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Abstract—DNNs (Deep Neural Networks) have demonstrated
great success in numerous applications such as image classifi-
cation, speech recognition, video analysis, etc. However, DNNs
are much more computation-intensive and memory-intensive
than previous shallow models. Thus, it is challenging to deploy
DNNs in both large-scale data centers and real-time embedded
systems. Considering performance, flexibility, and energy effi-
ciency, FPGA-based accelerator for DNNs is a promising solution.
Unfortunately, conventional accelerator design flows make it
difficult for FPGA developers to keep up with the fast pace of
innovations in DNNs.

To overcome this problem, we propose FP-DNN (Field
Programmable DNN), an end-to-end framework that takes
TensorFlow-described DNNs as input, and automatically gen-
erates the hardware implementations on FPGA boards with
RTL-HLS hybrid templates. FP-DNN performs model inference
of DNNs with our high-performance computation engine and
carefully-designed communication optimization strategies. We
implement CNNs, LSTM-RNNs, and Residual Nets with FP-
DNN, and experimental results show the great performance and
flexibility provided by our proposed FP-DNN framework.

I. INTRODUCTION

DNNs have brought in profound and revolutionary changes

to the realm of artificial intelligence, and achieved great

improvements in many domains such as computer vision [22]

[13] [15], speech recognition [9], natural language processing

[20], etc. Inspired by the impressive breakthroughs achieved

by DNNs, many researchers in both academia and industry are

longing to solve their problems with powerful DNNs. With

their model accuracy closer to or even better than human,

DNNs are widely deployed at scale in data centers, as well as

in embedded systems like mobile phones and robots.

DNNs are well-known to be computation-intensive and

memory-intensive because of their deep topological structures,

complicated neural connections, and massive data to process.

*Yijin Guan and Hao Liang contributed equally to this work.
†In addition to being a faculty member at UCLA, Jason Cong is also a

co-director of the PKU/UCLA Joint Research Institute and a visiting chair
professor of Peking University.

This research was performed while Yijin Guan, Hao Liang, Shaoshuai Shi
and Xi Chen were interns at Microsoft Research Asia.

Due to these characteristics, it is challenging to achieve high

performance and good energy efficiency when mapping DNNs

onto generic computing system. To solve this problem, many

hardware accelerators for DNN inference have been investi-

gated recently. Among these designs, FPGA-based accelerators

have gained great popularity because of their outstanding

flexibility, performance and energy efficiency.

Unfortunately, hand-coded FPGA-based accelerators face

both productivity and programmability challenges for mapping

DNNs in real applications. On the one hand, the design

and optimization of FPGA-based accelerators require much

experience and expertise. It may cost a professional hardware

developer several weeks to map a DNN model onto FPGAs,

even with the help of high-level synthesis tools. For DNN

designers, there are no programming interfaces or libraries

(like cuBLAS and cuDNN in NVDIA GPUs) to easily map

their model onto FPGAs. On the other hand, prior work on

FPGA-based accelerators for DNNs focused on accelerating

certain type of layers [28] or certain models [23] [19]. Since

DNNs evolves rapidly, various model structures and optimiza-

tion techniques are emerging so fast that re-designing FPGA-

based accelerator for every new model or technique is quite

inefficient.

According to the analysis above, there is a strong demand

for an easy-to-use framework that can automatically map

DNNs onto FPGAs. In this paper, we propose FP-DNN,

which takes symbolic descriptions (in TensorFlow) of DNNs

as input, and outputs implementations of the corresponding

FPGA-based accelerators for model inference. We implement

accelerators with RTL-HLS hybrid templates, and convert

model inference into general-purpose computations like matrix

multiplication. Several optimization kernels are developed and

invoked to ensure the functionality, performance and energy

efficiency of the accelerator. The entire compilation procedure

is end-to-end and automated, which makes it possible for all

DNNs researchers and users to use FPGA as a powerful device

to perform model inference.

We make the following contributions in this paper:
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• We build a framework that automatically maps DNNs

onto FPGAs for model inference. Compared with pre-

vious accelerating work, this automated framework can

save design time significantly.

• We divide the operations involved in model inference

into computation-intensive part and layer-specific part.

