
A High-performance and High-programmability

Reconfigurable Wireless Development Platform

Jiahua Chen1, Tao Wang1,3, Haoyang Wu1, Jian Gong1, Xiaoguang Li1, Yang Hu1,

Gaohan Zhang1, Zhiwei Li1, Junrui Yang1, Songwu Lu2,3

1Center for Energy-Efficient Computing and Applications, School of EECS, Peking University, Beijing, China
2UCLA Computer Science Department, Los Angeles, CA, USA
3PKU-UCLA Joint Research Institute in Science and Engineering

{chenjiahua, wangtao, wuhaoyang, jian.gong, xiaoguangli2010, hy1021, gh.zhang, zhiwei.li, yjr}@pku.edu.cn

slu@cs.ucla.edu

(Demonstration Paper)

Abstract—The ongoing mobile Internet revolution calls for
quick adoptions of new wireless communication and network-
ing technologies. To enable such fast innovations, a software-
defined platform is needed to validate and refine new algorithms,
protocols, and architectures in communications and networking.
Unfortunately, no current systems can meet both requirements
of high programmability and high performance. In this work,
we report our recent effort on building such a reconfigurable
platform. We show that our proposed platform, GRT, can support
both high-performance and high-programmability in a unified
framework. Moreover, GRT is seamlessly integrated into the
standard TCP/IP network protocol stack under Linux, and can
act as a WiFi-capable, network interface card. Furthermore, it
ensures backward compatibility with the popular GNU Radio
platform, a user-friendly, yet low-performance system. In the
demo, we will demonstrate the full functionalities of the 802.11a/g
WiFi on GRT, including (1) wireless file transfer between two
GRT systems at the speed of tens of Mbps; (2) execution of
default Linux TCP/IP applications without changes (e.g. SSH);
(3) access point (AP) operation mode, where commodity WiFi
devices access the Internet via the GRT-converted AP over the
WiFi channel.

Keywords—wireless, FPGA, performance, programmability, re-
configurable

I. INTRODUCTION

The recent mobile Internet revolution is driven by both user
demand and technology push. While user demand is readily
accelerated by numerous mobile applications and services,
the technology push requires fast adoption of new wireless
communication and networking techniques. Indeed, communi-
cation and computer science researchers have proposed many
innovative algorithms, protocols, and architectures for wireless
communication and networking during the past two decades.
What is missing is an appropriate development platform to
prototype and validate the numerous paper designs.

Fundamentally, such wireless development platform should
possess the following four features: (1) High performance -
it needs to support high-throughput and low-latency wireless
transmission in real time; (2) High programmability - it should

∗This paper is supported by National Natural Science Foundation of China
(61370056, 61103028)

be easy to program and debug to enable fast prototype and
modular design; (3) Backward compatibility - it is highly
desirable to remain compatible to the popular GNU Radio
system (a slow yet user-friendly platform) [3], to minimize
the learning curve and facilitate code reuse of legacy proto-
types; (4) Seamless integration to the TCP/IP protocol stack
- It should work with the default TCP/IP network protocol
suite, thus facilitating cross-layer optimizations and enabling
complete networking system spanning all layers.

Unfortunately, none of the existing systems can meet all
four requirements. For example, GNU Radio [3] is a pure
software-based system and its performance is quite low. So-
ra [11] uses resource over-provisioning to ensure high perfor-
mance, thus requiring high-end, multi-core servers. Its pro-
grammability is only available under Windows OS. WARP [5]
is an FPGA-based system and does not provide much pro-
grammability support for programming the processing pipeline
in FPGA. It also works as a stand-alone component, hard to
be integrated into the standard TCP/IP network protocol suite.
Moreover, both Sora and WARP are not compatible to GNU
Radio, and cannot reuse its large code base.

