
SBAC: A Statistics based Cache Bypassing Method for
Asymmetric-access Caches

Chao Zhang†, Guangyu Sun†, Peng Li‡, Tao Wang†, Dimin Niu§ and Yiran Chen£

†Center for Energy-Efficient Computing and Applications, EECS, Peking University, Beijing, 100871, China
‡Computer Science Department, University of California, Los Angeles, CA, 90095, USA

§Dept. of Computer Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
£Dept. of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA

†{zhang.chao, gsun, wangtao}@pku.edu.cn, ‡pengli@cs.ucla.edu, §dun118@cse.psu.edu, £yic52@pitt.edu

ABSTRACT
Asymmetric-access caches with emerging technologies, such
as STT-RAM and RRAM, have become very competitive
designs recently. Since the write operations consume more
time and energy than read ones, data should bypass an
asymmetric-access cache unless the locality can justify the
data allocation. However, the asymmetric-access property is
not well addressed in prior bypassing approaches, which are
not energy efficient and induce non-trivial operation over-
head. To overcome these problems, we propose a cache
bypassing method, SBAC, based on data locality statistic-
s of the whole cache rather than a single cache line’s sig-
nature. We observe that the decision-making of SBAC is
highly accurate and the optimization technique for SBAC
works efficiently for multiple applications running concur-
rently. Experiments show that SBAC cuts down overall en-
ergy consumption by 22.3%, and reduces execution time by
8.3%. Compared to prior approaches, the design overhead
of SBAC is trivial.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache memories; D.4.2 [Storage
Management]: Allocation/deallocation strategies

Keywords
Statistics; Bypass; Asymmetric-access Cache; Data Reuse
Count

1. INTRODUCTION
Non-volatile memories (NVMs), such as spin-transfer torque

random access memory (STT-RAM) and resistive random
access memory (ReRAM), have been extensively studied to
replace SRAM and embedded DRAM (eDRAM) as on-chip
caches [6, 21]. Compared to traditional memory technolo-
gies, they have advantages of high storage density, low s-
tandby power consumption, good scalability, and immunity
to particle based soft errors. Prior research has shown that
these emerging memories can be employed as L2 and L3
caches to improve performance, reduce power consumption,
and even enhance reliability against soft errors [14, 7, 17,
12].

The cache designs based on these emerging memories are
normally called asymmetric-access caches. It means that
the read and write operations to these memories could be
based on different mechanism and demonstrate different ac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISLPED’14, August 11–13, 2014, La Jolla, CA, USA.
Copyright 2014 ACM 978-1-4503-2975-0/14/08$15.00.
http://dx.doi.org/10.1145/2627369.2627611.

cess latencies, energy consumptions, and even reliability. In
most NVM techniques nowadays, the write latency and en-
ergy consumption can be several times larger than those of
read. Thus, asymmetry should also be considered in archi-
tecture designs.

Prior research has demonstrated that cache bypassing is
an efficient technique to mitigate cache contamination prob-
lem by selectively allocating data into a cache. There has
been extensive research about bypassing techniques for tra-
ditional symmetric-access caches [8, 4, 10, 5, 20]. Prior ap-
proaches, however, cannot work efficiently with asymmetric-
access cache. High overhead of the write operation is left
out of consideration, leading to incorrect bypassing decision-
s. Moreover, in prior approaches, the bypassing decision is
cache-line oriented, which means that the access history of
every cache line should be tracked. It induces non-trivial
design and run-time operation overhead. In addition, some
bypassing techniques are designed for specific cache config-
urations (e.g. exclusive LLC only).

Extensive research has been proposed to mitigate write
issues of asymmetric-cache. For example, write halt and P-
reSET techniques are proposed to hide long write latency
of these asymmetric-access caches or main memory [15, 16,
13]. The hybrid cache architecture is explored by allocating
frequently updated data to the symmetric-access cache (e.g.
SRAM) [15, 19]. The replacement policy can also be tai-
lored [22] by evicting cache lines with less updated bits.

