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ABSTRACT
The rise of utilization wall limits the number of transistors that can
be powered on in a single chip and results in a large region of dark
silicon. While such phenomenon has led to disruptive innovation
in computation, little work has been done for the Network-on-Chip
(NoC) design. NoC not only directly influences the overall multi-core
performance, but also consumes a significant portion of the total chip
power. In this paper, we first reveal challenges and opportunities
of designing power-efficient NoC in the dark silicon era. Then
we propose NoC-Sprinting: based on the workload characteristics,
it explores fine-grained sprinting that allows a chip to flexibly
activate dark cores for instantaneous throughput improvement. In
addition, it investigates topological/routing support and thermal-aware
floorplanning for the sprinting process. Moreover, it builds an efficient
network power-management scheme that can mitigate the dark silicon
problems. Experiments on performance, power, and thermal analysis
show that NoC-sprinting can provide tremendous speedup, increase
sprinting duration, and meanwhile reduce the chip power significantly.
Categories and Subject Descriptors: C.2 [Computer-Communication
Networks]: Network Architecture and Design
General Terms: Performance, Design
Keywords: Network-on-Chip, Dark Silicon, Computational Sprinting

1 Introduction
The continuation of technology scaling leads to a utilization wall
challenge [21]: to maintain a constant power envelope, the
fraction of a silicon chip that can be operated at full frequency is
dropping exponentially with each generation of process technology.
Consequently, a large portion of silicon chips will become dark or dim
silicon, i.e., either idle or significantly under-clocked. However, most
previous work focuses on energy-efficient core/cache design while the
impact of on-chip interconnect is neglected. In fact, Network-on-chip
(NoC) plays a vital role in message passing and memory access that
directly influences the overall performance of many-core processors.
Moreover, network components dissipate 10% - 36% of total chip
power [8,15,20]. Therefore, how to design the interconnection network
is critical to tackle the challenges of multicore scaling in the dark
silicon age.

Recently, Raghavan et al. [17] proposed computational sprinting, in
which a chip improves its responsiveness to short-burst of computations
through temporarily exceeding its sustainable thermal design power
(TDP) budget. All the cores will be operated at the highest
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frequency/voltage to provide instant throughput during sprinting, and
after that the chip must return to the single-core nominal operation
to cool down. While such mechanism sheds light upon how “dark”
cores can be utilized for transient performance enhancement, it exposes
two major design issues: First, the role of interconnect is neglected.
NoCs consume a significant portion of chip power when all cores are
in sprinting mode. When switching back to the nominal mode, only
a single core is active. However, the network routers and links cannot
be completely powered down, otherwise a gated-off node would block
packet-forwarding and the access of the local but shared resources
(e.g., cache and directory). As a result, the ratio of network power
over chip power rises substantially and may even lead to higher NoC
power than that of the single active core. Second, the mode-switching
lacks flexibility and only provides two options: nominal single-core
operation and maximum all-core sprinting. Depending on the workload
characteristics, an intermediate number of active cores may provide the
optimal performance speedup with less power dissipation.

To address these two issues, we propose fine-grained sprinting,
in which the chip can selectively sprint to any intermediate stages
instead of directly activating all the cores in response to short-burst
computations. The optimum number of cores to be selected depends
on the application characteristics. Scalable applications may opt to a
large number of cores that can support highly parallel computation,
whereas other applications may mostly consist of sequential programs
and would rather execute on a small number of cores. Apparently,
fine-grained sprinting can flexibly adapt to a variety of workloads. In
addition, landing on intermediate sprinting stages can save chip power
and slow down the heating process by power-gating the remaining
inactive on-chip resources, which is capable of sustaining longer sprint
duration for better system performance.