We implement high-performance matrix multiplication

kernel for the computation-intensive part, and carefully

optimize communication bandwidth for the layer-specific

part. FP-DNN automatically generates the hardware im-

plementation with RTL-HLS hybrid templates.

• Our framework can support almost all types of DNNs,

and we implement several DNNs (CNNs, LSTM-RNNs,

and Residual Nets) as case studies. FPGA-based acceler-

ators generated by this framework can achieve good per-

formance and energy efficiency. To the best of our knowl-

edge, this is the first literature to implement ResNet-152

on FPGA. Such a design has demonstrated flexibility,

scalability and productivity of our FP-DNN framework.

The rest of this paper is organized as follows: Section

II reviews some related work on DNNs and FPGA-based

automated frameworks. Section III describes the architecture

of our proposed FP-DNN framework. Then, the hardware

implementation details are provided in Section IV. In Section

V, we show the experimental setup and results of our case

studies. At last, Section VI concludes this paper.
II. RELATED WORK

A. Deep Neural Networks
DNNs have evolved into a big community, and many

interesting and powerful models have been proposed. They

have achieved great success in computer vision, speech recog-

nition, scene analysis, etc. Typically, DNNs can be divided

into several categories. By topological structure, we can di-

vide these models into Artificial Neural Networks, Recurrent

Neural Networks, Residual Nets, etc. All these models are

comprised of several neural layers, so by type of layers, there

are convolutional layers, LSTM layers, fully-connected layers,

recurrent layers, pooling layers, activation layers, etc. A single

DNN can choose any topological structure mentioned above,

and it may includes several types of layers in its configuration.

So this results in a huge design space of possible model

structures.
Currently, many open-source frameworks have been re-

leased for DNN research: TensorFlow [5], Caffe [14], Theano

[6], Torch [4], CNTK [3], etc. TensorFlow is one of the most

popular DNN frameworks. It constructs DNNs in python/c++

front-end as a data flow graph with a operation library,

and performs computation on the graph. TensorFlow support

various types of DNNs (ANN/CNN/RNN/...) as well as other

scientific computation. We appreciate the concepts of tensor

and data flow graph in TensorFlow, and choose TensorFlow

as the high-level descriptions for DNNs in FP-DNN.

B. FPGA-based Automated Frameworks
Accelerating the inference phase of DNNs on FPGAs has

been a hot research topic, and many automation tools or

frameworks have also been proposed. Among these designs,

[16] [21] [27] and [25] are four representatives.

In [16], Mahajan et.al proposed TABLA, a template-based

framework for accelerating statistical machine learning. They

focus on accelerating the training phase by automatically

generating the corresponding accelerators for stochastic gra-

dient descent with Verilog-based templates. [21] proposed

DNNWEAVER, a framework that automatically generates a

synthesizable accelerator for a given (DNN, FPGA) pair.

And they generates accelerators using hand-optimized design

templates (RTL-based). In [27], Zhang et.al proposed Caf-

feine, a hardware/software co-designed library to accelerate

convolutional neural networks on FPGAs. And they propose

to accelerate convolutional layers and fully-connected layers

with a uniformed representation. [25] proposed DeepBurning,

an automation tool to generate FPGA-based accelerators for

NN models. DeepBurning compiles DNNs described in a

Caffe-like script and generates the corresponding RTL-level

accelerator under user-specified constraints.

III. FRAMEWORK

A. Overview

The overall FP-DNN framework is shown in Figure 1.

Model description, usually in the format of protobuf gener-

ated by TensorFlow, is fed into our Symbolic Compiler. The

compiler generates C++ program and FPGA programming

bitstream, which are executed by the Host and Device re-

spectively for model inference. Inside the Symbolic Compiler,

Model Mapper analyzes the model description, and extracts

topological structure and operations of the target model.

After optimizations and parameterization for the hardware

implementation, Model Mapper outputs the hardware kernel

schedule and kernel configuration to the code generators.

Software Generator uses kernel schedule to generate the host

code in C++. The host code is compiled by commercial C++

compiler to generate host programs. With kernel configura-

tion, Hardware Generator generates the device codes by in-

stantiating RTL-HLS hybrid templates. Commercial synthesis

tools compile these hardware codes to get the programming

file for final hardware implementation. The whole FP-DNN

framework works in an “end-to-end” manner: from software-

based model descriptions to FPGA-based model inference

implementations. This procedure is all done automatically

without any human intervention.