In this work, we propose a statistics based data bypassing
method, SBAC, for asymmetric-access caches. The asym-
metric cost of read and write operations are well addressed
to achieve a proper bypassing decision. Moreover, SBAC
makes bypassing decision based on statistical behavior of
data in the whole cache, instead of a specific data-block.
Consequently, both design and run-time overhead is signif-
icantly reduced. More importantly, the bypassing decision-
making can achieve high accuracy because the statistical
behavior of data is stable and predictable for many applica-
tions (details are discussed in Section 2). The results show
that our method induces trivial design overhead and can
achieve better performance compared to prior approaches.
The contribution of this work is summarized as follows:
• We provide theoretical analysis of cost (latency or en-

ergy consumption) for allocating or bypassing data in-
to an asymmetric-access cache.
• Based on the theoretical principle, we propose a cache

bypassing method, SBAC.
• A run-time bypassing prediction technique is intro-

duced to dynamically adjust bypassing policies.
• We further propose core-based bypassing technique to

improve efficiency of SBAC in case that data with dif-
ferent localities are mixed together.

The rest of this paper is organized as follows. The theoretical
analysis of statistics based cache bypassing is introduced in
Section 2. The architecture and operation flow of SBAC and
core-based bypassing techniques are proposed in Section 3.

345



The experimental results and discussions are presented in
Section 4, followed by conclusions in the last section.

2. THEORY BASIS
In this section, we introduce terminologies and definitions

used in theoretical derivation, followed by theoretically ex-
ploration of the relationship between data bypassing and
data locality.

2.1 Terminologies and Definitions

Live Time Dead Time

A’s initial
allocation A A A A A’s last access

Data Reuse Count (DRC)

A’s eviction

Figure 1: Illustration of data A and related
terms [10, 5].

The terminologies used in this work are similar to those
in prior literature [10, 5] and are illustrated in Figure 1. As
shown in the figure, data A is brought into a cache line by
either a read access or a prefetching operation. The life time
of A in the cache is composed of live time (from allocation
time to the last use) and dead time (from the last use to
its eviction). The total number of accesses (hits) to data
after the allocation is called data reuse count (DRC). The
cache line A in Figure 1 has a reuse count of five. The first
allocation is called initial placement. The data having no
live time (DRC = 0) is normally called instant dead block.

Pi =
NDRC=i∑∞

j=0 NDRC=j

(1)

L2 cache 

L3 cache A 

to L1 cache 

❷ bypassing 
❶ w/o bypassing 

to Memory 

Figure 2: SBAC for
loading data.

Term Definition

DRC Data Reuse Count
Pi Probability of DRC = i
R2 Read energy of L2 cache
R2tag Energy of reading L2 tag

R2data
Energy of reading L2 data

W2 Write energy of L2 cache
R3 Read energy of L3 cache
W3 Write energy of L3 cache
d Bypassing depth
λ Bypassing feature
SI Sample Interval of DRC

Table 1: Terminolo-
gies and definitions.

With DRCs for massive data, we introduce the definition
of DRC probability. Let NDRC=i denotes the number of
data that have their DRCs equal to i. Then, a DRC prob-
ability Pi is calculated in Equation (1). Other definitions
and parameters of read and write operations to L2 and L3
caches used in this case study are listed in Table 1.

2.2 Theoretical Energy for Bypassing
We first introduce a case study on data loading. Our goal

in this case is to reduce cache access energy consump-
tion. In order to simplify the discussion, we make some
assumption. First, there are only read operations to the
L2 cache. Second, L3 cache is large enough to allocate the
working set. Third, the cache is non-inclusive, so the coher-
ence of data is still kept. As shown in Figure 2, we focus
on the case of loading data from L3 to L2. If data loaded
from the L3 bypass the L2, they are loaded to L1 directly,
as illustrated with path ·. Otherwise, data will be loaded
into L2 normally, shown with path ¶.

We derive the theoretical energy consumption as follows.
Initially, the data A is allocated at the L3 only. When the
processing core issues a request to access the data A, it gen-
erates cache miss at both L1 and L2 and finally receives
a cache hit in the L3. If the data are loaded into the L2
without bypassing, the total access energy to L2 can be cal-
culated in Equation (2).

Ew/o bypass = R3 +W2 + (DRC + 1)× R2 (2)

From left to right, the terms on the right side of Equation (2)
represent the energy of reading data from L3, writing data
to L2, sending data from L2 to L1 after initial placement,
and revisiting data for DRC times. If data A bypasses the
L2, the total cost will be changed to that in Equation (3).

Ebypass = (DRC + 1)× (R2tag + R3) (3)

It means that, for each data access, energy is consumed to
detect a cache miss in L2 (R2tag ) and load data from L3
(R3). Obviously, we can reduce access energy with cache
bypassing only when we have Ew/o bypass > Ebypass. Thus,
we can obtain Equation (4) as the condition to enable cache
bypassing. It means that the DRC should be large enough to
ensure the benefits of data reuse, and amortize the overhead
of writing data into the L2.

