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ABSTRACT
The significant development of high-level synthesis tools has
greatly facilitated FPGAs as general computing platforms.
During the parallelism optimization for the data path, mem-
ory becomes a crucial bottleneck that impedes performance
enhancement. Simultaneous data access is highly restricted
by the data mapping strategy and memory port constraint.
Memory partitioning can efficiently map data elements in
the same logical array onto multiple physical banks so that
the accesses to the array are parallelized. Previous meth-
ods for memory partitioning mainly focused on cyclic parti-
tioning for single-port memory. In this work we propose a
generalized memory-partitioning framework to provide high
data throughput of on-chip memories. We generalize cyclic
partitioning into block-cyclic partitioning for a larger de-
sign space exploration. We build the conflict detection algo-
rithm on polytope emptiness testing, and use integer points
counting in polytopes for intra-bank offset generation. Mem-
ory partitioning for multi-port memory is supported in this
framework. Experimental results demonstrate that com-
pared to the state-of-art partitioning algorithm, our pro-
posed algorithm can reduce the number of block RAM by
19.58%, slice by 20.26% and DSP by 50%.
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1. INTRODUCTION
To balance the requirements of high performance, low

power and short time-to-market, field-programmable gate
array (FPGA) devices have gained a growing market against
ASICs and general-purpose processors over the past two
decades. In addition to their traditional use, FPGA devices
are increasingly used as hardware accelerators to speed up
the performance of energy-critical applications in heteroge-
neous computing platforms. A major obstacle that FPGA
accelerators must overcome is that of finding an efficient pro-
gramming model. Traditional register-transfer level (RTL)
programming requires expertise with the hardware descrip-
tion language (e.g., VHDL, Verilog), and more importantly,
with the hardware mindset, including, the underlying con-
current hardware programming model and the trade-offs be-
tween performance and resource utilization. Manual RTL
design is time-consuming, error-prone and difficult to de-
bug. Implementing a simple algorithm often takes weeks or
months, even for an expert.

High-level synthesis (HLS) is a key technology for break-
ing the programming wall of FPGA-based accelerators. By
transforming algorithms written in high-level languages (e.g.,
C, C++, SystemC), HLS can significantly shorten the learn-
ing curve and improve programming productivity. After
over 30 years of joint effort by academia and industry, HLS
promises to be a critical bridging technology that offers high
productivity and quality of results for both the semiconduc-
tor and FPGA industries. A number of state-of-art com-
mercial tools have been developed and gradually accepted
by the traditional hardware designers, such as Vivado HLS
from Xilinx [9] (based on AutoPilot [13, 23]), C-to-Silicon
from Cadence [2], Catapult C from Calypto [3], Synphony
from Synopsys [8], and Cynthesizer [4] from Forte.

Although off-the-shelf commercial HLS tools are capable
of generating high-quality circuits, there is still a significant
performance gap compared to manually customized RTL de-
signs, even for programs with regular affine loop bounds
and array accesses. One important reason for this perfor-
mance gap is the redundant off-chip and on-chip memory
accesses and inefficient loop pipelining with the presence of
loop dependence and resource restraint. Currently, most of
the tools support versatile efficient parallelization flows on a
data path, such as loop pipelining and loop unrolling. FP-
GAs are capable of providing enough computational units
for high-computation parallelism and plenty of on-chip mem-
ory resources for parallelized data accesses, while the simul-
taneous data access is highly restricted by the data mapping
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Figure 1: Memory partitioning schemes: (a) original
data (b) cyclic partitioning (c) block partitioning (d)
block-cyclic partitioning

strategy and memory port constraint. Typical block RAMs
(BRAMs) in FPGAs have limited ports to feed the highly
parallelized execution units. Memory becomes a crucial bot-
tleneck that impedes performance enhancement when mul-
tiple data elements from the same array are required simul-
taneously. How to supply the computational units with the
required high-speed data streams is a major challenge.

It is unrealistic to increase the number of ports of block
RAMs on FPGAs. Even in an ASIC design, increasing the
ports’ number induces quadratic growth in complexity and
area. Duplicating the data elements into multiple copies can
support simultaneous data accesses [18], but it may have
significant area and power overhead and introduce memory
consistency problems.

A comparatively better approach is to partition the orig-
inal array into multiple memory banks. Each bank holds a
portion of the original data and serves a limited number of
memory requests. This method provides the same effects as
memory duplication, largely saving the storage requirement
and having no problem with multiple data copies. Accord-
ing to the classification in [10], the regular memory parti-
tioning methods are classified as cyclic partitioning, block
partitioning, and block-cyclic partitioning. We depict them
in Fig. 1(b), Fig. 1(c), and Fig. 1(d) respectively, where each
square denotes a data element in the array.