B. Model Mapper

Model Mapper analyzes model description to map the model

onto hardware platform, and it generates the schedule and

configuration for hardware kernels. Figure 2 shows an example

of the working flow of Model Mapper. Figure 2a shows

the example python code snippet in TensorFlow describing

a CNN model, which contains three convolution layers. The

pooling and activation layers are omitted for simplicity. The

corresponding Data Flow Graph generated and executed by

TensorFlow is shown in Figure 2b, where computation and

data are shown as operating nodes and tensors respectively.
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Fig. 2: Working Flow of Model Mapper

Fig. 1: FP-DNN Framework

The Model Mapper uses the model description to extract infor-

mation about model structure and configurations of each layer.

Although storing model parameters and intermediate results

in on-chip BRAM can significantly improve performance, we

do not have enough on-chip BRAMs on a single FPGA to

store all of them for modern DNNs. As a result, we have

to allocate data buffers in off-chip DDR memory for storing

intermediate activations and model parameters. Then, Model
Mapper generates an Execution Graph shown in Figure 2c,

which shows ideally how the model inference is performed

on hardware.

However, this Execution Graph can not be mapped onto

FPGAs directly due to the limitation on computation resource

and DRAM storage of modern FPGAs. So we propose to adapt

resource reuse strategies to allocate hardware resources reason-

ably. To reuse computation resource, Model Mapper allocates

only one hardware kernel, which will perform model inference

layer by layer. Thus, in the example shown in Figure 2, only

one convolution kernel is allocated. For storage resource reuse,

Model Mapper allocates several physical buffers in DRAM

as a memory pool, and we aim to minimize the number of

physical buffers in final implementation. We formulate the data

buffer reuse problem as a graph coloring problem.

During model inference, each data buffer has a range of time

during which its contents must be kept intact. Thus, any two

data buffers whose life spans intersect can not be placed in the

same physical buffer. We construct an interval graph in which

each vertex represents a data buffer. For any two data buffers

whose life spans intersect, we connect their vertexes with an

edge. We need to color this graph with minimum number of

distinct colors so that no adjacent nodes are assigned the same

color, which indicates that the data buffers with the same color

can be assigned to the same physical buffer. The coloring

problem for an interval graph can be solved optimally by left-

edge algorithm in polynomial time. An algorithm description

for applying left-edge algorithm in Model Mapper for physical

buffer allocating is shown in Algorithm 1.

Algorithm 1: Physical Buffer Allocating Algorithm
Input: Initial Data Buffer Graph(G), and Data Buffers(V )
Output: Physical Buffer Allocations
Denote the left-edge and right-edge of the interval corresponding
to data buffer vi’s life span as li and ri respectively;
Sort V in ascending order of left-edge to get V ′;
# of physical buffers = 1;
while not all v in V ′ have been allocated do

R = 0;
while ∃ vi in V ′ with li>R do

vx = first v in V ′ with lx>R;
R = rx;
allocate vx with current physical buffer;
V ′ = V ′ - vx;

# of physical buffers += 1;

With carefully designed resource allocation strategies,

Model Mapper outputs the kernel schedule and kernel config-

uration, which are shown in Figure 2d. In this example, only

one convolution kernel will be allocated for computation, and

two physical buffers are allocated for intermediate data storing.

C. SW Generator and HW Generator

SW Generator takes kernel schedule to generate the C++

codes for Host, which are in charge of kernel execution

scheduling, model initializing, data buffer managing, etc. SW
Generator instantiates a host code template with some key

parameters extracted by Model Mapper, like the number of

kernels, the number of physical buffers, kernel execution order,

and so on. This host code is written in C++, and can be

compiled by any commercial C++ compiler.
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HW Generator is in fact a library of RTL-HLS hybrid

templates for various types of layers. We use RTL-HLS

hybrid templates instead of pure RTL templates or pure HLS

templates for the following reasons: Compared with HLS,

RTL designs usually utilize resources more efficiently, but

it is well-known that RTL design is quite hard and time-

consuming. HLS tools receive designs programmed in high-

level programming languages (C, C++, OpenCL, etc.), then

compile them into FPGA programming files. HLS design

has a better abstraction for external modules or interfaces

(like off-chip DRAM), which makes it easier and faster to

implement complex control logics. However, currently HLS

designs cannot explore as much fine-grained optimization as

those in RTL designs.