DRC <
W2 + R2 − R2tag

R3 + R2tag − R2

=
W2 + R2data

R3 − R2data

(4)

To bypass or not to bypass, that is the question. For
SRAM/eDRAM caches, W2 is similar to R2, which is several
times smaller than R3. Cache can benefit from the data
allocation whenever there is at least once reuse of the data
in L2. For the asymmetric-access cache, however, the W2

can be comparable to R3. Thus, a higher DRC is expected
to justify the data allocation. In order to achieve lowest

access energy, data with DRC less than dW2+R2data
R3−R2data

e should

bypass L2.
In order to demonstrate the impact of read-write asym-

metry, we compare the conditions of cache bypassing for
SRAM and STT-RAM caches. Table 2 shows typical en-
ergy consumption numbers of caches based on SRAM and
STT-RAM. For symmetric caches, loading data into L2 is
more energy-efficient when DRC is higher than one. While
in asymmetric caches, only very frequently accessed data
with DRC higher than six should be loaded into L2.
2.3 Theory Basis of SBAC

In practice, it is difficult to exactly know the DRCs of all
the data in cache before they all die. However, it is possi-
ble to filter out the data with specific DRC with a simple
bypassing method. For example, we can assume the aver-
age DRC for unfiltered data is smaller than one, and make
all initial placements bypass the L2 cache, so only the data
with at least one reuse count can enter L2 cache. Thus, the
key is to ensure the benefits from dead blocks bypassing can
amortize the bypassing of high DRC data.

The theoretical condition of employing bypassing can be
derived based on the probabilities of DRCs. Assume that
the probability distribution of DRC in L2 is represented by
{P0, P1, P2, . . .} (

∑∞
i=0 Pi = 1). Without bypassing tech-

nique, the average access energy of these data is noted as
Ēw/o bypass. If initial placements of whole data bypass the
L2 cache, the cache access energy consumption is noted as
Ēbypass.

Ēw/o bypass =
∞∑
i=0

{Pi × [R3 +W2 + (i+ 1)× R2]} (5)

Ēbypass = P0 × (R3 + R2tag )

+
∞∑
i=1

{
Pi ×

[
2× R3 + R2tag +W2 + i× R2

]} (6)

346



With these two equations, it is easy to understand that
such an “initial placements” bypassing can only reduce aver-
age access energy when Ebypass < Ew/o bypass. After substi-
tuting Equation (5) and (6) into it, we obtain the condition
to trigger an “initial placement” bypassing, described as an
Equation (7).

P0 >
R3 + R2tag − R2

W2 + R3

(7)

Cache Type SRAM L2 STT-RAM L2
STT-RAM L3 STT-RAM L3

R2data
(nJ) 0.066 0.127

W2(nJ) 0.051 0.603
R3(nJ) 0.246 0.246

d
W2+R2data
R3−R2data

e 1 6

Table 2: Typical energy numbers for 2MB SRAM
and STT-RAM caches, and 8MB STT-RAM cache
(Technology node: 45nm).

It is interesting that the balance point where the benefits
can amortize the overhead is only determined by P0, which
is the DRC probability of instant dead blocks. This is the
reason why we call our technique SBAC as a statistics based
cache bypassing method.

In order to have a quantitative analysis, we calculate the
bypass condition for symmetric- and asymmetric-access caches,
respectively. Cache bypassing can gain benefits when P0 >
62.8% for a symmetric-access cache. For an asymmetric-
access cache, however, bypassing condition is satisfied with
a significant lower value of P0 > 15.5%. The parameters we
used are listed in Table 2.

2.4 Bypassing Depth
After the“initial placement”bypassing is applied, the orig-

inal data with once reuse count becomes instant dead block
since their first loads are filtered. Thus, it is reasonable to
make these new instant dead blocks bypass L2 to further
reduce access energy consumption. In other words, bypass
the data with DRC < 2. Thus, we introduce the defini-
tion of bypassing depth, which means that data with DRC
less than bypassing depth should bypass the cache. For ex-
ample, when the bypassing depth is set to “1”, only initial
placements are bypassed. The calculation of theoretical by-
passing depth is discussed as follows.

Similar to the derivation of “initial placement” bypassing
decision, we can calculate the bypassing condition with “by-
passing depth = 2” as in Equation (8)

P1

1− P0

>
R3 + R2tag − R2

W2 + R3

(8)

And we can further calculate condition for any bypassing
depth d as in the following Equation:

Pd−1

1−
∑d−2

j=0 Pj

>
R3 + R2tag − R2

W2 + R3

(9)

In this work, the λ =
R3+R2tag

−R2

W2+R3
is called bypassing fea-

ture of the system, which is the intrinsic cache attribute.
The high write energy of asymmetric-access caches results
in a small bypassing feature, making bypass more attractive
to reduce energy consumption.