Memory partitioning in high-level synthesis has been stud-
ied in several related works. A scheduling-based automated
flow is proposed in [12] to support multiple simultaneous
affine memory accesses. The algorithm can be extended to
efficiently support memory references with modulo opera-
tions with limited memory paddings [22]. The work in [17]

schedules memory accesses in different loop iterations to
find the optimal or near-optimal partitioning in a larger de-
sign exploration space. These memory-partitioning method-
ologies are able to find the optimal partitioning for one-
dimensional arrays under different circumstances. However,
many designs for FPGAs are specified by nested loops with
multidimensional arrays, such as image and scientific com-
puting. The work in [21] provides a linear transformation-
based (LTB) method for multidimensional memory parti-
tioning. However, the method is limited to cyclc partition-
ing. The access conflict analysis algorithm eliminates the
information of iteration vectors in the index and only pro-
vides a sufficient but unnecessary condition, which may lead
to suboptimality in some cases.

In this work we provide a generalized memory partitioning
(GMP) method. The main contributions of this work are
described as follows:

1. We formulate the memory partitioning using a poly-
hedral model, including various memory-partitioning
schemes, and supporting partitioning for multi-port
memories.

2. We transform the problem of detecting the access con-
flict between a pair of references to an equivalent prob-
lem of polytope emptiness testing. We also formulate
the intra-bank offset generation as a problem of count-
ing the integer points in the polytopes in lexicographic
order.

To our knowledge, we are the first to use a polyhedral
model to solve the bank access conflict problem in loop nest.
We are also the first to use the polytope emptiness test for
access conflict detection. In addition, we propose a resource
estimation model, which enables the choice of an optimal
partitioning automatically through design space exploration.

The remainder of this paper is organized as follows: Sec-
tion 2 gives the motivational examples for our work; Section
3 formulates the problem; Section 4 introduces the bank-
mapping algorithm; and Section 5 describes the theory for
intra-bank offset generation. Section 6 presents the design
space exploration; the experimental results is discussed in
Section 7; this is followed by conclusions in Section 8.

2. MOTIVATIONAL EXAMPLES
In this section we use a motivational example to explain

the limitations of previous work [21]. Our motivational ex-
ample stems from a critical loop kernel of a 2D denoise algo-
rithm derived from medical image processing [14]. As shown
in Fig. 2(a), there are four accesses to a two-dimensional ar-
ray in the loop nest. To improve the processing throughput
of the loop kernel, we pipeline the execution of successive
inner-loop iterations, which means that multiple accesses to
the same array will happen in one clock cycle. We assume
that only one array element can be read from a physical
memory in each clock cycle (the case with multi-port memo-
ries is considered in Section 4.3). If all the array elements are
stored in one physical memory, fetching all the required data
elements in an iteration requires four clock cycles. Thus, the
performance will be highly impacted. Memory partitioning
allocates the array elements into multiple banks to reduce
the access conflict.
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foo(A[j][i-1], A[j-1][i ], A[j+1][i], A[j][i+1]);

(a) Loop kernel

0  

1  

2

1  2 x1

x0

Bank 0
Bank 1

Bank 4
Bank 3
Bank 2

3
Bank Number=5 

0  

f=(x1-2x0) mod 5f=(x1-2x0) mod 5

Simultaneous access

(b) Cyclic partitioning

0  

1  

2

1  2 3 x1

x0

Bank Number=4  Block Size=2

} Bank 1

} Bank 2

} Bank 3

} Bank 0

0  

f=(x1-3x0) /2 mod 4f=(x1-3x0) /2 mod 4

Same bank mapping

(c) Block-cyclic partitioning

Figure 2: Denoise: (a) loop kernel, (b) cyclic parti-
tioning, (c) block-cyclic partitioning

The memory-partitioning method in a previous work [21]
can solve this problem by applying linear transformation-
based cyclic partitioning on the multidimensional array. Us-
ing this method, we can always achieve conflict-free access
with five memory banks. Fig. 2(b) illustrates the partition-
ing with five banks, where x0 and x1 are the two dimensions
of array A1. The points represent the array elements, and
the shaded points are the data elements accessed in the same
loop iteration. The data elements on the same dotted line
are mapped to the same memory bank. The partitioning
function is f = (x1 − 2x0) mod 5. As we see in the figure,
four simultaneous accesses are in different banks, so there is
no conflict.

However in this case, the use of cyclic partitioning alone
will not achieve the ideal optimal result. The ideal minimum
bank number is four for Fig. 2(a), as there are only four
accesses in the inner loop. Note that previous HLS memory-
partitioning work [12,17,22] also use only cyclic partitioning,
and thus suffer the same limitations. Block-cyclic provides a
larger design exploration space and can solve this problem,
as shown in Fig. 2(c). The ideal conflict-free partitioning
with four banks can be achieved by using a partition block
size of two.

Moreover, the current block RAMs on the real FPGA plat-
forms always have dual ports. Previous work [12] proposes
a scheduling-based method for partitioning for multi-port
memory, but the mapping relationship between the ports
and references is fixed. This may lead to a suboptimal par-
titioning result. Our generalized partitioning model based
on polyhedral model can be easily extended for multi-port
memory.

3. PROBLEM FORMULATION
In this section we present the definitions and problems of

memory partitioning. The important variables in the follow-
ing descriptions are listed in Table. 1. We introduce a poly-
hedral model to define the problem. The polyhedral model

1Note that the order of the dimensions is different from that
in [21].