To fully utilize the advantages of both design approaches,

we take an RTL-HLS hybrid approach for template design:

we use RTL for designing a high-performance computation

engine, and we use the OpenCL-based HLS framework to

implement the control logics for the RTL part. With the kernel

configuration generated by Model Mapper, HW Generator
instantiates the corresponding optimized kernel template to

generate the hardware codes for Device. The RTL part of these

kernel templates are written in Verilog, and the HLS part is

written in OpenCL-based HLS. The generated hardware codes

can be compiled by commercial synthesis tools for FPGA

implementation. The library of kernel templates can be further

extended when new types of model layer emerge.

We focus on PCI-e based systems for its popularity in data

center computing systems. Data communication between Host
and Device are accomplished through a PCI-e slot, and this slot

is also used to power on and program FPGA. Inside FPGA,

hardware kernels are compiled and invoked by Host to perform

computation.

IV. IMPLEMENTATION

The great complexity and variability of DNN structures have

brought big challenges to generating hardware for each of

them individually. It is well-known that DNNs are always

constructed by stacking layers. These layers share similar

structure in the computation-intensive part, which can always

be expressed as or converted into matrix multiplication. As

a result, we divide the operations involved in each layer

into computation-intensive part and layer-specific part, and

implement the computing architecture shown in Figure 3 on

FPGA board.

For the computation-intensive part, we use a layer-

independent matrix multiplication kernel (MM) to perform

the calculations. For the layer-specific part, we use a Data
Arranger to perform data communication with DRAM di-

rectly, and it communicates with MM through on-chip chan-

nels. We store the model configuration file in DRAM. This

configuration file includes information of model topological

structure, layer specifications, etc. During model inference,

Data Arranger accesses this configuration file, and parses it to

schedule data accessing and kernel execution. In the following

subsections, we will present computation-intensive part and

Fig. 3: Overall Architecture of Accelerator
layer-specific part respectively, then we will introduce the

communication optimizations in detail.

A. Computation-Intensive Part
Considering code efficiency and hardware performance, we

implemented MM using Verilog. Accelerating matrix multipli-

cation has been a classical problem in the FPGA society, and

massive optimizations have been adopted. To better explore

the data locality, and make the limited DRAM bandwidth of

modern FPGA board match the computing power of MM, we

take advantage of the tiling strategy to perform matrix multipli-

cation. To insure the multiplication is correctly performed in a

tiling manner, we pad zeros to input matrices if any dimension

of them is not divisible by its tiling size.
MM takes in two tiles of input matrices, and performs

the tiled multiplication vector by vector. All the input data

are fed into multipliers simultaneously, then the intermediate

results are summed up through a reduction tree to minimize

the computing latency. Besides, we use double buffers for

the input tiles, and these buffers operate in a ping-pong

manner to overlap data communication with computation,

which significantly improve the throughput of MM.

B. Layer-specific Part
DNNs are constructed by many different types of layers,

and the computation and data accessing pattern vary among

these layers, so the strategies for converting them into matrix

multiplication are also quite different. In the following sub-

sections, we provide details about the operations performed

in typical layers, what the computation-intensive part is, and

how the MM kernel is reused.
1) Convolutional Layers: Convolutional layers are over-

whelmingly popular in applications like image recognition,

object detection, object classification, etc. Suppose we have

Nin input channels and Nout output channels. The size of

each convolution kernel is K ×K, and sliding stride is set to

S. The computation during inference phase can be summarized

as Equation 1 (bias adding is omitted for simplicity).

out[x][y][z] =

Nin∑

i=1

K∑

j=1

K∑

k=1

(in[i][y× S + j][z × S + k]×W [x][i][j][k]) (1)

To perform the computation in convolutional layers with

the MM kernel, we need to convert the convolution operations
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into matrix multiplication. Firstly, we need to turn the input

features from a 3-D array into a 2-D array that we can calculate

as a matrix. To get a single feature in an output channel, we

need to convolve a 3-D cube of input features (also known

as a patch) with the corresponding convolution kernels. So

we take each one of these input patches and flatten them

into a single row of input matrix. This operation is known

as Im2col (image to column), which is widely applied in prior

CPU and GPU studies [7]. With the input features being in

a matrix form, we can do similar conversions for convolution

kernels by partitioning the corresponding 3-D cubes into a

single column of kernel matrix. According to the rules of

matrix multiplication, each output channel is serialized into

a column of output matrix.

