of thread
throttling for a variety of applications. In this paper, we de-
fine the TLP as the number of concurrently executing thread
blocks per SM. MaxTLP represents the maximum allowed
TLP given the resource and hardware limits; OptTLP rep-
resents the optimal TLP determined through profiling. For
these applications, OptTLP uses only about 55% threads of
MaxTLP on average. As shown, the performance can be im-
proved by 1.42X on average through thread throttling. The
achieved performance gain is attributed to the improvement
of cache hit rate and reduction of stall caused by cache re-
source congestion.

However, thread throttling techniques that are designed
to preserve the data locality and mitigate cache contention
are oblivious to register allocation. More clearly, in the cur-
rent compilation tool-chain for GPUs, the register per-thread
is determined at compile-time. Register per-thread impacts
the number of register spills of the thread, which are intrin-
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Figure 1: Normalized performance and register utilization for MaxTLP and thread throttling technique OptTLP.

sically load and store operations. After that, the TLP can be
either determined through profiling or adjusted during run-
time [2, 3, 5]. However, regardless of how the TLP is de-
termined, register allocation does not have the flexibility to
change with the TLP, leading to register resource waste. For
example, in Figure 1 (b), we compare the register utiliza-
tion of MaxTLP and OptTLP for the applications in Figure 1
(a). Though thread throttling improves the performance, it
results in 51.3% register waste.

Neither pure thread throttling nor pure register alloca-
tion exploits the entire spectrum of the optimization space.
We observe that thread throttling presents new opportuni-
ties for register allocation. If thread throttling is coordinated
with register allocation, we will not only maintain the TLP
that does not cause serious cache contention, but also have
the opportunities to utilize the extra register space saved by
thread throttling to improve the single-thread performance.
By allocating more registers per-thread, we can improve the
performance by reducing the number of spills.
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Figure 2: Design space of register per-thread and TLP for
application CFD on NVIDIA GTX680.

Motivating Example. We illustrate the benefit of the

coordinated approach using application CFD. Figure 2 presents

the design space of TLP and register per-thread for CFD.
The experiments are performed on NVIDIA GTX680. We
vary the register per-thread through the max regcount inter-
face built in nvcc compiler. In order to vary the TLP, we
declare a dummy array in shared memory and vary its size
by modifying the source code. The original CFD kernel does
not use any shared memory and we add simple commands to
access the dummy array.

Figure 3 compares a few solutions in Figure 2 in details.
Each solution is represented with a 2-tuple:(reg,TLP), where
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Figure 3: Performance, cache behavior, and register
utilization of selected design points for application CFD.

reg denotes the register per-thread. Solution MaxTLP exe-
cutes as many thread blocks concurrently as possible using
the default register per-thread. The maximal TLP depends
on the resource usage per thread block (e.g. registers, shared
memory) and the hardware limits (e.g. 8 thread blocks per
SM on GTX680). Solution OptTLP is the thread throttling
technique [3], which limits the TLP and uses the default reg-
ister per-thread. For application CFD, MaxTLP and OptTLP
are (reg =32, TLP = 8) and (reg = 32, TLP = 7), respectively.
As shown by Figure 3, OptTLP increases the performance
by improving the L1 cache performance. However, this also
leads to 12.5% register waste. Solution OptTLP+Reg,(reg =
36, TLP = 7) further improves the performance by maintain-
ing the optimal TLP but allocating more registers per-thread.
If we continue to increase the per-thread register usage, reg-
ister will eventually become the limiting resource. Then, the
TLP will be penalized as shown by Figure 2. This leads to a
non-trivial tradeoff between the TLP and register per-thread.
Intuitively, if we allocate more registers per-thread, this will
help to improve the single-thread performance by reducing
the number of spills. However, this will also reduce the TLP
as the number of registers required by a thread block in-
creases. Figure 2 depicts the tradeoff. Solution identified by
CRAT finds the best tradeoff between the TLP and single-
thread performance. For application CFD, CRAT is (reg =
50, TLP = 5), which achieves 1.78X performance speedup
compared with the MaxTLP solution.

Exploring register allocation together with thread throt-
tling has great potential for performance improvement. How-
ever, the large design space and the non-trivial performance
tradeoff necessitate an automatic analysis and optimization
tool. In this paper, we propose Coordinated Register Allo-
cation and Thread-level parallelism (CRAT), a compiler per-
formance optimization framework. CRAT first enables ef-



fective register allocation by extending GPGPU-Sim compi-
lation framework [6]. Then, CRAT explores the design space
by pruning the design points that cause serious L1 cache
thrashing and register under utilization. For the remaining
design points, CRAT performs the register allocation and
employs a prediction model to compare their performance.
To reduce the spilling cost, CRAT will spill the registers to
shared memory when possible. This paper contributes to the
state-of-the-art of GPU optimization techniques as follows:

e We identify the performance bottlenecks of modern
GPUs and demonstrate the necessity to optimize the
register allocation and TLP coordinately.

o We develop a compiler framework CRAT that enables
coordinated register allocation and TLP optimization.