Table 1: Symbol table
Variables Meaning

N Partition factor, representing the number
of logic banks used after memory partition-
ing

B Partition block size
P Memory port number
l Level of loop nest
d Number of dimensions of the array
m Number of array references in the inner

loop
D Iteration domain
M Data domain
~i Iteration vector
~x Array index vector
~α Partition vector
q Padding size
i, j, k, t Temporal variables
Z Integer set
wk The k-th dimensional size of the array

is a powerful mathematical framework based on parametric
linear algebra and integer linear programming. It provides
a flexible representation for expressing the loop nests.

Definition 1. (Polyhedron) A set P ∈ Qd is a polyhedron
if there exists a system of a finite number of inequalities
A · ~x ≤ b such that

P = {~x ∈ Qd|A · ~x ≤ ~b},

where Q denotes the set of rational numbers, ~x is a d-
dimensional vector in d-dimensional space Qd. A is a ra-

tional matrix and ~b is a rational vector. A polytope is a
bounded polyhedron. We define the iteration domain, data
domain and affine array references as polytopes.

Definition 2. (Iteration Domain [15]) Given an l-level loop
nest, the iteration domain D is formed by the iteration
~i = (i0, i1, ..., il−1)T within the loop bounds.

Definition 3. (Data Domain) Given a d-dimensional ar-
ray, the data domainM is bounded by the array size, where
∀0 ≤ k < d, the k-th dimensional size is wk.

Definition 4. (Affine Memory Reference) A d-dimensional
affine memory reference ~x = (x0, x1, ..., xd−1)T is represented
as the following linear combinations

~x = Ad×l ·~i+ C,

Ad×l =

 a0,0 · · · a0,l−1

...
. . .

...
ad−1,0 · · · ad−1,l−1

 , C =

 a0,l
...

ad−1,l


where ak,j ∈ Z is the coefficient of the j-th iteration vector
in the k-th dimension.

Example 1. An affine array reference A[i0][i1 + 1] is rep-
resented as ~x = (i0, i1 + 1)T , where

~x =

(
i0

i1 + 1

)
=

(
1 0
0 1

)
·
(
i0
i1

)
+

(
0
1

)
.
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With these definitions, we can formulate the bank map-
ping of the array elements in the polyhedral model. Our
memory partitioning consists of two mapping problems: bank
mapping and intra-bank offset mapping.

Definition 5. (Memory Partitioning) A memory partition-
ing of an array is described as a pair of mapping functions
(f(~x), g(~x)), where f(~x) assigns a bank for the data element,
and g(~x) generates the corresponding intra-bank offset.

A bank access conflict between two references ~xj and ~xk
(0 ≤ j < k < m) is represented as ∃~x ∈ D, s.t.

f(~xj) = f(~xk).

This means the references intend to access the same bank
in the same clock cycle. We use Problem 1 to formulate the
bank mapping problem (for single-port memories).

Problem 1. (Bank Minimization) Given a l-level loop in
the iteration domain D with m affine memory references
~x0, ..., ~xm−1 on the same array, find the partition factor N
such that:

Minimize : N = max≤i<m{f(~xi)} (1)

∃~i ∈ D, 0 ≤ j < k < m, f(~xj) 6= f(~xk). (2)

Eqn. (1) defines the objective function of memory parti-
tioning, and Eqn. (2) ensures no access conflict between
any two references. After bank mapping, a data element in
the original array should be allocated a new intra-bank lo-
cation. For correctness, two different array elements will be
either mapped onto different banks or the same bank with
different intra-bank offsets. An intra-bank offset function is
valid if and only if

∀~xj , ~xk ∈M, ~xj 6= ~xk ⇔ (f( ~xj), g( ~xj)) 6= (f( ~xk), g( ~xk)),

which means either

f(~xj) 6= f(~xk), or f(~xj) = f(~xk), g(~xj) 6= g(~xk).

Considering storage requirement, we also want to minimize
the largest offset of each bank. The intra-bank offset map-
ping problem is formulated as Problem 2.

Problem 2. (Storage Minimization) Given an l-level loop
in the iteration domain with m affine memory references
~x0, ..., ~xm−1 on the same array and a partition factor N ,
find an intra-bank offset mapping function g with minimum
storage requirement S such that:

Minimize :

N−1∑
j=0

max≤i<m,f(~xi)=j{g(~xi)} (3)

∀~xj , ~xk ∈M, (f( ~xj), g( ~xj)), 6= (f( ~xk), g( ~xk)). (4)

Eqn. (3) defines the objective function of partitioning with
minimum storage overhead, and Eqn. (4) is responsible for
the valid partition detection.

4. BANK MAPPING
In this section we describe how we automatically map a

array in a loop nest into separate memory banks to enable
parallelized memory access. We use a loop initiation interval
(II) of loop pipelining to measure the throughput. It repre-
sents the clock cycles between the successive iterations and

reflects the parallelism of on-chip memory access. For a fully
pipelined loop with all accesses parallelized, II is one. This
is the performance target in this paper. For other constant
loop initiation intervals, we use conflict analysis together
with scheduling to find a proper partitioning (as presented
in [12]).

