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Abstract. Currently, the popularization of flash memory is still limited
by its high price and low capacity. Thus, the magnetic disk and flash
memory will coexist over a long period of time. How to design an ef-
fective flash-hard disk hybrid storage system emerges as a critical issue.
Most of the existing works are designed based on traditional cache man-
agement approaches by taking the characteristics of flash into considera-
tion. In this paper, we revisit the existing hybrid storage approaches and
propose a novel probabilistic data replacement strategy for flash-based
hybrid storage system, named HyPro. Different from traditional deter-
ministic approaches, our approach moves the data probabilistically based
on the data access pattern. Such a method can statistically achieve a good
performance over massive memory operations of modern workloads. We
also present the detailed data replacement algorithm and discuss how
to determine the probability of data migration in the storage hierarchy
consisting of main memory, flash, and hard disk. Extensive experimen-
tal results on various hybrid storage systems show that our method can
yield better performance and achieve up to 50% improvements against
the competitors.

1 Introduction

Although most of the people believe that the magnetic disk will be replaced by
flash-based solid state drives (SSD) in the future, currently the popularization of
flash memory is still limited by its high price and low capacity. Hence magnetic
disk and flash memory will coexist over quite a long period of time. From the
comparison in Table 1, flash displays a moderate I/O performance and price per
GB between DRAM and hard disk. Consequently, it is straightforward to adopt
flash memory as a level of memory between the HDD and main memory because
of its advantages in performance [18,19]. The flash-hard disk hybrid storage is
more and more adopted. Seagate provides a mixed storage hard disk with 4GB
flash chip to improve the overall performance [2]. Windows operating system
support Quick Boost from vista to accelerate the booting [1]. In addition, some
companies start to replace some of the hard disk to SSD to build a hybrid storage
system. In this case, how to design an effective flash-hard disk hybrid storage
system emerges as a critical issue.
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Table 1. Comparison on different storage media

Price(�) Capacity(GB) Price(�)/GB Read(µs) Write(µs)

DRAM(DDR3) 23.99 4GB 6.00 1 1

SSD 114.00 64GB 1.78 271 2012

Disk(7.2K) 119.99 1TB 0.12 12700 13700

The data migration among main memory, flash and disk is the most important
issue in hybrid storage design. Many works has been done on this problem.
TAC [7](Temperature-Aware Caching) adopts temperature to determine page
placement. In TAC, a global temperature table is maintained for each page.
The temperature of a page is decided by its access numbers and patterns in a
period. The pages with higher temperature are placed in main memory and flash
memory while a cold page evicted from main memory will be replaced to disk.

In contrast, the LC [11](Lazy Cleaning) and FaCE [13](Flash as Cache Exten-
sion) always cache a page exit from main memory to flash memory. LC handles
flash memory as a write-back cache. The dirty pages are kept on flash first and if
the percentage of dirty pages exceeds a threshold, these pages will be flushed to
disk. Whereas FaCE proposes FIFO replacement for flash memory management
which is an ideal pattern for flash write. In this way, FaCE can improve the
throughput and shortens the recovery time of database.

All the above methods are all in deterministic way. In some cases, such deter-
ministic migration policy is really inefficient. For example, in some cases, pages
are only accessed once, and thus it is suboptimal to keep these cold pages on the
flash memory as designed in LC and FaCE. The temperature method in TAC
works well on hot page detection with stable pattern. However, on a workload
changing, TAC takes a rather long time to forget the history and learn the new
pattern. Another disadvantage of TAC is its high time and space consumption.

In order to overcome the problems in prior approaches,we propose a probability-
based policy named HyPro to manage data storage and migration in the storage
hierarchy, which is composed of main memory, SSD and HDD. In our approach,
the priority of data in each level of the hierarchy is maintained separately. The key
difference from prior work is that the data migration among different levels are no
longer deterministic but based on probabilities. Compared to prior deterministic
approaches, HyPro has several advances:

– Better management efficiency. The probabilistic data migration can be con-
sidered as a statistical frequency-based implementation. Since existing cache
policies can also be applied to SSD in our approach, HyPro is a seamless
combination of the cache management and frequency-based migration poli-
cies, which can achieve better management efficiency so that the total I/O
performance can be improved.

– Less unnecessary data replacement. For deterministic approaches, there may
be some unnecessary data movements for cold pages. In our stochastic based
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scheme, such unnecessary data replacement can be effectively eliminated
with the control of probabilities.