In our recent work [12], we describe a reconfigurable
SDR platform called GRT. In this paper, we present a much
anhanced version of GRT and demonstrate the full func-
tionalities of the 802.11a/g WiFi on GRT. GRT meets all
four requirements in a single unified framework. Our current
prototype uses the full protocol family of 802.11a/g WiFi as the
showcase. Our demo includes the following three scenarios:
(1) wireless file transfer between two GRT systems over the
2.4GHz radio channel with the data throughput up to tens
of Mbps; (2) execution of standard TCP/IP applications (e.g
SSH) without any modification on GRT; (3) access point (AP)
operation mode, where commodity WiFi devices access the
Internet via the GRT-converted AP over the WiFi channel.

The rest of this paper is organized as follows. Section II
describes the system architecture of GRT and the key tech-
niques to support the features of high performance, high
programmability, compatibility and seamless integration. Sec-
tion III presents the current prototype of GRT and shows three
demo cases. Section IV concludes the paper.

978-1-4799-6245-7/14/$31.00 ©2014 IEEE 350

Fig. 1: GRT system architecture

Fig. 2: Different structures for connecting the host PC, the
FPGA board and the RF front-end.

II. GRT SYSTEM ARCHITECTURE

In this section, we describe the system components of
GRT and the main techniques to ensure high performance,
high programmability, backward compatibility, and seamless
integration to the TCP/IP protocol stack.

A. System Components

As shown in Figure 1, a GRT system has three main
components: a host PC, an FPGA broad, and a radio frequency
(RF) front-end.

At the host PC, GRT works with the standard TCP/IP
protocol suite under Linux through a customized device driver.
It thus behaves similar to a commodity wireless network adap-
tor. Moreover, GRT offers a set of application programmable
interfaces (APIs), in order to configure and tune various
parameters, control the FPGA/RF subsystem, and monitor the
system status. Furtheremore, GRT supports a user-friendly,
graphical programming interface, to facilitate fast prototyping
and debugging of new algorithms/protocols both at the host
PC and in the FPGA board.

In the FPGA board, GRT follows the modular design. It im-
plements throughput-intensive modules for the physical (PHY)
layer and latency-sensitive functions for the low-level media
access control (MAC) layer. The FPGA board is connected to
the host PC via the standard PCIe interface.

At the RF front-end, radio signals (i.e., electromagnetic
waves) are transmitted and received over the air. The RF
front-end also converts high-frequency signals (e.g. 2.4GHz or
5GHz) to baseband ones bidirectionally, and transmits/receives
the baseband signals to/from the FPGA board.

B. Techniques for High Performance

GRT applies the following three techniques to improve the
throughput and latency of the entire processing pipeline.

Fig. 3: A processing pipeline in GRT (software/hardware
co-design)

Multi-clock processing pipeline in FPGA: The throughput
of a processing pipeline in an FPGA can be improved by
carefully designing/tuning each individual module. However,
to make the throughput of different modules (e.g., bit-level
modules and massive parallel modules) match each other,
these modules may not operate at the same clock frequency.
Therefore, we support multi-clock processing pipelines in
FPGA in GRT, and we provide the necessary building blocks
for synchronizing the modules across different clock domains
as well as the programming support.

High-efficiency interconnection logic for modules in
FPGA: In FPGA programming, FIFO is often used to inter-
connect modules for its simplicity and capability of isolating
different modules. However, FIFO, especially asynchronous
FIFO, is quite expensive in terms of both latency and area
consumption. In GRT, we carefully design an interconnection
glue logic based on registers. The FPGA modules are mostly
connected with such glue logic. Moreover, the glue logic is
automatically generated by the GRT programming framework.

Direct linking between FPGA and RF front-end: The RF
front-end (e.g., USRP series [1], [2]) is typically connected
to the host PC via the standard Ethernet/USB port, as shown
in the left part of Figure 2. Therefore, the host PC has to
route massive data (i.e., RF signals) between the RF front-end
and the FPGA for signal processing. Such a linking practice
incurs large latency overhead, introduced by both the PC driver
(UHD) for the USRP (see X’ in Figure 2) and the massive
time-domain data transfer between the host PC and the FPGA
(see B’ in Figure 2).