In our GMP method, we consider the block-cyclic parti-
tioning scheme, for it covers all three schemes mentioned in
our introduction. The bank mapping function for memory
reference ~x, with a partition vector ~α = (α0, α1, ..., αl−1),
αi ∈ Z, is described as Eqn. (5).

f(~x) =

⌊
~α · ~x
B

⌋
mod N (5)

N is the partition factor representing the total bank num-
ber, and B is the partition block size. The bank mapping
function for cyclic partitioning is f(~x) = (~α·~x) mod N. From
a geometrical point of view, ~α·~x represents a sequence of hy-
perplanes in the data domain. The mapping function f(~x)
assigns the points on the hyperplanes to different memory
banks.

Given a partition factor N , a block size B, and a partition
vector ~α, the conflict detection process is executed between
each pair of references. We propose a method using polytope
emptiness testing. For simplicity, we first discuss the conflict
detection in cyclic partitioning under a single-port memory
constraint. We will introduce the algorithm for block-cyclic
partitioning and partitioning for multi-port memory as ex-
tensions to the framework.

4.1 Generalized Conflict Detection
Considering the iteration domain, integer linear program-

ming is optimal in access conflict analysis. In this section
we use a polyhedral model for access conflict detection in
the iteration domain with given parameters, including par-
tition factor, block and vector. The framework is general
for extending to multiple loop kernels. We introduce the
concept of a conflict polytope expressing the access conflict
necessarily occuring between a pair of references in any it-
eration in the iteration domain. We assume that two d-
dimensional affine memory references are ~x0 = A0 ·~i + C0

and ~x1 = A1 ·~i+ C1.

Definition 6. (Conflict Polytope) A conflict polytope of
two simultaneous references ~x0 and ~x1 is a parametric poly-
tope restricted to the iteration domain D as

Pconf (~x0, ~x1) = {~i|∀~i ∈ D, f(~x0) = f(~x1)}.

Obviously, if ∀~i ∈ D, f(~x0) 6= f(~x1), Pconf (~x0, ~x1) is empty.

Theorem 1. Given two memory references ~x0 and ~x1 in
the same inner-loop iteration, they are conflict free in any
iteration if and only if their conflict polytope Pconf (~x0, ~x1)
is empty.

Proof. Proof omitted due to the page limit.

With the bank mapping function f(~x) = (~α · ~x) mod N ,
two distinct data elements ~x0 and ~x1 are mapped to the
same bank if and only if

f(~x0) = f(~x1)⇔~α · ~x0 mod N = ~α · ~x1 mod N
⇔∃k ∈ Z, s.t. ~α · ~x0 +Nk = ~α · ~x1,

202



where k ∈ Z is a variable. The conflict polytope for cyclic
partitioning is formulated as

Pconf :

 ~α · (A0 −A1) ·~i+ ~α · (C0 − C1) +Nk = 0
~i ∈ D
k ∈ Z

where ~i = (i0, i1, ..., il−1)T and k are variables. Example 2
is a detailed example. We apply an emptiness test on the
polytope [19] to detect the access conflict.

Example 2. For the references A[i0+1][i1] and A[i0][i1+1]
with a partition vector ~α = (2, 1) and partition factorN = 2,
and the iteration domain 0 ≤ i0, i1 ≤ 63, ∃k ∈ Z

f(~x0) = f(~x1)⇔2(i0 + 1) + i1 + 2k = 2i0 + i1 + 1

⇔2k + 1 = 0

Thus the conflict polytope is formed by 2k + 1 = 0 and the
iteration domain as

Pconf :


0 0 2 1
1 0 0 0
−1 0 0 63

0 1 0 0
0 −1 0 63

 ·


i0
i1
k
1

 = 0

≥ ~0

The polytope is empty. According to Theorem 1, no conflict
exists between these two array references. For multiple ref-
erences in the inner-loop, the conflict detection is executed
between each pair of the references. This means for m refer-
ences, C2

m conflict polytopes are constructed for non-conflict
access among all the references. Because of the exponential
complexity of the polyhedral emptiness tests, this pair-wise
conflict test, which keeps a moderate numbers of dimensions
at each run, is a more scalable approach.

4.2 Extension for Block-Cyclic Partitioning
In block-cyclic partitioning, a reference ~x is first linearized

as ~α · ~x, and partitioned into blocks by b ~α·~x
B
c. Then the

blocks are cyclically allocated to banks. The access conflict
between ~x0 and ~x1 is formed as

f(~x0) = f(~x1)⇔b ~α · ~x0
B
c mod N = b ~α · ~x1

B
c mod N

⇔∃k0 ∈ Z, s.t. b ~α · ~x0
B
c+Nk0 = b ~α · ~x1

B
c.

As this formulation is not linear, it cannot be represented
by a polyhedral model. Further linearizing is required to
express the partition blocks as ∃k0, k1 ∈ Z, s.t.{

BNk0 +Bk1 ≤ ~α · ~x0 ≤ BNk0 +B(k1 + 1)− 1
Bk1 ≤ ~α · ~x1 ≤ B(k1 + 1)− 1

With the above inequalities expressing the linearized space
inside the blocks and among the banks, the conflict polytope
for block-cyclic partitioning is formulated as below, where
~i = (i0, i1, ..., il−1)T , k0 and k1 are variables.