Our implementation is based on a source-to-source trans-

formation at the Parallel Thread Execution(PTX) level.
CRAT can analyze the lifetime of variables and per-
form register spilling.

e We develop an optimization algorithm that minimizes
the spilling cost by spilling the variables to shared mem-
ory and a prediction model that finds the best tradeoff
between the TLP and single-thread performance.

e We evaluate our technique using a wide range of ap-
plications from Rodinia [7], Parboil [8], and SDK [1].
Evaluations show that compared to the optimal thread
throttling technique [3], CRAT improves the perfor-
mance by up to 1.79X (geometric mean 1.25X).

2. BACKGROUND AND WORKLOAD CHAR-

ACTERIZATION
2.1 GPU Architecture

The baseline GPU architecture is shown in Figure 4.
GPUs are composed in a hierarchical manner. Processors
are grouped into multiple streaming-multiprocessors (SM).

Each SM is equipped with warp schedulers, multiple streaming-

processors (SP), special function units, load/store units, and
on-chip storage including register file, L1 cache, and shared
memory. All the SMs share the interconnection network,

which connects SMs to off-chip L2 cache and DRAM. Threads

are grouped into thread blocks. On each SM, registers, shared
memory, threads and thread blocks limits together determine
the maximum allowed TLP. More clearly, GPU kernel will
launch as many thread blocks concurrently as possible until
one or more dimension of resources are exhausted.

In the current compilation tool-chain of GPUs, the reg-
ister per-thread is determined at compile-time, which subse-
quently determines the single-thread performance. However,
the exact register allocation algorithm has not been disclosed
by NVIDIA. In practice, we find that existing register allo-
cation on GPUs is oblivious to thread throttling.

2.2 Workload Characterization

L1 Cache. Caches are introduced to GPUs to broaden
the scope of accelerated application. However, distinct from
CPU architecture, the cache capacity per-thread on GPUs is
very small, leading to poor cache performance [2]. Thread
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Figure 4: The baseline GPU architecture.
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Figure 5: The impact of thread throttling on L1 data cache
performance.

throttling techniques are designed to mitigate this problem [3].
First, thread throttling improves the L1 cache hit rate by pre-
serving the data locality as shown by Figure 5(a). Second,
thread throttling minimizes the pipeline stall caused by the
congestion of cache requests as shown by Figure 5(b). How-
ever, as discussed previously, thread throttling techniques
can lead to under utilization of registers.

Register Allocation. Modern GPUs are equipped with
a large register file. However, often the number of registers
is not sufficient and we have to use register spillings to move
the variables between registers and local memory. Register
per-thread is a very important factor for performance as it not
just impacts the single-thread performance, but indirectly af-
fects the TLP. For example, given 2048 threads, each thread
is allocated 32 registers at most on GTX680. If the GPU ap-
plication demands more than 32 registers per-thread, some
of the variables have to be spilled to local memory. Fig-
ure 6 illustrates this in details using application CFD as an
example. On one hand, when register becomes the limiting
resource, allocating more registers per-thread will limit the
TLP as shown by Figure 6 (a). On the other hand, allocating
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Figure 6: Performance impact of register per-thread on TLP
and instruction count for application CFD.

less registers per-thread will incur more spilling cost, lead-
ing to instruction count increase as shown by Figure 6 (b).
Furthermore, the spilled variables are stored in local mem-
ory, access to which takes longer latency compared to the
access to registers.
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Figure 7: The comparison of register and shared memory
utilization.

Shared Memory. On GPUs, shared memory, which is
managed by software, is mainly used as a communication
channel among threads in the same thread block to reduce
the number of accesses to off-chip memory. However, we
notice that not all the applications fully utilize the shared
memory space. Figure 7 shows that shared memory has
a much lower utilization compared to registers (3.8% vs.
65.5%). Shared memory resides on-chip, which is much
faster than local memory. Hence, when register pressure
happens, instead of spilling the variables to long-latency lo-
cal memory, we can spill them to the shared memory.

Figure 8 presents the benefits of register spilling using
the shared memory for application FDTD. First of all, we
notice that FDTD prefers less registers per-thread. By limit-
ing the registers from 48 to 32, we can increase the perfor-
mance by 1.35X. We consider two variables var, and varsy
as spilling candidates. Both of them have long live intervals
and they conflict the most with other variables. Spilling vars
further improves the performance to 1.64X, while spilling
vary only improves the performance to 1.41X as shown by
Figure 8(b). This is because var; has higher access fre-
quency. By spilling vary to shared memory, we can re-
duce the register pressure by 1 and store var; in the reg-
ister. Hence, different variables have different spilling cost
and benefit. In Section 5, we design a spilling optimization
that minimizes the spilling cost using the available shared
memory space.
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Figure 8: Performance impacts of register and shared
memory exploration for application FDTD.

3. CRAT COMPILER FRAMEWORK

The experiments of Figure 2 and 3 rely on manual in-
sertion of shared memory and inflexible max regcount in-
terface as the ISA of NVIDIA GPU is not disclosed, which
is not a practical solution. Hence, we implement our CRAT
compiler framework based on GPGPU-Sim [6] compilation
system by extending it with register allocation capability.