Fine-grained sprinting opens up an opportunity to better utilize the
on-chip resources for power-efficiency, but it also poses challenges
on designing the interconnect backbone. Inherently it incurs three
major concerns: (1) how to form the topology which connects the
selected number of cores during sprinting when dark cores and active
cores co-exist? (2) how to construct a thermal-aware floorplan
of the on-chip resources (cores, caches, routers, etc.) for such
sprinting-based multicores? (3) what would be an appropriate NoC
power-management scheme? To answer these questions, we propose a
topological sprinting mechanism with deadlock-free routing support,
and a fast heuristic floorplanning algorithm to address the thermal
problem during sprinting. Moreover, this sprinting scheme naturally
enables power gating on network resources in the dark silicon region.

In summary, we propose NoC-sprinting, which provides
topological/routing support for fine-grained sprinting and employs
network power-gating techniques for combating dark silicon. Overall,
this paper makes the following contributions:
• Explores challenges and opportunities of designing NoC in the

dark silicon era, from the perspectives of both performance and power.
• Investigates the pitfalls of the conventional all-core sprinting

which fails to fulfill diverse workload characteristics, and proposes
fine-grained sprinting for better power-efficiency.
• Proposes NoC support to enable fine-grained sprinting, including

topology construction, routing, floorplanning, and power management.
• Conducts thermal analysis to evaluate how NoC-sprinting

correlates with the sprint duration.



2 Challenges and Opportunities
Dark Silicon and Computational Sprinting. Conventionally in
multi-core scaling, the power gain due to the increase of transistor
count and speed can be offset by the scaling of supply voltage
and transistor capacitance. However, in today’s deep sub-micron
technology, leakage power depletes the power budget. We cannot
scale threshold voltage without exponentially increasing leakage.
Consequently, we have to hold a constant supply voltage, and hence
produce a shortfall of energy budget to power a chip at its full
frequency. This gap accumulates through each generation and results
in an exponential increase of inactive chip resources — Dark Silicon.

Instead of shrinking the chip or sacrificing transistor density,
computational sprinting [17] embraces dark silicon by leveraging the
extra transistors transiently when performance really counts. Special
phase change materials should be used as heat storage to support such
temporary intense sprinting, leveraging the property that temperature
stays constant during the melting phase of the material. Figure 1
demonstrates the nominal single-core operation as well as the sprint
mode for a 16-core system. The temperature rises from the ambient
environment when the sprint starts at tsprint , and then extra thermal
energy is absorbed by the melting process of the phase change material,
which keeps the temperature at Tmelt . After the material is completely
melted, the temperature rises again until Tmax where the system
terminates all but one core (tone) to sustain the operation. The system
starts to cool after all work is done at tcool . Note that numbers in the
curve mark different sprint phases and will be analyzed in Section IV.
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Figure 1: During nominal operation, only one core is active under the TDP constraint,
whereas the rest cores are dark silicon. In sprinting mode, all the cores will be activated to
provide instantaneous throughput.

Conventional computational sprinting still focuses on computation,
whereas the role of interconnect is neglected. Here we demonstrate two
key challenges that require careful consideration when designing NoC
for sprinting-based multicores in the dark silicon age.

NoC Power Gating. Power gating is an efficient power-saving
technique by completely shutting down the idle cores to reduce leakage.
However, as more and more cores turn “dark”, the network components
such as routers and links also become under-utilized. As mentioned,
NoC dissipates 10% - 36% of total chip power [8, 15, 20]; additionally,
the more cores become dark, the larger the ratio of network power over
the total chip power. This observation also points out the flaw of the
conventional computational sprinting which turns off all but one core
during nominal operation, while neglecting the impact of NoC.

To give a brief overview of network power, we simulate a classic
wormhole router with a network power tool DSENT [19]. The flit width
is 128 bits. Each input port of a router comprises two virtual channels
(VC) and each VC is 4-flit deep. The power value are estimated with
an average injection rate of 0.4 flits/cycle. Figure 2 shows the router
power breakdown when varying the operating voltage (1v, 0.9v, 0.75v)
and frequency (2GHz, 1.5GHz, 1.0GHz) under 45 nm technology. We
can see that leakage power contributes a significant portion to the total
network power. In addition, the ratio of leakage power increases as we
scale down the supply voltage and frequency, and even exceeds that of

dynamic power in some cases.