3. DESIGN OF SBAC
3.1 Overview

We still use the case of loading data from L3 cache to
L2 cache to describe the architecture design of SBAC. As a
pivot to select proper bypassing decisions, extra components

are needed to monitor and predict the distribution of DRC
for data in the L2 cache. As shown in Figure 3, one extra bit
is added to each cache line in L2, and two bits are added to
each cache line of L3 for this purpose. In addition, they are
also used to decide whether cache bypassing is needed. The
extra function between L2 and L3 is called bypassing deci-
sion block (BDB). BDB monitors cache line transferring on
the data bus. It can track information of the DRC sent with
data so that probability distribution of DRC is calculated.

L2 cache 

L3 cache 

to L1 cache 

to Memory 

BDB 

Bypass 
Control 

Depth 
Transition 

Counters Depth DRC (1b) 

DRC (2b) 

Figure 3: Architecture for cache bypassing.

A BDB includes three global DRC counters. Three DRC
counters are denoted as N≥d−1, N≥d, and N≥d+1. They are
used to count the number of DRC greater than d−1, d, and
d+1, respectively. With these DRC counters, we can rewrite
conditions in Equation (9) with Equation (10). Read/Write
energy numbers are used to calculate the λ.

The bypassing control logic can make decision for data
transferring on the bus. A cache block will bypass L2 cache
if the DRC bit in the L3 cache is smaller than the bypass
depth. The bypass depth transition logic is employed to
calculate runtime bypassing depth. The bypass depth will
be increased by one when Equation (10) is satisfied, and
decreased by one when Equation (11) is satisfied.

N≥d −N≥d+1

N≥d

> λ (10)

N≥d−1 −N≥d

N≥d−1

< λ (11)

3.2 Operation Flow with Cache Bypassing
Having the SBAC architecture, we describe the flow for

different cache operations with an example in Figure 4. As
shown in the figure, L1, L2, and L3 caches are illustrated
with one, two, and four cache lines. The three DRC counters
of BDB are also shown in the figure. There is one DRC bit
for each cache line in L2 and two bits for each cache line in
L3. The bypassing depth d is set to 2 in this example. The
detailed operation flow is described as follows.

• Step (a): In the initial state, all three DRC counters
are initialized as zero. The DRC bits of each line are
also cleared as zero. We assume there are some initial
data stored in cache lines.

• Step (b): L1 cache requests data C, since the DRC
bit of data C in L3 cache is equal to zero, data C is
bypassed to L1 cache directly because DRC = 0 <
d = 2. At the same time, the DRC bit of data C in L3
cache is increased by one.

• Step (c): Similarly, when L1 cache requests data D,
it is also moved from L3 to L1 directly for the same
reason.

• Step (d): When L1 cache requests data C again, data
C is bypassed again because we still have DRC = 1 <
d = 2. Then, DRC of data C in L3 cache is increased
to 2. At the same time, the first counter in BDB is
increased by one because it counts the number of data
with DRC ≥ d− 1 = 1.

• Step (e): Similarly, when L1 cache requests data D
again, it is bypassed again. And the first DRC counter
of BDB is increased by one.

347



DRC ADDR DATA

L2$

DRC ADDR DATA
L3$

0 0 0BDB

(a) Initial state
Bypass depth=2

0 A ...
0 B ...

0 A ...
0 B ...
0 C ...
0 D ...

L2$

L3$

0 0 0BDB

(b)  Read $ Line C, 
BYPASS L2$ if L3.DRC<depth

Incr L3.DRC if L3 Hit

0 A ...
0 B ...

0 A ...
0 B ...
1 C ...
0 D ...

L2$

L3$

0 0 0BDB

(c) Read $ Line D, 
BYPASS L2$ if L3.DRC<depth

Incr L3.DRC if L3 Hit

0 A ...
0 B ...

0 A ...
0 B ...
1 C ...
1 D ...

L2$

L3$

1 0 0BDB

0 A ...
0 B ...

0 A ...
0 B ...
2 C ...
1 D ...

ADDR DATA
A ...