Figure 9 presents the overview of CRAT framework. It
employs a source-to-source transformation to enable the co-
ordinated register allocation and TLP optimization. The in-
put and output of CRAT are in PTX format [9], which is
the intermediate representation of CUDA code. CRAT in-
volves three components: design space pruning, register al-
location, and optimization as shown by Figure 9. Initially,
design space pruning component explores the huge regis-
ter per-thread and TLP design space and discards the de-
sign points with serious cache contention and poor register
utilization (Section 4). The output of the design space prun-
ing is a few good candidate solutions. Each solution is a
2-tuple (reg, TLP), where reg denotes the register per-thread
and TLP represents the number of thread blocks that con-
currently execute on the same SM. Then, for each candi-
date solution, CRAT performs register allocation. We extend
the GPGPU-Sim compilation system with the register allo-
cation capability. The details of our register allocation im-
plementation is in Section 5. The register allocation contains
a spilling optimization algorithm to minimize the register
spilling cost using shared memory. Then, the optimization
component evaluates different candidate solutions and com-
pares them using a performance model described in Section
6.

4. DESIGN SPACE PRUNING

Design space pruning component collects the resource
usage parameters and prunes the design space by discard-
ing the points with serious cache contention and low register
utilization.

4.1 Resource Usage Analysis

We first build the control- and data-flow graph based on
the intermediate PTX representation. Then, CRAT analyzes
the kernel and collects the parameters shown in Table 1. The
parameters are categorized into three categories.

Register. We collect two parameters about registers:
MaxReg and MinReg. MaxReg denotes the number of regis-
ters per-thread required to hold all the variables. It depends
on applications and we obtain MaxReg through data flow
analysis as described in [10]. MinReg denotes the minimum
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number of register per-thread, it is architecture-dependent
and we define it as

NumRegister

MaxThreads

where NumRegister is the number of registers per SM and
MaxThreads is the maximum allowed number of concurrent
threads per SM. Allocating registers less than MinReg per-
thread would not limit the TLP and allocating registers more
than MaxReg per-thread would not increase the single-thread
performance. [MinReg, MaxReg] represents the range for the
register per-thread usage.

MinReg =

Table 1: Collected Resource Usage Parameters.

Parameter Category

MaxReg/MinReg Register usage.
MaxTLP/OptTLP/BlockSize| Thread-level parallelism.
ShmSize Shared memory per thread block.

TLP. We collect three parameters about TLP: Block-
Size, MaxTLP, and OptTLP. BlockSize denotes the number
of threads per thread block. [/, MaxTLP] defines the range

for TLP. In CRAT framework, OptTLP can be obtained through

profiling, which requires to run the application for a few
times (e.g. < MaxTLP) and finds the optimal one.

As an alternative to profiling, we also propose to es-
timate the optimal TLP through static code analysis. Prior
analytical models [11] have demonstrated that GPU appli-
cation performance can be accurately predicted by divid-
ing the thread lifetime into computation and memory pe-
riod and modeling their overlapping through warp schedul-
ing. Thus, our static analysis first analyzes the PTX code and
divides the kernels into computation and memory segments
as shown by Figure 10 (a). For each segment, we compute
its latency by summing the latency of all its instructions. For
the memory instructions, we empirically measure the cache
hit ratio for all the applications and then compute an average
memory access latency using the cache hit ratio.

Recent study [5] has shown that the OpfTLP can be
estimated by using a greedy-warp scheduler (greedy-then-
oldest, GTO). The behind intuition is if when the first thread
block finishes execution, only n(n<M axzT L P) thread blocks
are involved in the GTO scheduling, then n thread blocks
will be sufficient for this application and is likely to be the
OptTLP. Based on this observation, we mimic a GTO
scheduling as shown by Figure 10 (b) using the computed
latency for each segment until the first thread block finishes.
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We extend it by modeling the memory bandwidth [11] and
cache contention. In Figure 10 (b), when the first thread
block finishes, only 3 thread blocks are involved suggesting
that 3 is the OptTLP (MaxTLP is 4). In the experiments,
we will demonstrate that static code analysis gives accurate
OptTLP estimation with low overhead.

i Computation segment

add.u64 %$rdl0, %rd9, %rd2;
C add.u64 $rdl2, %rdll, %rd2;

[M] Memory segment

First block
finishes

add.u64 %rdld, %rdl3, %rd2; Block 1

-

1d.global.£32 %£6, [%rd5+0]; Block 2
M«|: 1ld.global.f32 %f7, [%rd8+0];

1ld.global.£32 %£8, [%rd10+0];

mul.£32 $£9, $£8, %£4;
C div.rn.f£32 %£10, %£6, %£7;
sqrt.rn.£32 $£11, %£8;

(a) Segmented codes.

Block 3

Block 4

End
(b) GTO scheduling.

Start

Figure 10: Illustration of static code analysis.

Shared memory. ShmSize denotes the size of the shared
memory requested per thread block. We will use it in the
spilling optimization algorithm.

4.2 Pruning

Let C be the design space of the coordinated register
allocation and TLP optimization. Each point ¢ € C is rep-
resented by a 2-tuple: (reg, TLP), where reg denotes the al-
located register per-thread and 7LP denotes the number of
thread blocks that concurrently execute. We have,

C = {(reg, TLP)|MinReg < reg < MaxzReg
A1 <TLP < MazTLP}

In this paper, we focus on the applications that have
non-trivial register demand and the TLP is limited by the
register. If we allocate more registers per-thread, this will
lead to fewer TLP. Thus, the points in the design space form
a staircase shape as shown by Figure 11. Each stair con-
sists of a few design points with the same TLP but different
register per-thread due to the discontinues and non-convex
correlation between the TLP and register per-thread [1].