2) LSTM Layers: In recent years, Long Short-Term Mem-

ory (LSTM) has gained great success in Recurrent Neural Net-

work (RNN) design. Numerous variants of LSTM structures

have been proposed, while [10] finds that all these variants

show little difference in model accuracy. In FP-DNN, we

implement the LSTM cell used in [26], which is also supported

in TensorFlow. The input of LSTM layer is the combination of

input vector at current time-step (int) and hidden layer vector

at previous time-step (ht−1). Then LSTM layer multiplies

input with different weight matrices to get the output vectors

of four gates: input gate (It), forget gate (Ft), output gate (Ot),

and cell gate (C̃t). Then these output vectors generate the final

output vector of LSTM layer with the cell memory of previous

time-step (Ct−1) through element-wise operations (element-

wise addition, multiplication, and activation). The computation

performed in LSTM layers is generally shown in Equation 2

to Equation 6, where sig() represents sigmoid function.

It[x] = sig(

Nin∑

i=1

int[i]×Wini[x][i] +

Nh∑

i=1

ht−1[i]×Whi[x][i] +Bi[x]) (2)

Ft[x] = sig(

Nin∑

i=1

int[i]×Winf [x][i]+

Nh∑

i=1

ht−1[i]×Whf [x][i]+Bf [x]) (3)

C̃t[x] = tanh(

Nin∑

i=1

int[i]×Winc[x][i]+

Nh∑

i=1

ht−1[i]×Whc[x][i]+Bc̃[x]) (4)

Ot[x] = sig(

Nin∑

i=1

int[i]×Wino[x][i]+

Nh∑

i=1

ht−1[i]×Who[x][i]]+Bo[x]) (5)

ht[x] = Ot[x]× tanh(Ft[x]× Ct−1[x] + It[x]× C̃t[x]) (6)

From the equations above, we can see that the computation-

intensive part of LSTM layers is matrix to vector multiplica-

tion. Considering vector as a matrix(length at one dimension

set to 1), we can map LSTM layer inference to MM.

3) Fully-Connected Layers: Fully-Connected layer outputs

a vector (out) with input vector (in) and weight matrix (W ).

Fully-connected layers are also widely deployed in ANNs and

classifiers in DNNs. As a result, we design a uniform template

for all these layers. The inference phase of fully-connected

layers can be summarized as Equation 7. The computation-

intensive part is matrix to vector multiplication. Thus, we can

re-use MM kernel to perform it.

out[x] =

Nin∑

i=1

in[i] × W [x][i] + B[x] (7)

4) Other layers: Recurrent layer inside simple RNNs (not

using LSTM) is actually constructed by adding recurrent con-

nection to fully-connected layer, so the computation-intensive

part of both layers is the same. Thus, we can also map

recurrent layers to MM as we do for fully-connected layers.

Activation layers are always element-wise functions applied

to the features, and typical activation functions include tanh(),
sigmoid(), ReLU(). Thus, before the layer outputs are of-

floaded to DRAM, we perform activation functions directly

instead of mapping them to MM.

Pooling layers extract input features through a sliding win-

dow, and choose the average or maximum of this window as

output. So there is little computation involved in pooling lay-

ers, and there is no need to map them to MM. Before outputs

are offloaded to DRAM, pooling operations are adopted.

C. Communication Optimization

Since our computation kernels need to communicate with

off-chip DRAM for inputs and outputs, the achieved band-

width is also an important factor to be considered in system

design, especially in bandwidth-limited platforms like FPGAs.