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 

1.0
v2

.0G
 

1.0
v1

.5G
 

1.0
v1

.0G
 

0.9
v2

.0G
 

0.9
v1

.5G
 

0.9
v1

.0G
 

0.7
5v

2.0
G 

0.7
5v

1.5
G 

0.7
5v

1.0
G 

Po
w

er
 (W

at
t) 

Leakage 

Dynamic 

Figure 2: Router power breakdown (dynamic power vs leakage power) when varying the
operating voltage and frequency.

Sprinting-based multicores activate a single core during nominal
operation whereas the rest are turned off. Figure 3 shows the chip
power breakdown when scaling the number of cores based on the
Niagara2 [16] processor. We evaluate the power dissipation with
McPAT [13] for cores, L2 caches, memory controllers (MC), NoC, and
others (PCIe controllers, etc.). We assume idle cores can be gated-off
(dark silicon) while other on-chip resources stay active or idle.
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Figure 3: Chip power breakdown during nominal operation (single active core) in
sprinting-based multicores. The percentages denote the component power (core, cache,
NoC, MC, and others) over the total chip power.

As shown in Figure 3, NoC accounts for 18%, 26%, 35%, and 42%
of chip power respectively for 4-core, 8-core, 16-core, 32-core CMP
chips when they are operating at nominal mode. In contrast, the power
ratio for the single active core keeps decreasing as the “dark silicon"
grows. Therefore in this scenario, it is inappropriate to only measure
core power when power budget is the design limitation.

NoC power gating is heavily dependent on the traffic. In order
to benefit from power gating, an adequate idle period (namely,
“break-even time") of routers should be guaranteed to make sure they
are not frequently woken up and gated off. Recently researchers have
proposed various schemes [4,5,14,18] to mitigate the latency overhead
caused by frequent router wake-up. However, these techniques do not
account for the underlying core status and will result in sub-optimal
power gating decisions.

Workloads-Dependent Sprinting. A straightforward sprinting
mechanism is to transiently activate all the dark cores at once. However,
this scheme fails to explore the sporadic workload parallelism and thus
may waste power without sufficient performance gain, especially for
multi-threaded applications that have various scalability. Here we use
PARSEC 2.1 [2] as an example. We simulate CMP systems using
gem5 [3] and observe the performance speedup when varying the core
count. For clarity, Figure 4 selects a few results that can represent
different workload characteristics.
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Figure 4: Execution time of running PARSEC benchmarks when increasing the number of
available cores.

The detailed evaluation methodology is described in Section IV.



As shown in Figure 4, some benchmarks (e.g. blackscholes and
bodytrack) achieve significant performance speedup as the number
of cores increases. In contrast, for freqmine, the execution time is
almost identical at different configurations, which implies its serial
program benefits little from the extra cores. In addition, there are
some applications (e.g. vips and swaptions) that achieve obvious
speedup as the core count increases within a small range but then
slow down gradually, and further suffer from delay penalty after
exceeding a certain number. This is because adding more cores than
required by the application parallelism may incur significant overheads
that may offset and even hurt performance. The overheads include
thread scheduling, synchronization, and long interconnect delay due
to the spread of computation resources. Therefore, for sprinting-based
multicores, activating all the dark cores is not a universal solution for
all applications.

3 Our Method: NoC-Sprinting
As illustrated above, an efficient sprinting mechanism should be able to
provide different levels of parallelism desired by different applications.
Depending on workload characteristics, the optimal number of cores
required to provide maximal performance speedup varies. This also
raises challenges in designing a high performance and low power
interconnect to support the sprinting process.

3.1 Fine-Grained Sprinting
We first propose fine-grained sprinting, a flexible sprint mechanism
that can activate a subset of network components to connect a certain
number of cores for different workloads.