Each point in the design space exhibits tradeoff between
the TLP and single-thread performance. More clearly, high
register per-thread increases the single-thread performance
but leads to low TLP. The design space is so huge that it is
infeasible to explore it exhaustively. Hence, we employ two
pruning strategies for efficiency. First, for two points a and b,
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if a has higher register per-thread than b, but the same TLP
with b, then a is guaranteed to be better than b. Thus, we
can safely remove b without consideration. In other words,
we only need to consider the rightmost point on each stair.
Second, we discard the points whose TLP is higher than the
OptTLP as they will cause serious cache contention. The re-
maining points are the candidate solutions, and they will be
further optimize and evaluated after the register allocation.

5. REGISTER ALLOCATION

Register allocation is carried out for each candidate so-
lution left by the design space pruning.

5.1 Implementation

CRAT is implemented based on GPGPU-Sim compila-
tion system. GPGPU-Sim mimics the thread execution at
the PTX level, which is designed to be close to the machine
code [9]. On real hardware, a platform-specific just-in-time
(JIT) compiler will be called to translate the PTX code into
the machine code.

However, PTX uses static single assignment(SSA) style,
which does not perform register allocation. It assumes an
infinite register set, each time a new variable is generated,
it is assigned to a new register. List 1 shows an example of
CUDA kernel and List 2 shows the corresponding compiled
PTX code. The original CUDA code in List 1 simply com-
putes the global thread identifier. In the PTX code shown in
List 2, it first reads data from built-in registers to registers
r0, 1, and r2. Then, r3 is created to hold the result of the
multiplication operation. Finally, r4 is created to store the
value of tid. In total, five registers are required in this ex-
ample. However, not all the variables are live at the same
time. When a variable is dead, we can reuse the correspond-
ing register. For the variables that are not live at the same
time, they can be assigned to the same register. With reg-
ister allocation, only three registers are needed as shown by
Listing 3.

We extend GPGPU-Sim compilation system with the
register allocation capability. The register allocation algo-
rithms have been widely studied [12, 13]. In this paper, we
implement a Chaitin-Briggs’ register allocator [10]. It con-
sists of three main steps as shown in Figure 9. Firstly, it
analyzes the live range of each variable and constructs the
interference graph. Secondly, the graph coloring algorithm
is invoked to allocate the variables to registers. If a variable
can not be assigned to a register due to register limit, it will
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be spilled to memory. Finally, spill codes are inserted if nec-
essary. In our implementation, we spill the variables to local
memory using load and store operations and optimize the
spilling to shared memory when possible (Algorithm 1). If
we assume only two 32-bit registers are available, the ker-
nel in List 3 has to be spilled. List 4 shows the spilled
kernel. The SpillStack, which stores the spilled variables,
is declared as an array in the local memory. A 64-bit ad-
dressing register d0 is required to store the base address of
SpillStack as PTX ISA does not support displacement ad-
dressing mode. Spill codes are inserted when there exists
register pressure. For example, when 72 is generated, 0 is
spilled to Spill Stack using store instruction st.local.u32 to
free a register. When 2 is dead and r0 is referenced again,
r0 is loaded from local memory to register file using load
instruction ld.local.u32.

1| _global__ void kernel (int*output) {
2 //Thread identifier computation
3 int tid = threadIdx.x +
4 blockIdx.xxblockDim.x;
50}

Listing 1: Original CUDA kernel.
1| .entry kernel(...)
21 {
3 mov.u32 %r0, %tid.x;
4 mov.u32 %rl, %ctaid.x;
5 mov.u32 %r2, %ntid.x;
6 mul.lo.u32 %r3, %r2, %rl;
7 add.u32 %r4, %r0, %r3;
8|}

Listing 2: Native PTX kernel.

1| .entry kernel(...)
21 {
3 mov.u32 %r0, %tid.x;
4 mov.u32 %rl, %ctaid.x;
5 mov.u32 %$r2, %ntid.x;
6 //dead:%rl, $r2, generate:$%rl
7 mul.lo.u32 %rl, %rl, %r2;
8 //dead: %r0, $rl
9 add.u32 %r0, %r0, 5%rl;
10 }

Listing 3: PTX kernel with register allocation.

1| .entry kernel(...)

21 {

3 //Addressing register

4 .reg .u64 %d<1>;

5 //Spill stack in local memory

6 .local .align 4 .b8 SpillStack[4];
7 mov.u32 %$r0, %tid.x;

8 mov.u32 %rl, %ctaid.x;

9 mov.u64 %d0, SpillStack;

10 st.local.u32 [%d0], %rO;

11 mov.u32 %$r0, %ntid.x;
12 mul.lo.u32 %rl, %rl, %r0;
13 1d.local.u32 %rl, [%dO0];

14 add.u32 %r0, %r0, %rl;

Listing 4: PTX kernel with spill codes.