In GRT, we have devised a customized driver module in
FPGA for the RF front-end (USRP). It enables the RF front-
end to directly connect to the FPGA board, as shown in the
right part of Figure 2. This scheme results in 10x less traffic
(A versus A’+B’) from the point of view of the host PC and
20x latency reduction (X versus X’+B’). The overall system
performance is thus greatly improved.

C. Techniques for High Programmability

GRT supports modular design for the processing pipeline.
Each module can be implemented either as a software module
on the host PC or as a hardware module on the FPGA, as
shown in Figure 3. These software and hardware modules
can call each other. The resulting processing pipeline can be
composed of a mixture of software modules and hardware
modules. This design thus supports progressive refinement in
GRT, starting from an all-software implementation for fast
validation of initial designs, ending up with a full-speed

351

Fig. 4: GRT modules in GNU-Radio

hardware implementation for final prototype and operation in
real-world usage scenarios.

GRT offers programmability support for coding and debug-
ging FPGA modules. To design a processing pipeline in FPGA,
researchers with different levels of expertise on hardware
programming can code each FPGA module with different
programming languages: hardware description language (such
as Verilog), the IP cores provided by FPGA vendors, or
in C/C++ using a high-level-synthesis tool (e.g. [4]). The
GRT programming framework supports all three programming
methods.

GRT provides a software tool in the programming frame-
work to automatically generate the glue logic for modules. A
developer can focus on the functions of each module, whereas
the interconnection/synchronization among the modules is
handled by the GRT programming framework. This reduces
programming complexity and human errors.

D. Techniques for Compatibility and Integration to TCP/IP

GRT is compatible to GNU Radio, the most popular
software-based wireless development system. As shown in
Figure 4, the GRT software and hardware modules can be
invoked in C++ wrappers which obey the coding/execution
conventions of GNU Radio C++ processing blocks. GRT
modules can thus be directly used in the GNU Radio platform.

GRT is also compatible with various types of FPGA boards
and RF front-end devices. GRT currently works on Xilinx
ML605 [8], KC705 [7], AC701 [6] and VC707 [9] evaluation
boards, and supports USRP N210 [1] and X300 [2] as the RF
front-end.

GRT provides a standard Linux network interface card
(NIC) driver, which allows for it to be seamlessly integrated
into the Linux TCP/IP protocol suite. With this driver, GRT
behaves similar to a commodity wireless network interface.
In the customization mode of GRT, researchers can configure
various wireless parameters (e.g., channel width, error correc-
tion level, and monitoring mode) at both PHY and MAC layers
and access rich information extracted from the PHY and MAC
layers. This facilitates cross-layer optimizations and facilitates
coordination with upper-layer research effort such as software-
defined network (SDN).

III. PROTOTYPE AND DEMONSTRATION OVERVIEW

The current GRT prototype is illustrated in Figure 5. It
includes a normal host PC running Linux OS, a Xilinx ML605
FPGA evaluation board, and a USRP N210 RF front-end. The

Fig. 5: Current GRT prototype

Fig. 6: GRT configuration panel

host PC communicates with the FPGA board via a new PCIe
library [10]. The USRP N210 connects to the FPGA board via
the Gigabit Ethernet port.

We use the entire protocol family of 802.11a/g WiFi as
the showcase for the GRT prototype. Our demo includes the
following three scenarios: (1) wireless file transfer between
two GRT systems over the 2.4GHz radio channel with the
data throughput up to tens of Mbps; (2) execution of standard
TCP/IP applications (eg. SSH) without any modification on
GRT; (3) access point (AP) operation mode, where commodity
WiFi devices access the Internet via the GRT-converted AP
over the WiFi channel.

A. Wireless File Transfer over the 2.4GHz Radio Channel

In this demo, we use two GRT systems to transfer files
over the 2.4GHz radio channel, following the 802.11a/g WiFi
standard. In addition, certain parameters of the PHY and MAC
layers can be configured during the demo, such as the center
frequency, channel width, modulation scheme, frame length,
slot time, acknowledgment timeout, etc. Figure 6 shows the
configuration panel.

Figure 7 shows the user-observed throughput during the
file transfer, up to 20.79 Mbps over the radio channel with the
channel width being 12.5 MHz.