Pconf :



−~α ·A0 ·~i− ~α · C0 +B(Nk0 + k1 + 1)− 1 ≥ 0

−~α ·A1 ·~i− ~α · C1 +B(k1 + 1)− 1 ≥ 0

~α ·A0 ·~i+ ~α · C0 −B(Nk0 + k1) ≥ 0

~α ·A1 ·~i+ ~α · C1 −Bk1 ≥ 0
~i ∈ D

k0, k1 ∈ Z

x1

x0

Bank Number=5  f=(x1+2x0) mod 5  
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0 1 2 3 4 5 6 7
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Figure 3: Examples of data ordering

Example 3 compares cyclic partitioning and block-cyclic par-
titioning by giving different block size.

Example 3. For two references A[i0][i1− 1] and A[i0][i1 +
1], with a partition vector ~α = (2, 1), partition factor N = 2,
the partition block size B = 1, and the iteration domain
0 ≤ i0, i1 ≤ 63, the conflict polytope is non-empty, which
means conflict exists between two references when using two
banks. But with a partition vector ~α = (2, 1), partition
factor N = 2, the partition block size B = 2, the conflict
polytope is empty. According to Theorem 1, no conflict
exists between two references.

4.3 Extension for Multi-Port Memories
The conflict polytope built for multi-port partitioning fol-

lows the same principle. Take cyclic partitioning under the
port constraint P = 2, for example, assuming three simul-
taneous accesses ~x0, ~x1 and ~x2, where ~x2 = A2 ·~i+C2. The
access conflict is formed by

f(~x0) = f(~x1) and f(~x1) = f(~x2).

The conflict polytope is constructed as

Pconf :


~α · (A0 −A1) ·~i+ ~α · (C0 − C1) +Nk0 = 0

~α · (A1 −A2) ·~i+ ~α · (C1 − C2) +Nk1 = 0
~i ∈ D

k0, k1 ∈ Z

where~i = (i0, i1, ..., il−1)T , k0 and k1 are variables. Given m
references and P memory ports, we need to detect the con-
flict among every P + 1 references by building CP+1

m poly-
topes, and testing the emptiness of each of them.

5. INTRA-BANK OFFSET GENERATION
The function g(~x) maps a multidimensional array address

to a non-negative integer as the corresponding intra-bank
offset after bank mapping, following the partitioning valid-
ity principle. An optimal approach without increasing the
original size is to scan and order the data elements on the
same bank in a certain sequence. Fig. 3 shows an example
of data ordering, where the black points are data elements
assigned to Bank 0. Fig. 3(a) and Fig. 3(b) shows different
scanning order. The corresponding intra-bank offset map-
ping functions are different as well.
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Figure 4: An example of generating intra-bank off-
set: (a) optimal approach (b) heuristic approach

In this section we propose a method based on polytope in-
teger points counting to generate the intra-bank offset map-
ping function. First, we introduce the concept of bank poly-
tope for the references mapped to the same bank.

Definition 7. (Bank Polytope [16]) Given a d-dimensional
array reference ~x, Pbank(~x) is a bank polytope of ~x in the
data domain M defined as

Pbank(~x) = {~y|∀~y ∈M, f(~x) = f(~y)}.

With a partition factor N , there are N bank polytopes in
total. The minimum total storage requirement for bank f(~x)
is C(Pbank(~x)), where C(P) is a function calculating the
number of integer points in the polytope P.

Definition 8. (Lexicographic Order) A lexicographic or-
der ≺lex on a d-dimensional set M is a relation, where for
∀~x, ~y ∈M, ~x = (x0, x1, ..., xd−1) and ~y = (y0, y1, ..., yd−1),

~y ≺lex ~x

⇔ ∃1 < t < d, ∀0 ≤ i < t, (xi = yi) ∧ (yt < xt).

We can define a valid and optimal intra-bank offset mapping
function with minimum storage requirement by using the
lexicographic ordering number as the intra-bank offset as

g(~x) = C({~y|~y ∈ Pbank(~x), ~y ≺lex ~x}).

5.1 Integer Points Counting in Polytopes
We illustrate a two-dimensional example in Fig. 4(a). The

intra-bank offset for (5, 5) is generated by counting the inte-
ger points in the bank polytope Pbank(5, 5) in lexicographic

order. The data elements on Bank 0 are represented as
the dark points. The polytope Pbank(5, 5) is dvided into
two polytopes, P0 and P1. There are eight integer points
in P0, and one point in P1. As a result, the intra-bank
offset for (5, 5) is nine. We define P0 and P1 together as
an ordered polytopes set. Given a d-dimensional address
~x = (x0, x1, ..., xd−1)T in the data domain, its ordered poly-
topes set SPt(~x) is constructed by a union of polytopes as

SPt(~x) = {Pt(~x) | ∀1 ≤ t ≤ d}, where

Pt(~x) = {~y|~y ∈ Pbank(~x), ∀0 ≤ i < t, (xi = yi)∧(yt ≺lex xt)}.

Pt(~x) is a sub-polytope of Pbank(~x). SPt(~x) is organized by
generating Pt(~x) in lexicographic order.