5.2 Validation

We first verify that the executions with and without reg-
ister allocation are consistent in GPGPU-Sim framework.
Then, we validate our register allocation by comparing to
the built-in PTX assembler provided by the nvce tool-chain
on commercial hardware. More clearly, we perform reg-
ister allocation on the original PTX code using our CRAT
framework and compare it with the binary code on GTX680,
which is generated by nvce compiler. Figure 12 compares
the number of spill load/store bytes for application CFD.
The number of spill load/store bytes can be collected through
profiling on GTX680. In general, the number of spill bytes
is very similar except when Reg=32 and Reg=35. There are
several reasons for this discrepancy. First, the register al-
location algorithms might be different. Second, PTX ISA
is type-sensitive. Each instruction has its type specification.
The type of the instruction must match with the type of the
registers. For example, a 32-bit instruction can only operate
on 32-bit registers. When a variable dies, the correspond-
ing register could not be assigned to a variable with different
type. This may lead to register waste.

Note that, we do not attempt to implement a register al-
locator that perfectly matches with the commercial compil-
ers. In fact, as part of the coordinated register allocation and
thread-level parallelism optimization framework, we desire
to implement an efficient register allocator that can allocate
registers to variables given a per-thread register limit.
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Figure 12: The comparison of nvec 4.2 and CRAT for spill
load/store bytes.

5.3 Spilling Optimization

By default, register allocation spills variables to local
memory after live range analysis and register coloring as
shown in Figure 9. However, off-chip local memory is much
slower than on-chip shared memory [14]. More importantly,
as shown in Section 2, most of the applications fail to utilize
all the shared memory space. This opens up the opportuni-
ties for spilling using shared memory instead of local mem-
ory. CRAT employs a spilling optimization that attempts to
spill variables to shared memory(Algorithm 1). Excessive
use of shared memory may hurt the TLP, our spilling opti-
mization ensures that the TLP is not changed and only uti-
lizes the spare shared memory for spilling.

Algorithm 1 presents the details of our spilling opti-

mization. The input to Algorithm 1 are the spill stack (Stack|])

and the size of spare shared memory (SpareShmSize). We
compute the SpareShmSize using those parameters col-
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lected in Section 4. Spill stack is the array used to store
the spilled variables. Originally, spill stack is allocated in
local memory. In Algorithm 1, we split the spill stack into
N smaller sub-stacks and try to allocate them into shared
memory. Smaller sub-stacks are easier to fit in shared mem-
ory than the entire stack. The value NV is determined by the
splitting method. Here, we split the spill stack according to
the data type and the width of the spilled variables. For ex-
ample, all the integer variables with 32-bit width are spilled
to the same sub-stack. Alternative split methods may lead to
different result, we leave it as future work.

Algorithm 1 Spilling Optimization Algorithm.

Input: Stack[], SpareShmSize;
. > Spill stack split.
2: subStack[N], subStackSize[N] < split(Stack]]);

3:

4: 1> gain estimation.
5: gain[N] « 0;

6: for i < 1to N do
7 for each spill inst do

g if inst accesses subStack[i] then

gain[i] + +;

end if
11 end for
12: end for
13:
14: > knapsack problem formulation.
15: S[N, SpareShmSize] + 0, Mask[N, SpareShmSize] < 0
16: for i < 1to N do
17: for v < 0to subStackSize[i] do
18: S[i, v] + S[i-1,v]
19: end for
20: for v + 0 — SpareShmSize do
21: S[i,v], Mask[i,v] <— M ax(S[i- 1,v],S[i- 1,v - subStackSize[i]] + gain[i])
22:  end for
23: end for

Output: <— Mask[N - 1,SpareShmSize]

For each sub-stack, we scan the kernel and record the
number of accesses to it using array gain[] (Line 4-12). Then,
we formulate a 0-1 Knapsack problem (Line 14-23). Each
sub-stack can either be spilled to shared memory or not. The
goal of the optimization is to minimize the number of ac-
cesses to local memory. If we place sub-stack[i] into shared
memory, we estimate its benefit as gain[i] (the number of
access to local memory). Algorithm 1 maximizes the gain
under the limitation of shared memory size. We solve this
problem using dynamic programming. S[i,v] denotes the
maximum gain for the sub-stacks from 1 to ¢ given shared
memory size v. The maximum gain is returned by S[N,
SpareShmSize] and the spilled sub-stacks are returned by
Mask[N, SpareShmSize]. Finally, we insert spill codes
to the kernel using the sub-stacks.

6. OPTIMIZATION

After the design space pruning and register allocation,
multiple design points may remain. We employ a perfor-
mance metric to compare them and select the optimal one.
The performance of GPU applications depends on the single-
thread performance and the TLP. Obviously, every design
point (reg, TLP) impacts the single-thread performance and
TLP differently. We design the metric Thread-level Paral-
lelism and Spill Cost (TPSC) to model both of them to cap-
ture the performance tradeoff.

TPSC = TLP,qin - Spillcost



T L P,4;r models the TLP and Spill.,s; represents the spilling
cost, which indirectly models the single-thread performance.
TLP,q;y is defined as

1 TLP - BlockSize
TLP - BlocSize + MaxThread

where M axT hread represents the maximum allowed num-
ber of threads per SM. When TLP is sufficiently high, in-
creasing TLP leads to diminishing effect on performance as
demonstrated by prior studies [15]. T'LF,,;, reflects such
trend. The Spill.,s; estimates the overhead of the inserted
spill instructions as follows,

TLPgain =

Spillcost =Numjoeqr - Costiocal+
Numgpm - Costspm + Numoghers

where Numjocal, Numspm, and Numipers represent the
number of inserted local memory instructions, shared mem-
ory instructions, and other instructions, respectively. Other
instructions refer to those extra instructions used for address
computation for spilling. C'ostjycq; and C'ost gy, represents
the delay of per access to the local memory and shared mem-
ory, respectively. Costioeqr and Costgp,, are measured on
the target architecture through micro benchmarks.