Specifically, during execution, the CMP system may experience a
short burst of computation due to the abrupt fluctuation of a running
program. As such, the system will quickly react to such intense
computation and determine the optimal number of cores that should be
offered for instantaneous responsiveness. Then the system will activate
the required number of cores while the others remain “dark". There are
some existing work [6, 12] on adapting system configurations like core
count/frequency to meet runtime application requirements. Since our
focus is on how to design interconnect under such circumstances, we
assume that these application parallelism can be learnt in advance or
monitored during run-time execution.

3.2 Irregular Topological Sprinting and Deadlock-Free Routing
Under the nominal operation, only a single core (namely master core)
remains active. There are different choices of placement for the master
core. We list a few examples here, but real implementations should not
be limited by these mentioned conditions. Firstly it could be placed
in the center of the chip to reduce the transmission latency for thread
migration. Another example is to select the core running the OS as
the master core since it is always activated. The core next to the
memory controller is also a good candidate if the application generates
intensive memory accesses. Without loss of generality, we choose the
top-left corner node as the master node which is closest to the memory
controller, i.e., Node 0 as shown in Figure 5a.
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(a) Logical connection of a 16-node
mesh network. The irregular topology
and convex DOR routing.
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Figure 5: Topology, routing, and floorplan for fine-grained sprinting

After the system transfers to the sprinting mode, a number of cores
will be activated and keep running for a short duration. Fine-grained
sprinting requires topological support from the following aspects:
• Pay-as-you-go: fine-grained activation of any number of cores.
• Short communication delay between different nodes, especially to

the master node where the memory controller resides.
• Routing should be simple and deadlock-free which does not incur

significant control complexity or hardware overhead.
To achieve these goals, we propose to start from the master node,

and connect other nodes to the network in ascending order of their
Euclidean distances to the master node. For example, the red nodes
in Figure 5a demonstrate the topology of a 8-core sprinting. Note
that we use Euclidean distances instead of Hamming distances here.
The latter may guarantee a shortest routing distance between the
newly-added node to the master node, but would generate longer
inter-node communication to other nodes. For example, both cases
would choose node 0, 1, and 4 as 3-core sprinting. But if 4-core
sprinting is triggered, the method with Hamming distance may possibly
choose node 2 whereas the method with Euclidean distance would
generate a better choice by accommodating node 5. Algorithm 1
generates the order of N nodes used for topological sprinting.

ALGORITHM 1. Irregular Topological Sprinting

Result: A linked-list L of routers to be activated
Initialize: D[i] = 0, i = 0,1,2...N−1. The coordinate for Rk is (xk ,yk).
for i← 1 to N−1 do

D[i] =
√
(xi− x0)2 +(yi− y0)2;

end
Sort R[i](i = 0,1...N−1) in ascending order of D[i](i = 0,1...N−1) and put them
into a linked-list L. Break ties according to the order of indexes.

The fine-grained sprinting process will generate an irregular network
topology to connect active cores. Meanwhile, it guarantees that chosen
nodes would form a convex set in the Euclidean space, i.e., the
topology region contains all the line segments connecting any pair
of nodes inside it. Flich et al. [7] proposed a distributed routing
algorithm for irregular NoC topologies but their algorithm requires
twelve extra bits per switch. Adapted from their approach, we extend
the Dimension-Order-Routing (specifically, X-Y routing) algorithm for
such convex topologies (CDOR). Specifically, two connectivity bits
(Cw and Ce) are leveraged to indicate whether a router is connected
to its western or eastern neighbors. As in conventional DOR, we
assume that X and Y coordinates of the final destination are stored in
the packet header (Xdes and Ydes), and each switch knows its X and
Y coordinates (through Xcur and Ycur registers at each switch). The
origin of the coordinate system is located at the top-left corner of the
2D mesh. Messages are routed from the current router to the destination
router, according to the offsets of coordinates and the two connectivity
bits per router. Figure 5a shows a routing path from the source to its
destination. The detailed routing algorithm is described in Algorithm 2.
Furthermore, Figure 6 depicts the routing logic design, which includes
two comparators per switch and the routing circuit for computing
the North port. The routing logic for other ports can be designed
similarly based on Algorithm 2. We implemented CDOR on behavioral
Verilog. Synthesized results using Synopsys Design Compiler (45nm
technology) show that it adds less than 2% area overhead compared to
a conventional DOR switch.