Theorem 2. Given an ordered polytopes set SPt(~x) of ~x,
a valid and optimal intra-bank offset generation function for
~x with minimum storage requirement is ∀0 ≤ i < t,Pt(~x) ∈
SPt(~x),

g(~x) =
∑

C(Pt(~x))

Proof. Proof omitted due to the page limit.

Thus, we can convert the intra-bank offset generation prob-
lem to an equivalent problem on counting the total number
of elements in several parameterized polytopes. Counting
integer points in polytopes is a fundamental mathematical
problem, and has a wide application in analysis and trans-
formations of nested loop programs. Several automatic al-
gorithms and libraries have been previously provided, such
as Ehrhart’s theorem [11] and the Barvinok library [20]. In
this paper we use Ehrhart’s method presented by [11] for
computing the parametric vertices. It generates the Ehrhart
polynomial as a parametric expression of the number of in-
teger points. Example 4 presents a detailed example for
generating the intra-bank offset by using this method [11].

Example 4. Given the array reference vector ~x = (x0, x1),
the data domain 0 ≤ x0, x1 ≤ 7, a partition vector ~α =
(2, 1), a partition factor N = 5, and partition block size
B = 1, the polytope P0 is formulated by

2x
′
0 + x

′
1 + 5k = 2x0 + x1

0 ≤ x0, x1 ≤ 7

0 ≤ x
′
0, x
′
1 ≤ 7

x0 ≥ x
′
0 + 1

The points counting result is C(P1) = bx1
N
c and

C(P0) =
8

5
× x0 + [[0,

2

5
,−1

5
,

1

5
,−2

5
]x0 ,

[0,−3

5
,−1

5
,

1

5
,−2

5
]x0 , [0,−

3

5
,−1

5
,−4

5
,−2

5
]x0 ,

[0,
2

5
,

4

5
,

1

5
,

3

5
]x0 , [0,

2

5
,−1

5
,

1

5
,

3

5
]x0 ]x1 .

u(n) = [u0, u1, ..., up−1]n is equal to the item whose rank is
equal to n mod p [11], thus

u(n) =


u0, if n mod p = 0,
u1, if n mod p = 1,
· · ·
up−1, if n mod p = p− 1.

For ~x = (5, 5), C(P1) = b 5
5
c = 1, C(P0) = 8

5
× 5 + 0 = 8,

g(~x) = 8 + 1 = 9.
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5.2 Mapping to Hardware
By counting integer points in polytopes, we can generate

an optimal intra-bank offset mapping function with the min-
imum storage overhead. However, as shown in Example 4,
building the complex mapping function will cost too much
in hardware resources. A trade-off between practicality and
optimality is considered by using a memory-padding based
heuristic approach. As shown in Fig. 4(b), padding two data
elements on dimension x1 insures that each row maintains
two data elements of Bank 0. The calculation of the intra-
bank offset for data (5,5) is simplified as 2× 5 + 1 = 11.

Our heuristic method makes each polytope Pt have a con-
stant number of data elements. Under lexicographic order-
ing, padding on dimension xd−1 is able to ensure the con-
stant number of data elements in each Pt. Take block-cyclic
partitioning for example: the padding size q is calculated as

q = N ×B × d wd−1

N ×B e − wd−1.

The points number in the padded polytope is calculated as

C(Pt) =



∏d−2
j=t+1 wj × d

wd−1

N×B e ×B × xt 0 ≤ t < d− 2

dwd−1

N×B e ×B × xt t = d− 2

b xt
N×B c ×B + xt mod B t = d− 1

Example 5. Given the array reference ~x = (5, 5), the data
domain 0 ≤ x0, x1 ≤ 7, a partition vector ~α = (2, 1), a
partition factor N = 5, and partition block size B = 1,
the intra-bank offset generated by padding is C(P1) = 1,
C(P0) = d 8

5
e × 5 = 10, g(~x) = 10 + 1 = 11.

6. PARTITIONING ALGORITHM AND DE-
SIGN SPACE EXPLORATION

The design flow is shown as Fig 5. The algorithm’s input
is the iteration domain and memory references information
extracted from the input code. The output is a selected
partition strategy (N,B, ~α), which guides the code trans-
formation. The main partitioning algorithm is composed of
two parts: one part constructs the bank-mapping function
and the other constructs the intra-bank offset function. The
strategies are derived by bounded enumeration and conflict
detection. The enumeration of N and ~α is the same as the
method in [21]. The enumeration of the block size starts
from B = 1, and to reduce the resource resulting from the
division operations, we only consider B = 2k, k ∈ Z, k ≥ 0.
A resource estimation model is built for selecting an optimal
partition strategy. Assuming B = 1, the algorithm for cyclic
partitioning is described in Algorithm 1.

6.1 Resource Model
The partition strategy affects the resource usage of the

hardware implementation of the transformed program. We
introduce a resource estimation model and set up a standard
for strategy selection. The use of resources is mainly made
up of two parts: the storage and the address logic. We
estimate the resource for a given partition strategy using a
weighted arithmetic average, as Eqn. (6).