Previous studies [28] [27] showed that the effective DRAM

bandwidth can be raised up by increasing the DRAM burst

length. In our on-board test, discontinuous access to DRAM

will results in limited burst length, which will degrade the

achieved bandwidth to ∼1GB/s. While performing continuous

access to DRAM will improve the achieved bandwidth to

∼8GB/s. To prevent I/O from becoming a serious bottleneck

of the overall performance, we propose several methods to

optimize effective DRAM bandwidth for different layers.

1) Convolutional layers: For communication optimizations

in convolutional layers, we use Figure 4 as a simplified

example to illustrate the problems and our solutions. In this

example, we set the number of input channels as 8, and each

channel has 3×3 elements, so we get 72 input elements in

total. The size of convolution kernel is 2×2, and the sliding

stride is 1. According to the Im2col operations introduced

in Section IV.B.1, we can convert the input features into

an Input Matrix, and we divide this matrix into 4×2 equal

tiles. In Figure 4, we show three different layout schemes for

comparison: Im2col, Row-major and Channel-major. For each

scheme, we show its DRAM layout and DRAM accessing

pattern for the first tile.

Im2col: As Figure 4a shows, we can store the entire

Input Matrix on DRAM by flattening each tile, and insure

continuous accessing. However, it is obvious that this scheme

stores the whole Input Matrix (128 elements) in DRAM, which

requires data duplication for adjacent sliding windows. The

data duplication brings great overhead on memory footprint,

which should be avoided. Besides, to offload the outputs of

this convolutional layer as inputs for the following layers, extra

operations for data reorganizing and duplication are needed.

Row-major: A straight-forward way to avoid data dupli-

cation is: for each channel of Input Features, we can store

the elements in a row-major manner. We show this scheme

in Figure 4b. So this scheme stores 72 elements in DRAM
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Fig. 4: Layout Optimization

in total, which means there is no data duplication. But we

can find that it takes two DRAM bursts to fetch the first

tile, which indicates discontinuous DRAM accessing. And

this discontinuous accessing pattern will degrade the effective

bandwidth. Similar to Im2col, offloading the outputs still

requires extra operations.

Channel-major: Different from Row-major, Channel-major
stores Input Features in a channel-major manner. Thus, Input
Matrix needs to be reorganized correspondingly: each row

(input patch) is also flattened in a channel-major manner.

The contents of reorganized first tile is also shown in Figure

4c. So there are in total 72 elements stored in DRAM for

Input Features without any data duplication. And DRAM

is also accessed continuously for fetching input elements.

Furthermore, in this scheme, the outputs are also generated in

a channel-major manner, which indicates no extra operations

for data reorganizing or duplication are needed.

With the comparison above, we choose to use the Channel-
major scheme to optimize communication of convolutional

layers. Along with the Channel-major scheme, weight matrix

also needs to be adjusted accordingly, but the overhead brought

by this can be ignored since weights are pre-trained and these

adjustments can be applied before model deployment.

2) LSTM Layers & Fully-Conneted Layers: According

to the algorithm descriptions in Section IV.B.2 and Section

IV.B.3, the computation-intensive part of LSTM layers and

Fully-connected layers mainly includes matrix to vector mul-

tiplication. Unfortunately, the matrix to vector multiplication

is inefficient in terms of data locality, because every weight

element fetched from DRAM is used only once for a single

inference. Thus, most of the inference time are spent on data

communication. This indicates that performing model infer-

ence directly with MM kernel will bring much performance

loss. To perform these computations with MM efficiently,

we propose to batch input vectors together. In this batching

way, every element of weight matrices is reused, and we

actually convert matrix to vector multiplication into matrix

multiplication, which can be efficiently accomplished by the

MM.

3) Other layers: The computation-intensive part of recur-

rent layers is matrix to vector multiplication, which is the

same as LSTM layers and fully-connected layers. So we apply

similar batching scheme to optimize DRAM communication

for them. Other layers like pooling layers and activation layers

do not need much data communication with DRAM, so no

communication optimization is applied.