ALGORITHM 2. Convex Dimension Order Routing (CDOR)

if Xdes > Xcur and Ce = 1 then
output_port = east;

else if Xdes < Xcur and Cw = 1 then
output_port = west;

else if Ydes > Ycur then
output_port = north;

else if Ydes < Ycur then
output_port = south;

else
output_pot = local;

end

DOR (such as deterministic X-Y routing) is deadlock-free because
some of the turns are eliminated such as SE, NW, NE, and SW (S, W,
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Figure 6: Routing logic for convex DOR algorithm

N and E represent south, west, north and east, respectively). In our
CDOR, although the NE turn may happen, it is deadlock-free. For
example, as shown in Figure 5a, a NE turn happens at Node 5 but
this also indicates the east output port of its southern neighbor 9 is
not connected. Therefore a WN turn cannot happen and thus eliminate
a cycle that may cause a deadlock.
3.3 Thermal-Aware Floorplanning
The key design constraint of fine-grained sprinting is the thermal
design power (TDP). The above topological sprinting process does
not consider thermal behavior to simplify control and routing logic.
Therefore, here we propose a design-time floorplanning algorithm that
can be seamlessly integrated with the topological sprinting process
while providing better thermal distribution to avoid hot spots. Thus, it
sustains a longer sprint duration by slowing down the heating process.

Consider a 4-core sprinting in a 16-node mesh network as shown in
Figure 5a. We may opt to choose the top-left four nodes for better
performance, but alternatively may prefer the four scattered corner
nodes from the thermal point of view. To overcome this dilemma, we
still maintain the original logic connectivity of the mesh network in
consistent of the topological sprinting process, but propose a heuristic
algorithm that reallocates the physical location of each node.

As shown in Algorithm 3, our floorplanning algorithm treats the
2D mesh network as a graph, and allocates the nodes based on the
list generated from Algorithm 1. In our annotations, G represents the
original logical network, S contains the set of nodes that have already
been explored in G, G′ represents the physical floorplan, and S′ is the
corresponding set of occupied nodes in G′. At each iteration, it picks
up a node Rk in G− S, and maps it to a node in G′− S′ that has the
maximum weighted sum of Euclidean distances to all the nodes in S′ for
the optimal thermal distribution. This process is described in Function
MaxWeightedDistance as in Algorithm 4. Note that the weight of a
distance is inversely proportional to the Hamming distance between Rk
and the node in S. The rationale behind this scheme is that, the longer
the Hamming distance in logical connectivity, the less chance these two
nodes would be selected together during sprinting and accumulate heat
dissipation, thus they can be placed closer in the physical floorplan.

ALGORITHM 3. Thermal-aware heuristic floorplanning algorithm

Result: Positions for all nodes
Initialize: Original floorplan f : {R0, R1 ... RN−1}. Transformed floorplan f ′: {R′0, R′1
... R′N−1}. The coordinate for Rk or R′k is (xk ,yk).
Set S = φ , S′={R′0,R′1 ... R′N−1}. Queue Q = φ . List L from Algorithm 1
Goal: Find the mapping Pos() from f to f ′.
Pos(R0) = 0(Master Node); Put R0 in S; Delete R′0 from S′;
Put all unexplored adjacent nodes of R0 into Q based on List L;
while Q 6= φ do