TPSC does not model the cache effect as the design
points with serious cache contention are pruned(Section 4).
We compare TPSC of different design points and select the
one that yields the smallest value. Evaluations in Section 7
show that TPSC metric can accurately capture the tradeoff
between single-thread performance and TLP.

Table 2: Simulated GPGPU-Sim configuration.

SM 15 SMs, 32 cores/SM, 700 MHz
Register 128KB, 16 banks

Shared Memory 48KB, 32 banks

TLP Limitation 1536 threads, 8 thread blocks
Scheduler 2 warp schedulers per SM, GTO

L1 Data Cache
L2 Unified Cache

32KB, 4-way, 128B block, LRU, 32 MSHR entries
768KB size, 6 banks

7. EXPERIMENTAL EVALUATION
7.1 Experiment Methodology

We implement our CRAT compiler framework based
on GPGPU-Sim [6] compilation and runtime system (ver-
sion 3.2.3+), using the Fermi-like architecture parameters
shown in Table 2. We measure the power consumption us-
ing GPUWattch [16]. We evaluate CRAT using all the ap-
plications from Rodinia [7] and Parboil [8] suites, and some
applications from NVIDIA SDK [1] suite. For each applica-
tion, its tested inputs are from the original benchmark suites.
For the applications that consist of more than one kernel, we
only focus on the most time-consuming kernel. For all of
the applications, we simulate them until all the instructions
finish.

CRAT mainly targets for the resource (cache, register
file) sensitive applications. For cache sensitive applications,
thread throttling improves the performance by reducing the
cache contention, which may lead to less register utilization.
Register sensitive applications mainly are complex applica-
tions, which require large register file. For these applica-
tions, different register allocation and TLP gives different

402

Table 3: Evaluated GPU Applications.

Resource Sensitive Applications
Application Kernel abbr. Suite

BlackScholes BlackScholesGPU BLK SDK [1]
cfd cuda_compute_flux CFD Rodinia [7]

dxtc compress DTC SDK [1]

EstimatePi initRNG ESP SDK [1]

FDTD3d FiniteDifferences FDTD SDK [1]
hotspot calculate_temp HST Rodinia [7]
kmeans invert_mapping KMN | Rodinia [7]
1bm StreamCollide LBM Parboil [8]
spmv spmv_jds SPMV | Parboil [8]
stencil block2D STE Parboil [8]
streamcluster compute_cost STM Rodinia [7]

Resource Insensitive Applications

backprop layerforward BAK Rodinia [7]
bfs kernel BES Rodinia [7]
b+tree findK B+T Rodinia [7]
gaussian Fanl GAU Rodinia [7]
Iud diagonal LUD Rodinia [7]
mummergpu mummergpuKernel [ MUM | Rodinia [7]
nw cuda_shared_1 NEED | Rodinia [7]
particlefilter kernel PTF Rodinia [7]
pathfinder dynproc PATH | Rodinia [7]
sgemm mysgemmNT SGM Parboil [8]
srad srad_cuda SRAD | Rodinia [7]

tradeoff in single-thread performance and thread parallelism.
Thus, we classify the applications into two categories: re-
source sensitive and resource insensitive applications. If an
application is sensitive to cache or register, it is classified as
resource sensitive, otherwise it is classified as resource in-
sensitive.

In Section 4, we propose to obtain the OptTLP through
profiling or static code analysis. We first use the OptTLP
obtained through profiling for CRAT implementation. In the
following, we perform six sets of experiments to evaluate
CRAT. First, we present the performance benefit of CRAT
using the configurations in Table 2 for resource sensitive ap-
plications in Table 3. The platform is a Fermi-like architec-
ture. GPU architectures are rapidly evolving; each new gen-
eration of GPUs are equipped with more memory resources
(e.g. registers) and computing capability (e.g. threads). Sec-
ond, we evaluate CRAT using a Kepler-like architecture to
demonstrate its scalability to new architecture. Third, we
present the input sensitivity study. Fourth, we present the
performance results for resource insensitive applications. Fifth,
we evaluate CRAT using the estimated optimal TLP. Finally,
we report the overhead of CRAT framework.

7.2 Performance Results

In order to demonstrate the benefit of CRAT, we com-
pare it with the following techniques.

MaxTLP. MaxTLP uses the default register allocation
and does not employ thread throttling. The default register
allocation is oblivious to thread throttling. MaxTLP will run
as many thread blocks as possible until one or multiple re-
sources are exhausted.

OptTLP. OptTLP implements the thread throttling tech-
nique at thread block level [3]. For each application, its opti-
mal TLP is determined offline by exhaustively testing all the
possible TLPs. The design space of TLP is small (e.g. 8).

CRAT-local. CRAT-local is exactly the same with CRAT,
but it disables the spilling optimization. In other words, it
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Figure 13: Performance results of the MaxTLP, OptTLP, CRAT-local, and CRAT (normalized to the OptTLP).

does not spill any variables into shared memory.