L1$ C ... L1$ D ... L1$ C ...
L1$

(d) Read $ Line C, 
BYPASS L2$ if L3.DRC<depth

Incr L3.DRC if L3 Hit
Incr N≥ d-1 if L3.DRC==depth

L2$

L3$

2 1 0BDB

(f)  Read $ Line C, 
Incr N≥ d if L3.DRC==depth

NOT BYPASS L2$ if L3.DRC=depth
NOT Incr L3.DRC if L3.DRC=depth

0 C ...
0 B ...

0 A ...
0 B ...
2 C ...
2 D ...

L2$

L3$

2 2 0BDB

(g) Read $ Line D, 
Incr N≥ d if L3.DRC==depth

NOT BYPASS L2$ if L3.DRC=depth
NOT Incr L3.DRC if L3.DRC=depth

0 C ...
0 D ...

0 A ...
0 B ...
2 C ...
2 D ...

L2$

L3$

2 2 1BDB

1 C ...
0 D ...

0 A ...
0 B ...
2 C ...
2 D ...

L1$ C ... L1$ D ... L1$ C ...

(h) Read $ Line C, 
Incr N≥ d+1 if L2$ HIT and L2.DRC=0

Set L2.DRC if L2$HIT

N≥ d-1 N≥ d N≥ d+1

L2$

L3$
2 0 0BDB

(e) Read $ Line D, 
BYPASS L2$ if L3.DRC<depth

Incr L3.DRC if L3 Hit
Incr N≥ d-1 if L3.DRC=depth

0 A ...
0 B ...

0 A ...
0 B ...
2 C ...
2 D ...

D ...L1$

L2$

L3$

2 2 1BDB

1 C ...
0 D ...

0 A ...
0 B ...
2 C ...
2 D ...

L1$ C ...

(i) Read $ Line C, 
NOT Incr N≥ d+1 if L2$ HIT and L2.DRC=1

Figure 4: An example of cache bypassing flow.

• Step (f): When L1 cache requests data C for the third
time, data C is finally loaded to L2 cache because we
have DRC = d now. At the same time, the second
counter in BDB is increased by one. Note that the
DRC bits of data C in L3 cache are saturated now.
They are only reset to zero when data C are evicted
from L3 cache.
• Step (g): Similarly, data D is also loaded to L2 cache

for the third request, and the second counter in BDB
is increased by one.
• Step (h): When data C is first hit in L2 cache, the

third counter in BDB is increased by one because C is
requested for d + 1 = 3 times in total. At the same
time, its DRC bit in L2 is set to one.
• Step (i): When data C gets hit again with DRC bit

equal to one, the third counter in BDB remains the
same.

3.3 Sensitivity Control
Since the probability distribution of DRC varies during

run-time execution, the bypassing depth should also be up-
dated periodically to reflect the distribution. The length of
each period, in terms of cache accesses, is called sampling
interval (SI) in this work. At the end of a sampling in-
terval, the BDB counters are used to calculate the current
probability distribution of DRC. The distribution is used to
predict the bypassing depth for the next interval.

The choice of sampling interval has an impact on the pre-
diction accuracy of bypassing depth. Since the bypassing
depth is based on DRC, we use the amount of cache ac-
cess to determine a SI. If the SI is too short, the poor sam-
pled statistics cannot represent the probability distribution
of DRC. On the other hand, if the SI is too long, it may not
capture the changes of DRC distribution so that the efficien-
cy of SBAC is degraded. In addition, the size of counters in
BDB is also related to SI.

Experimental results show that the optimal SI varies in
the range of 10k ∼ 100k for different workloads. Thus, we
propose an algorithm to dynamically adjust SI for different
data patterns. The algorithm is described as follows.
• SI is initialed as 214, which is the lower bound of SI.
• After each SI, if the bypassing depth is not changed,

SI is increased by 2×.

• After each SI, if the bypassing depth is changed, SI is
decreased by 2×.

• The higher bound of SI is set to 220. Thus, a 20-bit
counter is needed.

3.4 SBAC Extension for Other Scenarios
Extenstion for Performance Optimization. To ap-

ply SBAC for cache performance optimization, we need to
replace energy numbers in equation (1) - (9) with proper ac-
cess latency numbers. Different from energy consumption, it
is inaccurate to add the latency of a write operation directly
to the total execution time. Instead, we need to estimate
the time that L2 cache is blocked due to loading data from
L3. The blocking time is related to cache access intensity.
Previous research [15, 19, 22] pointed out that the blocking
time varies from 0× to 0.6×write latency. One solution to
this problem is to calculate average run-time blocking time
by monitoring the waiting time of read operations in the
miss status holding registers (MSHRs).