Est = c0 × Ustore + c1 × Uaddr (6)

Algorithm 1 Partitioning algorithm (block size fixed)

1: S→ partition strategy set
2:
3: S = ∅
4: for N = m to

∏d−1
j=0 wj do

5: for each ~α in the space of Nd do
6: empty=ConflictDetect(N, ~α)
7: if (empty) then add (N, ~α) in S
8: end for
9: if (S 6= ∅) break
10: end for
11: CalculatePadding(q)
12: Stratey → s ∈ S, minimize{ResourceEstimate(s, q)}
13: CodeGen(Stratey)

c0 and c1 reflect the importance of the resource, c0 + c1 =
1. Ustore and Uaddr are the percentages of BRAMs and
address logic resource utilization on the target platform. In
our method, the resource for array storage is block RAM.
Registers and distributed memories can be alternatives, but
currently we don’t consider them. Ideally the use of block
RAMs is only influenced by the partition factor N and the
padding size q. The storage is calculated as

Ustore(N, q) = d
(wd−1 + q)×

∏d−2
j=0 wj

N ×BRAMsize
e,

in which BRAMsize is the block RAM’s size of the target
FPGA platform. However we find that the use of block
RAMs in the implementation is also related to the data
width and the port number P . Such dedicated estimation
is platform dependent. Taking Virtex-7 from Xilinx for ex-
ample, there are two block RAM modes: SDP (simple dual-
port mode; one read, one write) and TDP (true dual-port;
two read or write). The detailed relationship between the
BRAM’s mode and maximum port width is shown in Table
2. Using the method of partitioning for multi-port memory
may not save BRAMs due to this relationship. Only when
the width of the array is less than 18 bits, can two simulta-
neous accesses to one block RAM (RAMB18E1) in one cycle
be achieved. The dedicated storage estimation for Virtex7
is formulated below, with NP as the partition factor with
port P (P = 1 or P = 2) and the width of the target array.

Ustore−v7(NP , q, width) = d
(wd−1 + q)×

∏d−2
j=0 wj

NP × dwidth18
e ×BRAMsize

e.

Uaddr estimates the resource for address generation. A
template of code transformation after partitioning is given
in Fig. 6. The address generation unit and data assignment
unit are two pieces of code which will be repeated multiple
times for generating the address logic for different references
and banks. Assuming that the resource for the address gen-
eration unit is Adgen and for the data assignment unit is
Dataassign, the total resource for the address logic is mainly
estimated as

Uaddr(N,B, ~α) = (Adgen +Dataassign)×N ×m.

The value of N and B influences the physical resource for
divisions and modulo operations. The value of ~α affects the
resource used for multiplications. For example, the resource
for the implementation with N = 4, B = 1, ~α = (1, 2) is less
than using N = 4, B = 3, ~α = (1, 3). As a result, we intend
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Figure 5: The design flow

Table 2: Virtex-7 BRAM mode and data width [1]
Block
RAM

Maximum
port
width

Simulta-
neous
access

RAMB18E1(TDP) 1 18 2
RAMB18E1(SDP) 1 36 1
RAMB36E1(TDP) 2 36 2
RAMB36E1(SDP) 2 72 1

Address generation for reference 0

…

Address generation for reference m-1 

Memory accesses on N banks

Data assignment for reference 0

…

Data assignment for reference m-1 

if ((reference0 %N) == 0)

ad(0) = reference0 / N;

…

else if ((reference0 %N) == N-1)

ad(N-1) = reference0 / N;

data(0) =A0[ad(0)];

…

data(N-1) =AN-1[ad(N-1)];

if ((reference0 %N) == 0)

output0 = data(0);

…

else if ((reference0 %N) == N-1)

output0 = data(N-1);

Address 
generation
unit

Data 
assignment
unit

int A0[...], A1[…], …. ,AN-1[…]

for (j=1; j<w1-1; j++)

for (i=1; i<w0-1; i++){

}

Figure 6: A template of code transformation

to use the number which is a power of two in the partition
strategy.

7. EXPERIMENTAL RESULTS
The automatic memory-partitioning flow is implemented

in C++ and is built in the open source compiler infras-
tructure ROSE [7]. ROSE is a flexible translator support-
ing source-to-source code transformation. We use Ehrhart
testing provided by Polylib [6] for both polytopes empti-
ness testing and integer points counting, and Vivado De-
sign Suite 2013.2 from Xilinx [9] as the high-level synthesis,
logic synthesis, simulation, and power estimation tool. The
RTL output targets the FPGA platform Xilinx Virtex-7.
The high-level abstraction (C program) is parsed into the
flow with the partition and loop pipelining directives. Af-
ter memory-partitioning analysis and source-to-source code
transformation, the transformed C code is synthesized into
RTL through high-level synthesis and followed by logic syn-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: The access patterns of the benchmarks:
(a) DENOISE (b) DECONV (c) DENOISE-UR
(d) BICUBIC (e) SOBEL (f) MOTION-LV (g)
MOTION-LH (h) MOTION-C

thesis, simulation, and power estimation tool.

Eight loop kernels with different access patterns are se-
lected from the real applications, such as medical image pro-
cessing [14] and H.264 motion compensation [5], as shown
in Fig. 7. In the experiments, we mainly focus on the effects
brought by different access patterns.