Figure 13 shows the performance results normalized to
the OptTLP. Compared with OptTLP, the performance im-
provement(geometric mean) of CRAT-local and CRAT are
1.17X and 1.25X, respectively. Different applications show
different performance improvements. Overall, CRAT per-
forms consistently well across all the applications.

The performance benefit of CRAT can be attributed to
three reasons: (a) explore TLP to reduce cache contention;
(b) increase the register utilization and find the best trade-
off between register per-thread and TLP; (c) employ shared
memory to reduce the register spilling cost. Next, we sup-
port our argument with quantitative experiments.

Figure 14 compares the TLP of MaxTLP and CRAT.
On average, CRAT executes 2.6 thread blocks per SM, while
MaxTLP executes 5.1 thread blocks per SM. For applica-
tion KMN, CRAT chooses to run only 1 thread block due to
serious cache contention, compared to the 6 thread blocks
in MaxTLP. This leads to substantial performance improve-
ment in cache. More clearly, the L1 cache hit rate is im-
proved by 82.1% and the pipeline stall caused by resource
congestion is reduced by 97.2% for KMN.

Compared with the thread throttling techniques (e.g.
OptTLP), CRAT further increases the performance by im-
proving the register utilization and exploring the tradeoff be-
tween single-thread performance and TLP. Figure 15 com-
pares the register utilization of OptTLP and CRAT. For ap-
plications STM, SPMV, KMN, and LBM, the default regis-
ter per-thread happens to be the optimal register allocation.
Therefore, the register utilization is not improved. Conse-
quently, for these applications, CRAT achieves the same per-
formance with the OptTLP as shown in Figure 13. For the
rest of the applications, the register utilization are all im-
proved. On average, the register utilization is improved by
15% — 27%. For some applications, the performance im-
provement also comes from the balance between the single-
thread performance and TLP. For example, for application
FDTD, OptTLP uses 42 registers per-thread and executes
only 1 thread block concurrently. This leads to 73% register
utilization. CRAT compares two candidate solutions. One
uses 52 registers per-thread to maximize the single-thread
performance, and the other one uses 32 registers per-thread
to maximize the TLP. Both solutions have higher register uti-
lization, compared with MaxTLP. CRAT finally chooses to
allocate 32 registers per-thread and 2 thread blocks per SM.
This leads to 100% register utilization. For this case, CRAT
improves the register utilization and finds a balance between
the single-thread performance and TLP.
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Figure 14: The selected TLP for MaxTLP and CRAT.
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Figure 15: The register utilization of OptTLP and CRAT.

In the MaxTLP and OptTLP, applications such as HST,
and BLK employ spills to local memory as they lack suf-
ficient registers. As the register utilization is improved by
CRAT, each thread has sufficient amount registers to hold
the variables and do not incur any register spilling any more.
Hence, for applications HST and BLK, CRAT does not im-
prove CRAT-local as shown by Figure 13. However, for ap-
plications DTC, FDTD, CFD, and STE, register spilling can
not be completely eliminated. Spilling optimization is an ef-
fective technique for them and CRAT improves CRAT-local
as shown by Figure 13. Figure 16 shows the reduction of
local memory accesses for these applications. The number
of local memory accesses are reduced by 42% on average.
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Figure 16: The normalized local memory accesses of
CRAT-local and CRAT.

Energy Results. Due to the performance gain, exper-
iments show that CRAT achieves on average 16.5% energy
savings compared with OptTLP.



7.3 Architecture Scalability

In the previous subsection, we evaluate CRAT on a Fermi-
like architecture [17] using the configuration in Table 2. How-
ever, GPU architecture rapidly evolves, new generation of
GPUs will be equipped with more resource. For example,
compared to Fermi, Kepler architecture increases the size of
register file from 128KB to 256KB per SM and the maxi-
mum number of concurrently executing threads from 1536
to 2048 per SM. We update the parameters in Table 2 and
evaluate CRAT using the Kepler configuration. Figure 17
gives the normalized performance. On average, we achieve
1.32X performance speedup compared with the OpfTLP.

Some of applications such as LBM, FDTD, and CFD
show smaller improvement on Kepler than Fermi. This is
because the larger register file on Kepler alleviates the reg-
ister pressure. We also notice that applications SPMV, HST,
BLK, and STE show better performance speedup. The reason
behind this is two-folds. First, as more threads are allowed to
execute concurrently, cache contention become even worse.
As aresult, the gap between the optimal and maximum TLP
becomes larger, leaving more registers under-utilized by pure
thread throttling. Second, the design space of register per-
thread and TLP continues to grow with the resource limits.
This leads to large room for our coordinated approach.
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Figure 17: The performance speedup of CRAT on a
Kepler-like GPU.
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Figure 18: Achieved performance speedup of CRAT across
different inputs.

7.4 Input Sensitivity

In the above experiments, we use the OptTLP obtained
through profiling for CRAT implementation and use the same
input for profiling and evaluation. Here, we evaluate the per-
formance against different inputs. All the inputs are chosen
from the original benchmark suites. For each input, we use
it as profiling input and test it across all the inputs.

We use applications CFD and BLK for this study. For
each application, we use 3-4 different inputs. First of all,
for every application, different profiling inputs lead to the
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same OptTLP. Though different inputs vary with threads/in-
put size, the behaviors of different thread blocks in one ap-
plication tend to be stable. Therefore, the OptTLP is likely
to be the same across different inputs. Figure 18 shows the
performance speedup for all the inputs. CRAT achieves con-
sistently good results. The speedup of different inputs could
be different due to different workload.