Rk = Q[0]; Delete Q[0] from Q;
Pos(Rk) = MaxWeightedDistance(S,S′,Rk);
Delete R′Pos(Rk )

from S′; Put Rk in S;
Put all unexplored adjacent nodes of Rk into Q based on List L;

end

The floorplanning algorithm frees the sprinting process and routing
algorithm from the thermal concern, i.e., only the logical connectivity
of mesh network needs to be considered during topological sprinting.
Figure 5b shows the final floorplan of the physical network and
only links for four-core sprinting are shown for clarity. Note that
the floorplanning algorithm will increase the wiring complexity and
generate long links. A standard method of reducing delay of long
wires is to insert repeaters in the wire at regular intervals. Recently,

ALGORITHM 4. MaxWeightedDistance(S,S′,Rk)

Initialize: Sum = 0; Max = 0;
for every node R′i in S′ do

for every node R j in S do
wi j = 1/(|xk− x j |+ |yk− y j |);
di j =

√
(xi− xPos(R j ))

2 +(yk− yPos(R j ))
2;

si j = wi j ∗di j ;
end
Sum = ∑si j ;
if Sum > Max then

Max = Sum; Pos(Rk) = i;
end

end
Return Pos(Rk);

Krishna et al. [11] have validated such clockless repeated wires that
allow multi-hop traversals to be completed in a single clock cycle.

3.4 Network Power Gating
With our proposed fine-grained sprinting, the network power gating
scheme becomes straightforward. Since the topological sprinting
algorithm activates a subset of routers and links to connect the active
cores, we gate off the other network components as shown in the shaded
nodes of Figure 5a. Moreover, the proposed CDOR algorithm routes
packets within the active network and thus avoids unnecessary wakeup
of intermediate routers for packet forwarding. This further increases
the idle period of the dark region for longer power gating.

However, we still need to consider the Last-Level-Cache (LLC)
architecture for network power gating. For private per-core LLC,
centralized shared LLC, or distributed shared LLC connected with
a separate network (NUCA), our power gating mechanism works
perfectly without the need for any further hardware support. However,
for tile-based multicores where each tile comprises of a shared bank
of LLC, there may be some packet accesses to dark nodes for cache
resources. Therefore, some complimentary techniques such as bypass
paths [4] can be leveraged to avoid completely isolating cache banks
from the network. We accommodate this method in our design.

4 Architectural Evaluation
We use the gem5 [3] full system simulator to setup a sprinting-based
multicore architecture with 16 ALPHA CPUs. We use Garnet [1]
to model a 4× 4 mesh network and DSENT [19] for network power
analysis. The detailed system configurations are listed in Table 1.

Table 1: System and Interconnect configuration

core count/freq. 16, 2GHz topology 4×4 2D Mesh
L1 I & D cache private, 64KB router pipeline classic five-stage
L2 cache shared & tiled, 4MB VC count 4 VCs per port
cacheline size 64B buffer depth 4 buffers per VC
memory 1GB DRAM packet length 5 flits
cache-coherency MESI protocol flit length 16 bytes

We evaluate NoC-sprinting with multi-threaded workloads from
PARSEC [2] by assuming the chip can sustain computational sprinting
for one second in the worst case, which is consistent with [17]. Later we
will analyze how NoC-sprinting influences the sprint duration. We first
start running the benchmarks in a simple mode and take checkpoints
when reaching the parallel portion of the program. Then, the simulation
restores from checkpoints and we record the execution time of running
a total of one billion instructions for each benchmark. In addition, we
construct synthetic traffic for further network analysis.

4.1 Performance Evaluation
Here we evaluate how NoC-sprinting improves the system
responsiveness. In comparison, one naive baseline design
(non-sprinting) is to always operate with one core under TDP
limit. Another extreme case (full-sprinting) is to activate all the 16
cores during sprinting. While the methods to predict the application
parallelism [6, 12] is beyond the scope of this paper, we conduct
off-line profiling on PARSEC to capture the internal parallelism of the
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Figure 7: Execution time comparison with different sprint mechanisms.

benchmarks. Figure 7 shows the execution time of PARSEC workloads
with different sprinting schemes.