D. Data Quantization

Note that numerous prior works [11] [12] have shown that

the accuracy of DNNs is robust enough with a decrease in

data precision. Many previous works on accelerating DNN

inference [23] [19] used fixed-point parameters in their de-

signs for performance improving and resource saving, and

this optimization is also called data quantization. So in our

implementation, we support implementing fixed-point versions

of the target model. Designers using our FP-DNN framework

can specify the fixed-point precision by simply using the “-
fixed point” compilation option in our Symbolic Compiler. In

practice, data quantization is done off-line, and the accuracy

loss brought by data quantization should be estimated and

tested by the users of FP-DNN in advance.

V. EVALUATION

A. Experimental setup

In FP-DNN, Symbolic Compiler is written in C++ and

OpenCL. The HLS code is synthesized by Altera OpenCL

Offline Compiler (AOC) [1] (v16.0). HLS-synthesized RTL

code is combined with hand-written RTL code and then fed

to Quartus 16.0. The code running on the host is written in

C++, and compiled with Visual Studio 2013.

For the FPGA platform, we use Catapult [18] system

with Altera Stratix-V GSMD5 FPGAs integrated. We use the

PikesPeak version of Catapult in our experiments, which has a

4GB DDR3 DRAM as the external memory. The FPGA logic

clock frequency is at 150MHz, and the run-time power of the

FPGA board is about 25W. This FPGA board is plugged into

a PCI-e Gen2 x8 slot of a host computer.

For performance comparison, we use TensorFlow(r0.9) to

run model inference on both CPU and GPU. We use a server

that includes 2 processors for the CPU implementation, and

each processor is a 8-core Xeon E5-2650v2@2.6GHz with

a 40MB L3 cache, and the thermal design power (TDP) is

95W. The GPU is an NVIDIA GeForce GTX TITAN X,

which has 3072 cuda cores and 12GB GDDR5 memory. The

run-time power of it is about 250W. Both CPU- and GPU-

implementations run with batch size set to 256.

B. FPGA Resource Utilization

The resource utilization of our MM implementations are

shown in Table II. Among all the utilized resources, the Cat-

apult Shell (responsible for peripheral interfaces and memory

management) and matrix multiplication module are in Verilog,
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TABLE I: CNN Performance Comparison with Prior Work

[23] [19] [27] Our Imp.
FPGA chip Stratix-V GSD8 Zynq XC7Z045 Virtex-7 690T Stratix-V GSMD5
Frequency 120 MHz 150 MHz 150MHz 150 MHz
Precision fixed8-16 fixed16 fixed16 fixed16

DSP Utilization 727/1963 780/900 2833/3600 1036/1590
Overall GOP/S 117.8 137.0 354.0 364.4

TABLE II: Resource Utilization of MM

Precision float32 fixed16
Logic 164100(95%) 42349(25%)

BRAM 1343(67%) 919(46%)
DSP 264(17%) 1036(65%)

and they take most of the resources. Our Data Arranger
implemented in OpenCL is very efficient and only takes 2%

Logic, 2% BRAM and almost negligible number (8) of DSPs.

C. MM Performance

MM is the major build block of our FPGA-based model

inference computation, so we compare the performance of our

MM kernel with other state-of-the-art implementations first.

We show the performance (in GOP/S, giga operations per

second) of our implementations, Intel MKL [24] and Altera

example design [2] for matrix multiplication in Figure 5. Our

implementations and Altera example design run on the same

FPGA board, and Intel MKL runs on the CPU where all 16

physical cores are fully occupied.

We first evaluate square matrix multiplication in Figure

5a. Among the three implementations on FPGA, our fixed16

implementation achieves the highest performance, and its

advantage over the other two implementations accumulates

when the matrix size grows. When compared with Intel MKL

implementation, our fixed16 implementation runs faster when

matrix is small, and MKL only perform better than our

implementation when matrix size grows over 4096.

The observation is further confirmed by a wider space ex-

ploration of a square matrix to rectangle matrix multiplication

in Figure 5b. MKL performs nicely when both matrices are

large enough on dimensions, but if the rectangle matrix is very

long or very wide, our implementation clearly outperforms

MKL, which is usually the case for fully-connected layers

and convolutional layers after Im2col operations. In another

perspective, the MKL performance is achieved when all phys-

ical core are fully occupied, which could hinder other tasks

from being executed in time.