Extension for Multi-core Optimization. For the case
that there are multiple worloads running on multiple cores,
more BDBs can be added to track DRC distribution of each
core separately. The core ID needs to be integrated in the
cache tag to identify data from each core. Thus, bypassing
decisions may be different for data requested by different
cores to improve efficiency of SBAC. Such an extension of
SBAC is called ”core-based SBAC”. Extra design overhead
is induced because the number of counters increase propor-
tionally with the number of cores. Note that SBAC can be
applied to both shared and private caches. For example, if
L2 cache is private for each core and L3 cache is shared, each
L2 needs one BDB to connect L3.

4. EXPERIMENTAL EVALUATION
In this section, we provide comprehensive evaluation to

demonstrate the efficiency of SBAC for single and multiple
applications under both shared and private L2 configura-
tions.

4.1 Experiment Setup
We implement SBAC in a popular full-system simulator

gem5 [2]. It is configured to model a four-core Haswell
like CMP. Each core is running at 2GHz frequency. There

348



are three levels of caches. The IL1/DL1 caches are SRAM
based and and the L2 and L3 are configured as asymmetric-
access STT-RAM caches. Other details can be found in
Table 3. We use cache latency and energy parameters from
NVSim [3].

Component Configuration

Processor 4 cores, 2GHz, 1-way issue

IL1/DL1 32/32KB, 2-way, 64B, private, LRU
SRAM L.P.:47.7mW, R/W Lat.: 2/2cycle, E.:6.2/2.3pJ

L2 4 × 256KB, 8-way, 64B, LRU, L.P.:428mW
STT-RAM R/W Lat.: 6/36cycle, E: 0.135/0.603nJ

L3 8MB, 16-way, 64B, share, LRU, L.P.:1851mW
STT-RAM R/W Lat.: 25/60cycle, E: 0.246/0.698nJ

Memory 8GB, DDR3, 1600MHz, 120cycle, 12.8GB/s.

Table 3: Detailed simulation setup.

Both single and multiple applications workloads are e-
valuated. In order to provide a comprehensive evaluation
with diversified distributions of DRC, we examine different
code segments in both single and randomly mixed multi-
programmed benchmarks. Both private and shared L2 con-
figurations are used for experiments of mutli-programmed
workloads. For the single application case, only the pri-
vate cache with one core running is evaluated. The simula-
tor captures all data operations such as loads, stores, and
prefetching requests. The one block lookahead (OBL) ap-
proach is employed for prefetching in evaluation. All bench-
marks come from SPEC CPU 2006. We fast forward one
billion instructions at beginning, and execute ten billion in-
structions of a single benchmark. Then we construct the
multi-program workloads by mixing the fast forwarded s-
ingle programs. Energy consumption includes leakage and
dynamic power of entire cache hierarchy, based on operation
statistics.

The labels used in the rest of this section are explained:
(1) Baseline: baseline case without cache bypassing; (2) S-
BAC: case using SBAC; (3) SBAC-C: case using core-based
SBAC; (4) Shared: case with shared L2 configuration; (5)
Private: case with private L2 cache.

4.2 DRC Prediction Accuracy

0
0.2
0.4
0.6
0.8
1

401.bzip2
410.bw

aves
429.m

cf
434.zeusm

p
435.grom

acs
444.nam

d
450.soplex
453.povray
454.calculix
458.sjeng
459.G

em
sF…

462.libquan…
464.h264ref
465.tonto
470.lbm
471.om

netpp
473.astar
481.w

rf
A
verage

Figure 5: Prediction accuracy for various single-
programmed benchmarks.

As shown in Figure 5, a high prediction accuracy of 92%
on average is achieved for single program benchmarks. The
prediction accuracy is about 86% on average for multipro-
grammed applications (not shown due to page limit). Note
that a correct bypassing decision may obtained even with
a mis-prediction, as long as the bypassing depth is not af-
fected. On the other hand, a correct prediction of DRC
distribution may also lead to an incorrect decision of cache
bypassing due to inaccurate estimation of read/write energy.

4.3 Evaluation for Single Application
The results of energy consumption are compared in Fig-

ure 6. We can find that the reduction of energy is related
to the prediction accuracy generally. For some benchmarks,

however, the energy reduction is insignificant even with high
prediction accuracy (e.g. GemsFDTD). The reason is that
for some benchmarks the cache bypassing is not triggered
for most of execution time. On average the reduction of the
total cache energy consumption is about 22.3%.