We can see that NoC-sprinting cuts down the execution time
substantially compared to non-sprinting. It achieves 3.6x speedup
on average for all the applications. In comparison, full-sprinting
fails to provide the maximal speedup in some cases with an average
1.9x speedup. It is because increasing the active core count in some
programs would incur overheads that may outweigh achievable benefits
after a saturating point is reached. These overheads come from OS
scheduling, synchronization, and long interconnect delay due to the
spread of computation resources.

4.2 Core Power Dissipation
Instead of waking up all the dark cores for quick response,
NoC-sprinting provides better power-efficiency by allocating just
enough power to support the maximal performance speedup. Since
the triggered topology directly determines the number of cores to
be powered on, here we first explore its impact on the core power
dissipation. Apart from full-sprinting, we also compare NoC-sprinting
with a naive fine-grained sprinting scheme which does not employ any
power gating techniques, i.e. the system only cares about selecting the
optimal number of cores for actual execution and leaves the others idle.
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Figure 8: Core power dissipation with different sprinting schemes. Here fine-grained
sprinting does not include any power-gating schemes to the idle cores.

As shown in Figure 8, except for blackscholes and bodytrack which
achieve the optimal performance speedup in full-sprinting and hence
leave no space for power-gating, NoC-sprinting cuts down the most
power across all the other applications. Compared to full-sprinting,
fine-grained sprinting saves 25.5% power even though power gating
is not applied. More promisingly, NoC-sprinting achieves 69.1% core
power saving on average for all applications.

4.3 Analysis of On-Chip Networks
NoC-sprinting provides customized topology, routing, floorplanning,
and efficient power-gating support for fine-grained sprinting. Therefore
in this subsection, we evaluate network performance and power to see
how the NoC behaves during the sprinting process.

Network Latency: Full-sprinting activates the entire network
and would possibly lose some performance speedup in the long
interconnect. In contrast, NoC-sprinting uses a subset of routers
to directly connect the active cores, which avoids unnecessary
network traversals in the dark nodes with the support of CDOR
routing algorithm. As an example, Figure 9 shows the average
network latency for running PARSEC with different sprinting schemes.
Apparently, NoC-sprinting shortens the communication latency for
most applications. Overall, it cuts down the network latency by 24.5%.
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Figure 9: Comparisons of average network latency after running PARSEC with
full-sprinting and NoC-sprinting

Network Power: As Figure 3 shows, network power becomes more
and more significant as cores turn dark. Therefore, optimizing NoC
power dissipation becomes an urgent issue in order to combat the power
shortage in the dark silicon age.

Figure 10 shows the total network power consumption during the
sprint phase of running PARSEC. As we can see, NoC-sprinting
successfully cuts down the network power if an intermediate level of
sprinting is selected. On average, it saves 71.9% power compared to
full-sprinting. This is because NoC-sprinting can adapt the network
topology according to workload characteristics and only operates
on a subset of nodes. In comparison, full-sprinting activates a
fully-functional network and loses opportunities for power-gating.
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Figure 10: Comparisons of total network power after running PARSEC with full-sprinting
and NoC-sprinting

More Analysis with Synthetic Traffic: Furthermore, we construct
some synthetic traffic on a network simulator booksim 2.0 [10] to test
NoC-sprinting under different traffic scenarios. For full-sprinting, we
consider traffic to be randomly mapped in the fully-functional network
and results are averaged over ten samples. We compare full-sprinting
with NoC-sprinting and observe the differences in performance and
power while varying the network load. As an example, Figure 11 shows
the results of 4-core and 8-core sprinting for a 16-core system under
uniform-random traffic. There are a few key observations:
• As shown in Figure 11a and Figure 11c, NoC-sprinting cuts down

the average flit latency by 45.1% and 16.1% before saturation for 4-core
and 8-core sprinting, respectively, because it uses a dedicated region
of network for more efficient communication without traversing the
dark region. The latency benefit drops when switching to a higher
level of sprinting because less routers/links are wasted as intermediate
forwarding stations like full-sprinting.
• Correspondingly, NoC-sprinting decreases the total network power