D. DNN Performance

To show the performance of our FP-DNN framework on

a complete model, we compare our CNN implementations

with previous accelerators, as shown in Table I. We imple-

ment VGG-19 [22], which has 16 convolution layers, 3 fully

connected layers and 5 max pooling layers. Since state-of-the-

art designs use fixed-point numbers in their implementations,

we compare our fixed-point version with them for a fair com-

parison on performance and resource utilization. The works in

[23], [19] and [27] all take the HLS approach (OpenCL-based

in [23], C/C++-based in [19] and [27]) for FPGA design. [23]

(a) Square Matrix Multiplication

(b) Square Matrix to Rectangle Matrix Multiplication

Fig. 5: MM Performance Comparison

use an existing matrix multiplication kernel (Altera example

design) to perform convolution.[19] design customized convo-

lution kernel for convolutional layers. [27] designed uniformed

covolution kernel for both convolutional layers and fully-

connected layers. Different from them, our FP-DNN performs

convolution with a generalized MM kernel, which is designed

and optimized under certain hardware constraints. From Table

I, we can conclude that the implementations generated by

our FP-DNN framework achieve state-of-the-art performance

even when compared with hand-coded accelerators which are

optimized for certain models. Furthermore, we take the DSP

utilization into consideration, and compare our design with the

other implementations. It is obvious that our designs perform

much better, and use hardware resource more efficiently.

E. Cross-Platform Comparison

To show the great performance and energy efficiency pro-

vided by our FP-DNN framework, we compare our imple-

mentations with those on CPU and GPU in Table III. We use

TensorFlow(r0.9) to run the CPU- and GPU- implementations.

We implement several DNNs as benchmarks: VGG-19 [22]
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TABLE III: Performance Comparison on Different Platforms

Model VGG-19[22]
Platform CPU GPU FPGA
Pecision float32 float32 float32 fixed16
Accuracy 89.99% 89.99% 89.99% 89.9%
GOP/S 119 1704 81 364.36
GOP/J 0.63 6.82 3.24 14.57
Model LSTM-LM[26]

Platform CPU GPU FPGA
Pecision float32 float32 float32 fixed16

Perplexity 78.42 78.42 78.42 78.42
GOP/S 103 1828 86 315.85
GOP/J 0.54 7.31 3.44 12.63
Model Res-152[13]

Platform CPU GPU FPGA
Pecision float32 float32 float32 fixed16
Accuracy 93.84% 93.84% 93.84% 93.83%
GOP/S 119 1661 73 226.47
GOP/J 0.63 6.60 2.92 9.06

(CNN), LSTM-LM [26] (LSTM- RNN), Res-152 [13] (Resid-

ual Net). Performance is evaluated in GOP/S, and energy

efficiency is evaluated in GOP/J (giga operations per joule).

We applied data quantization strategies to all three models,

and compared the model accuracy between 32-bit floating-

point (float32) and 16-bit fixed-point (fixed16) in Table III.

We report the top-5 accuracy of VGG-19 and Res-152 on

ImageNet dataset [8]. Higher accuracy indicates the model

performs better in the image recognition task. Perplexity of

LSTM-LM on PTB dataset [17] is used to evaluate the model.

The lower the perplexity is, the better the model performs

in the language modeling task. We observe that fixed16

implementations are sufficient for all the networks.

We also compare implementations generated by FP-DNN

with other implementations in performance. When we use full-

precision (float32) data, the implementation generated by FP-

DNN is slower than the implementations on CPU. When the

data precision is lowered to fixed16, FP-DNN implementations

are faster than CPU implementations by about 1.9x∼3.06x. We

observe that FP-DNN cannot compete with GPU implemen-

tations in performance. Regarding energy efficiency, FP-DNN

implementations is always better than CPU implementations

in all models and precisions. And FP-DNN can easily beat

GPU implementations when the data precision is lowered to

fixed16.
VI. CONCLUSIONS

In this paper, we propose FP-DNN, a framework that

automatically maps DNNs onto FPGAs to accelerate model

inference. FP-DNN analyzes model descriptions to perform

model mapping and code generating, then it implements

model inference with high-performance computation engine

and carefully-designed communication optimization strategies.

Our case studies show the great performance and effectiveness

achieved by FP-DNN.
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