The results of performance improvement is similar to en-
ergy reduction, but less significant. The reason is that the
energy consumption of each load operation is reflected in to-
tal energy, but the loading time could be hidden by MSHR.
On average, the total execution time is reduced by 8.3%.
Detailed results are not included due to page limitation.

0
0.2
0.4
0.6
0.8
1

401.bzip2
410.bw

aves
429.m

cf
434.zeusm

p
435.grom

acs
444.nam

d
450.soplex
453.povray
454.calculix
456.hm

m
er

458.sjeng
459.G

em
sFD

TD
462.libquantum
464.h264ref
465.tonto
470.lbm
471.om

netpp
473.astar
481.w

rf
average

Baseline SBAC

Figure 6: Normalized energy consumption for single
applications.

4.4 Evaluation for Multi-programmed Appli-
cations

We evaluate energy consumption after applying SBAC
to two cache configurations against corresponding baselines
without cache bypassing. We show the normalized compar-
ison in Figure 7. The results demonstrate that, for private
cache configuration, the energy consumption can be reduced
after using SBAC. It is because each workload is bounded
to a dedicated core and the DRC distribution is estimated
separately. On average, SBAC can reduce energy consump-
tion by 7.5% for private L2 cache, but 3.8% for shared L2
cache configuration. As addressed before, mixing data with
different patterns from multiple workloads makes SBAC less
efficient. In order to improve SBAC for multi-programmed

0
0.2
0.4
0.6
0.8

1

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

m
ix12

m
ix13

average

Baseline SBAC Shared SBAC Private SBAC-C Shared

Figure 7: Normalized energy consumption after us-
ing SBAC for two cache configurations.

workloads, we propose core-based SBAC for shared L2, list-
ed as the fourth bar in Figure 7. It is easy to find that ener-
gy consumption is further reduced after using the technique.
Core-based SBAC can further reduce the energy consump-
tion by about 9.9%, because it helps isolate the interference
of data amoung different workloads, while shared cache sup-
plies sufficient space. We also evaluate the results of exe-
cution time after using SBAC and compare them with the
baseline. The results of applying SBAC and SBAC-C on
data loaded from L3 to L2 are listed in Figure 8. We can
find that the trends of these results are similar to those for
energy consumption optimization. On average, the perfor-
mance is improved by 2.1% and 4.3% for shared and private

349



Approaches
Multiprogram Storage Overhead (bits) Area

Operation Overhead
Support per line global Overhead (µm2)

DBP [11] No - 2M 102.78 2-level table lookup/update
IATAC [1] No 31 288 293.63 6b comp + 31b update + 16-entry CAM lookup/update
IGDR [18] No - 42.5K 4.12× 104 5 table lookup/update
LvP [10] No 17 40K 62.27 5b comp + 17b update + 1 table lookup/update
AIP [10] No 21 40K 30.34 5b comp + 21b update + 1 table lookup/update
DBRB [9] Yes - 13.75K 40.28 15b comp + 15b update + 3 table lookup/update
BIA [5] Yes 3/L2+2/L3 1.8K 192.6 5b update + 16-entry CAM lookup/update
SBAC Yes 1/L2+2/L3 73 36.16 3b update + 2b comp + 1 counter update
SBAC-C Yes 1/L2+2/L3 146 144.64 3b update + 2b comp + 1 counter update

Table 4: Design overhead comparison.

0.5
0.6
0.7
0.8
0.9

1

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

m
ix12

m
ix13

average

Baseline SBAC Shared SBAC Private SBAC-C Shared

Figure 8: Normalized execution time after using S-
BAC for two cache configurations.

configured L2 cache. And the core-based SBAC can improve
performance by 9.4% for the shared L2 cache.

4.5 Comparison with Other Approaches

0.5

0.6

0.7

0.8

0.9

1

DBP IATAC IGDR LvP AIP DBRB BIA SBAC
Figure 9: Comparison of performance between our
bypassing scheme and other approaches.

We compare normalized average cache access latency be-
tween our bypassing scheme and prior approaches for single
application, shown in Figure 9. Our bypassing scheme can
outperform other approaches in respect of cache access la-
tency. The main reason is that the asymmetry access oper-
ations are not considered in prior approaches. Note that we
do not provide comparison for cases of energy optimization
and multi-programmed application. It is because most prior
approaches cannot work with these cases. We also compare
design and operation overhead in Table 4. We estimate the
design overhead by extra storage (per line and cache), area
overhead of control logic, and extra cache operations. Area
results are synthesized by Synopsys Design Compiler with
TSMC 45nm library. It is easy to find that SBAC costs
much less storage, area, and operations.