B. Running standard TCP/IP applications on GRT

GRT provides a standard Linux network interface card
(NIC) driver. It can thus be readily integrated with the Linux

352

Fig. 7: User-observable throughput in file transferring over
the 2.4GHz radio channel with a 12.5MHz bandwidth

Fig. 8: SSH on GRT

TCP/IP protocol stack. Using this driver, GRT can behave sim-
ilar to a commodity wireless network interface. This enables
the execution of default Linux TCP/IP applications without
modifications on GRT.

Figures 8 shows the execution of the standard application
SSH on GRT.

C. GRT-converted AP for Commodity WiFi Devices

In this demo, we configure GRT to work in the access point
(AP) operation mode, following the 802.11a/g WiFi standard.
We set the SSID of the GRT-converted AP as GRT AP. Com-
modity mobile phones with turn-on WiFi interfaces can then
observe the SSID, and are associated with the GRT-converted
AP. Afterwards, these smartphones can access the Internet over
WiFi via the GRT AP. Figure 9 shows an associated mobile
phone, which is playing an online video clip over the WiFi
channel through the GRT-converted AP.

IV. CONCLUSION

In this work, we have reported our recent effort on building
a reconfigurable platform GRT, which facilitates the research
and development community to quickly validate and refine new
algorithms, protocols, and architectures in communications
and networking. To the best of our knowledge, GRT is the
first system that can meet all four requirements of high
programmability, high performance, backward compatibility,
and seamless integration with TCP/IP. We have described the

Fig. 9: An associated mobile phone playing an online video
clip over the WiFi channel through the GRT-converted AP

system architecture of GRT and the key techniques used by
GRT. We believe that GRT can greatly assist the researchers
in the field of the wireless communication and mobile net-
working and enable fast renovation during the mobile Internet
revolution.

In the demo, we demonstrate the full functionalities of the
802.11a/g WiFi on GRT. They include (1) wireless file transfer
between two GRT systems at the speed of tens of Mbps;
(2) execution of default Linux TCP/IP applications without
changes (e.g. SSH); (3) access point (AP) operation mode,
where commodity WiFi devices access the Internet via the
GRT-converted AP over the WiFi channel.

REFERENCES

[1] Ettus USRP N210. https://www.ettus.com/product/details/UN210-KIT.

[2] Ettus USRP X300. https://www.ettus.com/product/details/X300-KIT.

[3] GNU-Radio. http://gnuradio.org.

[4] Vivado-HLS. http://www.xilinx.com/products/design-
tools/vivado/integration/index.htm.

[5] Warp v3 Kit. http://mangocomm.com/products/kits/warp-v3-kit.

[6] Xilinx AC701 evaluation board. http://www.xilinx.com/products/boards-
and-kits/EK-A7-AC701-G.htm.

[7] Xilinx KC705 evaluation board. http://www.xilinx.com/products/boards-
and-kits/EK-K7-KC705-G.htm.

[8] Xilinx ML605 evaluation board. http://www.xilinx.com/products/boards-
and-kits/EK-V6-ML605-G.htm.

[9] Xilinx VC707 evaluation board. http://www.xilinx.com/products/boards-
and-kits/EK-V7-VC707-G.htm.

[10] J. Gong, T. Wang, J. Chen, H. Wu, F. Ye, S. Lu, and J. Cong. An
Efficient and Flexible Host-FPGA PCIe Communication Library. In
the 24th International Conference on Field Programmable Logic and
Applications (FPL 2014), Munich, Germany, September 2-4, 2014.

[11] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker.
Sora: High-performance software radio using general-purpose multi-
core processors. Commun. ACM, 54(1):99–107, Jan. 2011.

[12] T. Wang, G. Sun, J. Chen, J. Gong, H. Wu, X. Li, S. Lu, and J. Cong.
GRT: a Reconfigurable SDR Platform with High Performance and
Usability. In the 5th International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies (HEART 2014)(will be
published in ACM SIGARCH Computer Architecture News), Sendai
Miyagi, Japan, June 9-11, 2014.

353