7.5 Insensitive Applications

Figure 19 shows the performance results for resource
insensitive applications. The performance is normalized to
the OptTLP. In general, these applications do not face the
cache contention and register pressure problem. Hence, the
default MaxTLP and register allocation is a good solution for
them. As aresult, neither OptTLP nor CRAT has remarkable
improvement.
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Figure 19: Performance results for resource insensitive
applications.

7.6 Evaluation of Estimated OptTLP.

For the above experiments, CRAT uses the truly Opt-
TLP obtained through profiling. In Section 4, we also pro-
pose a code analysis technique that estimates the OptTLP
statically. CRAT implemented using static analysis (pro-
filing) is termed as CRAT-static (CRAT-profile). Figure 20
show the performance comparison. As shown, CRAT-static
achieves comparable performance to CRAT-profile (1.22X vs
1.25X).
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Figure 20: Performance Comparison.

7.7 Overhead

The overhead of CRAT consists of two parts, the com-
putation of OptTLP and the design space exploration. The
overhead of design space exploration is so small that can
be ignored. If we use profiling to obtain OptTLP, this re-
quires to run each application a few times (average 5, maxi-
mal 8). For all the applications we study, the average profil-
ing overhead is about 1.8 hours using GPGPU-Sim and 1.94
millisecond on real GPUs. If we use static code analysis to
obtain OptTLP, the average overhead is only 1 millisecond.



8. RELATED WORK

To guide the optimization of GPU applications, ana-
Iytical models [11, 15, 18, 19] are proposed. Optimiza-
tion techniques, such as warp schedulers [20, 21], concur-
rency polices [22, 23], divergence optimization [24, 25], data
prefetching [26], loop optimization [27], hardware customiza-
tion [28, 29], and memory managements [30, 31, 32, 33] are
developed, too.

Thread throttling techniques are proposed to mitigate
the cache contention problem brought by massive threading.
Rogers et al. develop a cache-concious wavefront schedul-
ing (CCWS) to capture the intra-warp data locality [2]. CCWS
monitors the early evictions caused by cache contention and
limit the number of active warps to mitigate the contention
problem. They also propose a divergence-aware warp schedul-
ing(DAWS) [34]. Kayiran et al. propose to pause some of
the thread blocks to alleviate the cache pressure dynami-
cally [3]. Lee et al. employ thread throttling in the thread
block scheduling and concurrent kernel execution [5]. How-
ever, all these thread throttling techniques may lead to un-
der utilization of register file. Cache bypassing techniques
that selectively filter data request can also improve the cache
performance. Both static [35, 36] and dynamic [37, 38] ap-
proaches are proposed. Recently, to further improve the per-
formance, Chen et al. [4] and Li et al. [39] coordiate cache
bypassing with thread throttling. Our CRAT framework can
be used together with cache bypassing techniques to further
improve the cache performance.

The register allocation on CPUs have been widely stud-
ied [12, 10, 13]. However, those techniques do not necessar-
ily work well for GPUs. Gebhart et al. observe that the
register file consumes a large part of the power budget of
the whole GPU [40]. They propose a multi-level register file
to minimize the energy consumption. Registers that are fre-
quently referenced are allocated to a energy-efficient register
file cache. They also develop unified on-chip memories, the
partition of which can be reconfigured according to the ap-
plication requirements [41]. Register file energy optimiza-
tions are also discussed in [42]. They propose to power gate
inactive registers to reduce both static and dynamic power
leakage. Lakshminarayana et al. propose to utilize the spare
registers to prefetch data for graph algorithms [43]. Gilani et
al. develop a new register file structure to optimize both the
performance and energy consumption [44]. CRAT can work
with these techniques through coordinately optimizing the
register allocation and TLP together. Hayes et al. develop a
unified on-chip memory allocation technique, however, they
do not explore register allocation together with thread throt-
tling [45].

Data placement techniques aim to swap the variables
among different memories such as shared memory and reg-
ister file. Chen et al. introduce a memory specification lan-
guage to guide the data placement [46]. Li et al. develop
an automatic data placement algorithm which enables cross-
platform data management [47].

9. CONCLUSION

GPUs are becoming popular to accelerate applications
in high-performance heterogeneous systems. However, tun-
ing GPU applications to fully exploit the hardware resource
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is never a trivial task. Comprehensive architecture under-
standing and scalable tuning techniques are urgently needed
to keep pace with the rapid evolvement of applications and
architectures.

In this paper, we develop the CRAT compiler frame-
work to coordinatedly optimize the register allocation and
thread-level parallelism(TLP) for GPUs. CRAT maintains
the TLP that does not cause cache contention and efficiently
utilize the register file saved by thread throttling to improve
single-thread performance. CRAT also balances the tradeoff
between the single-thread performance and TLP. We present
detailed characterizations of GPU workloads to demonstrate
the considerable performance potential using the coordinated
solution. We conduct systematic evaluations of CRAT using
a variety of GPU applications. CRAT improves the perfor-
mance speedup up to 1.79X(1.25X geometric mean) com-
pared to thread throttling techniques.
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