5. CONCLUSION
Emerging asymmetric-access caches are competitive for

design of future cache hierarchy. Traditional cache bypass-
ing techniques are not efficient for these asymmetric-access
caches. In this work, we propose the statistics based cache
bypassing method named SBAC. With the help of a theo-
retical model, we analyze the benefits of cache bypassing.
Then, proper bypassing decisions are made based on DRC
probability. In addition, we propose core-based SBAC to
improve working efficiency of SBAC for multi-programmed

workloads. Compared with prior approaches, SBAC has the
advantages of low design overhead and compatibility for dif-
ferent cache configurations. The experimental results show
improvement of cache performance and energy efficiency af-
ter using SBAC.

6. ACKNOWLEDGEMENTS
This paper is supported by NSF CNS-1116171, Nation-

al Natural Science Foundation of China (No.61202072 and
No.61103028), and National High-tech R&D Program of Chi-
na (No.2013AA013201).

7. REFERENCES
[1] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle. Iatac: a smart

predictor to turn-off l2 cache lines. ACM Trans. Archit. Code Optim.,
2(1):55–77, Mar. 2005.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[3] X. Dong, C. Xu, Y. Xie, and N. Jouppi. Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
31(7):994–1007, 2012.

[4] H. Dybdahl and P. Stenström. Enhancing last-level cache performance by
block bypassing and early miss determination. ACSAC’06, pages 52–66.
Springer-Verlag, 2006.

[5] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and insertion
algorithms for exclusive last-level caches. ISCA’11, pages 81–92. ACM,
2011.

[6] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, and et al. A
Novel Non-Volatile Memory With Spin Torque Transfer Magnetization
Switching: Spin-RAM. In Proceedings of IEDM, pages 459–462, 2005.

[7] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad. High-endurance and
performance-efficient design of hybrid cache architectures through
adaptive line replacement. In ISLPED’11, pages 79–84, 2011.

[8] T. L. Johnson, D. A. Connors, M. C. Merten, and W.-m. W. Hwu.
Run-time cache bypassing. IEEE Trans. Comput., 48(12):1338–1354, Dec.
1999.

[9] S. M. Khan, Y. Tian, and D. A. Jimenez. Sampling dead block prediction
for last-level caches. MICRO’10, pages 175–186, 2010.

[10] M. Kharbutli and Y. Solihin. Counter-based cache replacement and
bypassing algorithms. IEEE Trans. Comput., 57(4):433–447, Apr. 2008.

[11] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block
correlating prefetchers. ISCA’01, pages 144–154. ACM, 2001.

[12] J. Li, P. Ndai, A. Goel, H. Liu, and K. Roy. An alternate design paradigm
for robust spin-torque transfer magnetic ram (stt mram) from
circuit/architecture perspective. In ASP-DAC’09, pages 841–846, 2009.

[13] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A. Lastras.
Preset: improving performance of phase change memories by exploiting
asymmetry in write times. ISCA ’12, pages 380–391. IEEE Press, 2012.

[14] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan.
Relaxing non-volatility for fast and energy-efficient stt-ram caches. In
HPCA’11, 2011.

[15] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. A novel architecture of the
3d stacked mram l2 cache for cmps. In HPCA’09, pages 239 –249, feb. 2009.

[16] G. Sun, Y. Zhang, Y. Wang, and Y. Chen. Improving energy efficiency of
write-asymmetric memories by log style write. ISLPED ’12, pages 173–178.
ACM, 2012.

[17] Z. Sun, X. Bi, and H. Li. Process variation aware data management for
stt-ram cache design. ISLPED ’12, pages 179–184. ACM, 2012.

[18] M. Takagi and K. Hiraki. Inter-reference gap distribution replacement: an
improved replacement algorithm for set-associative caches. ICS’04, pages
20–30. ACM, 2004.

[19] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid
cache architecture with disparate memory technologies. ISCA’09.

[20] Y. Wu, R. Rakvic, L.-L. Chen, C.-C. Miao, G. Chrysos, and J. Fang.
Compiler managed micro-cache bypassing for high performance epic
processors. MICRO’02, pages 134 – 145, 2002.

[21] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie. Design implications of
memristor-based RRAM cross-point structures.

[22] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. Energy reduction for stt-ram
using early write termination. In ICCAD’09, pages 264–268, 2009.

350



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140625130034
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     5
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140625130034
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     5
     6
     5
     6
      

   1
  

 HistoryList_V1
 qi2base