The detailed experimental results are shown in Table 3,
Table 4, and Table 5. We re-implemented the LTB method
[21], and we compare the results to our GMP method. Dur-
ing the experiments, although we use exhaustive enumera-
tion, the runtime for all the benchmarks is less than 1 sec-
ond. Because all the ideal minimum partition factors are
achieved, the enumeration space for the partition vector,
which is related to the partition factor, is not large. We
implement loop pipelining in the benchmarks and set the
target throughput as II=1, which requires all of the mem-
ory accesses in the same iteration to be in one clock cycle.
In the experiments, all of the two partitioning methods can
achieve this target throughput requirement.

7.1 A Case Study: DECONV
We use benchmark DECONV as a case study on the ef-

fect of different intra-bank offset generation algorithms, as
shown in Table 3 . Two algorithms are applied: optimal
(integer points counting in polytopes), and heuristic (mem-
ory padding). Although the array size is increased by 4.69%
with the heuristic method, it still uses the same number of
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Table 3: Intra-bank offset generation comparison
Array
size (bits)

BRAM Slice DSP

Optimal 640*32 5 696 20
Heuristic 670*32 5 597 5
Compare 4.69% 0.00% -14.22% -75.00%

Table 4: Partition factor comparison
Partition
Factor

BRAM Slice FF DSP

Minimum 5 597 1298 5
Power-of-2 8 457 1279 0
Compare 60% -23.45% -1.46% -100.00%

BRAMs as the optimal method. Because the size of the
block RAMs on FPGAs is fixed, the small padding size did
not increase the use of BRAMs. We tried 140 different ar-
ray sizes, and compared to the array size, the padding rate
is from 0.98% to 7%. As shown in the table, the heuristic
method can reduce up to 14.22% slice and 75% DSP in this
case. We used memory padding as our algorithm in the rest
of our experiments.

We also had a case study on the partition factor. Two
partition factors are applied: minimum (due to the conflict
detection algorithm), and power-of-2 (increase the minimum
partition factor to a number as power of two and also per-
form conflict detection). As shown in Table 4, although the
use of BRAM is increased from 5 to 8, other resources are
reduced. However, this is only suitable for the case when
the power-of-2 partition factor is close to the minimum par-
tition factor. As our main target in this paper is to reduce
the bank number, we still use the minimum partition factor
for DECONV, but use a power-of-2 partition factor under
the multi-port partitioning mode.

7.2 Complete Experimental Results
Table 5 shows the complete experimental results on all

eight benchmarks and the comparison with the LTB method
in [21]. Information is presented in the table in the follow-
ing order: access number in the inner-loop, data bitwidth,
partition strategies, utilization of block RAMS, slices and
DSPs, clock period, and dynamic power.

The LTB method only uses cyclic partitioning for single-
port memory, while our GMP method can select a multi-port
memory mode and use different block sizes. The bit-width of
the array affects the selection of multi-port memory modes.
According to the relationship between the port width and
the block RAM’s mode listed in Table 2, only when the
width is less than 18 bit can two data elements from one
RAMB18E1 under true dual-port mode be accessed simul-
taneously. As a result, three benchmarks (MOTION-LV,
MOTION-LH and MOTION-C) with 8-bit width select the
multi-port memory mode with P = 2. And for the block size
in the partition strategy, as shown in the table, two bench-
marks (DENOISE and BICUBIC) select the partition block
size B = 2.

We set the access number in the inner-loop as the optimal
partition factor for the single-port memory mode P = 1.
With the selected partition strategies, our GMP method can
achieve this target. Although LTB can already reduce the

use of BRAMs and other resources in most of the cases,
an optimal partitioning with a bank number equal to the
access number is still not achieved in benchmark DENOISE
and BICUBIC. However, with our GMP method using a
block size two, all the bank numbers are reduced to the
access number. Note that under the multi-port memory
partitioning mode, we intend to choose a bank number that
is a power of two. Thus, in MOTION-LV and MOTION-LH,
despite Access#

P
= 3 , we use four block RAMs as a trade-off.

The use of DSP is highly related to the division’s num-
ber in the transformed code, which is related to the bank
number. When the bank number is a power of two, DSP
is reduced to zero. The divisions can be implemented as
shift operators. Also, the use of slice can be reduced com-
paratively. Among the benchmarks, the bank number of
DENOISE-UR and MOTION-C can already be reduced to
a power of two by using LTB, while our GMP method can
further reduce the use of DSP to zero on DENOISE, BICU-
BIC, MOTION-LV and MOTION-LH.

In all, compared to the previous work [21], our GMP
method has an average reduction of 19.58% in BRAM, 20.26%
in the use of slice, 50% in the number of DSP, and 10.09%
in dynamic power.

8. CONCLUSION
In this work we propose a generalized memory partitioning

(GMP) method using a polyhedral model. A theory based
on polytope emptiness testing and integer points counting is
presented for conflict detection between array references and
intra-bank offset generation. To our knowledge, we are the
first to use a polyhedral model to formulate and solve the
bank access conflict problem. Experimental results demon-
strate that, compared to the state-of-art partitioning algo-
rithm, our proposed algorithm can reduce the number of
block RAMs by 19.58%, slices by 20.26% and DSPs by 50%.
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