consumption by 62.1% and 25.9% for 4-core and 8-core sprinting,
respectively, as indicated by the gap between the two power curves
in both Figure 11b and Figure 11d. The extra routers/links used
in full-sprinting not only consume leakage power but also generate
dynamic power from packet traversals. As expected, the lower sprint
level, the more power saving NoC-sprinting can achieve.
• The downside of NoC-sprinting is that the network saturates earlier

than that of full-sprinting. This is because NoC-sprinting uses a subset
of network where each node is generating and accepting packets.
Differently, full-sprinting spreads the same amount of traffic among
a fixed fully-functional network where some nodes are simply used for
intermediate packet forwarding. However, this usually would not affect
the network performance in real cases. For example, in the PARSEC
benchmarks we have evaluated, the average network injection rate
never exceeds 0.3 flits/cycle, which is far from saturating the network.
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(a) Latency on 4-core sprint
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(b) Power on 4-core sprint
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(c) Latency on 8-core sprint
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(d) Power on 8-core sprint

Figure 11: Performance and power analysis on full-sprinting and NoC-sprinting with synthetic uniform-random traffic.

(a) Full-sprinting (b) 4-core sprinting with aggregated nodes (c) Thermal-aware NoC-sprinting

Figure 12: Heat maps for running dedup with full-sprinting and NoC-sprinting.

4.4 Thermal Analysis
NoC-sprinting heavily relies on the sprint duration to sustain the
desired parallelism. Figure 1 in Section II demonstrated the sprinting
process which includes three phases. The duration of each phase is
dependent on the property of the phase change material placed close
to the die. However, we can still conduct some qualitative analyses to
evaluate how NoC-sprinting affects the sprint duration.

Phase 1 indicates that the temperature rises abruptly when sprinting
starts, and so does the phase 3 after the melting phase ends.
Intuitively, the more power-on components, the faster the temperature
will increase. Therefore, NoC-sprinting can slow down the heating
process by allocating just enough power for the maximum performance
speedup. As an example, we analyze dedup (one of the PARSEC
benchmarks) whose optimal level of sprinting is 4. We collect the
power densities using McPAT and feed them into a thermal modeling
tool HotSpot [9] as the power trace. As for the floorplan, we abstract
the 16-core CMP system as 16 blocks placed in a 2D grid, where
each block comprises the Alpha CPU, local caches, and other network
resources. We use a fine-grained grid model to observe the stable
temperatures of the whole chip. Figure 12 shows the heat maps for
full-sprinting and NoC-sprinting.

As shown in Figure 12a, though power is almost uniformly
distributed across the chip, full-sprinting results in an overheated
spot in the center (358.3◦K). In contrast, fine-grained sprinting only
activates four nodes as shown in Figure 12b and the corresponding
peak temperature drops (347.79◦K). Furthermore, our thermal-aware
floorplanning generates better temperature profile (343.81◦K) as shown
in Figure 12c.

Phase 2 is the most critical phase that determines the capability of
sprinting. Placing phase change materials close to the die elongates
this period by increasing the thermal capacitance. Temperature remains
stable during melting and the duration of melting is mostly determined
by its latent heat of fusion — the amount of energy to melt a gram of
such material. As such, based on the power results we collected from
PARSEC, NoC-sprinting increases the duration by 55.4% on average.

As a summary, NoC-sprinting reduces the slopes of temperature rise
in phase 1 & 3, and enhances the melting duration in phase 2 by slowing
down thermal capacitance depletion. Thus, it guarantees a longer sprint
for intense parallel computation and further increases the performance.

5 Conclusion
In this work, we reveal the challenges and opportunities in designing
NoC in the dark silicon age. We present NoC-sprinting: it provides

topology/routing support, thermal-aware floorplanning, and network
power gating for fine-grained sprinting. Our experiments show that
NoC-sprinting outperforms conventional full-sprinting which always
activate all the dark cores. It is able to provide tremendous
performance speedup, longer sprint duration, and reduces the chip
power significantly.
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