– Lower overhead. To achieve the hot page detection, prior work needs to
maintain a global list to identify the hottest and coldest pages. The space
complexity is O(n) and the time complexity of the maintainable no less than
O(log(n)), where n is the number of all pages accessed including those on
the disk. In our approach, the space complexity is negligible and the time
complexity is O(1).

The remainder of the paper is organized as follows. Related work is described
in Section 2. Section 3 describes our framework. Parameter tuning method is
presented in Section 4. Experimental results are shown in Section 5, and we
make a conclusion in Section 6.

2 Related Work

Nowadays, flash-based hybrid storage has been gradually recognized as an eco-
nomical way for a practical system by more and more people. Some hard disks
leverage a small flash memory to improve I/O performance [5]. With the incre-
ment on the capacity, SSD is more and more widely deployed in storage systems.
The early SSD is skilled in reading but uncompetitive in writing. Thus migra-
tion methods [19,14] are proposed to dynamically transfer read intensive pages to
flash and write intensive ones to disk. Recently, SSD thoroughly surpasses disk on
both read and write speed, and hence the popular method is to adopt flash as a
middle-level cache between disk and main memory. Existing work includes static
deployment and dynamic loading. An object placement method [6] is developed
to give a proper deployment for the components of DBMS. By comparing the
object performance on SSD and disk beforehand, those with higher benefit per
size are chosen to place on SSD. Other methods suggest putting certain part of
the system to flash. FlashLogging [8] illustrates that storing the log of DMBS to
flash can largely improve the overall performance. Debnath et al. propose [9,10]
FlashStore and SkimpyStash to discuss the proper way to put the key-value
pair to SSD. The static methods need to know the specific information about
the application and is not self-adaptive to various environments. Some methods
based on dynamically page transferring are proposed. TAC(Temperature-Aware
Caching) [7] is the dynamic version of object placement strategy. It allocates
temperature to the extents according to access pattern and I/O cost and keeps
the data with higher temperature to higher level of the storage structure. Re-
searchers from Microsoft [11] discuss several possible designs for hybrid storage
methods. According to testing the LC(Lazy-Cleaning) is the best design. LC
method shows better performance than TAC on write intensive traces and sim-
ilar on read-intensive traces. hStorageDB [16] adopts semantic information to
exploit the capability of hybrid storage system, which is from another aspect to
solve the hybrid storage problem. FaCE [13] proposes to use the flash in FIFO
manner to improve throughput and provide faster recovery.
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3 Probabilistic Framework

3.1 The HyPro Approach

The typical structure of a hybrid storage system is illustrated in Figure 1. All the
data is stored on hard disk and organized as data pages. A page need to be loaded
into main memory before being accessed. Since flash has better performance
compared to disk, it works as the level between main memory and disk. When
a page miss happens in main memory, the flash will be checked first. The disk
is only accessed when the page is not found in the flash.
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Fig. 1. Illustration of hybrid storage system

In this system, the data placement and migration is a critical issue to achieve
better performance. In this part, we introduce our probabilistic approach for
hybrid storage management, named HyPro. The overall structure of HyPro is
shown in Fig 2. In our framework, the pages in main memory and flash memory
are exclusive from each other. In other words, we do not keep a page in flash
memory if it is already in main memory.

In the HyPro, we adopt two probabilities to control the data migration. If
some of the pages on flash are frequently accessed, it’s better to be elevated
to main memory. We call this process elevation. Once the elevation happens
we have to evict a page from main memory. Obviously, the elevation should be
managed carefully so that the benefits of accessing hot pages can offset the I/O
cost overhead caused by data movement. In our probabilistic data management,
we use a probability named pelevate to control the elevation frequency. As shown
in Fig 3, when a page is accessed, it has the chance of pelevate to be kept in
main memory; otherwise, this page will be evicted on the next data access. It is
obvious that the page has more chance to be elevated if it is more frequently used.
Hence, real hot pages are detected and promoted into main memory statistically
during a long runtime. In each elevation, a cold page in main memory need to
be evicted to flash and placed in the original space of the elevated page.

In the HyPro, some page may be evicted from the main memory, which we
name sinking operation in this paper. At first glance, this page is likely to be
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hotter than pages on flash memory, and should replace one flash page. However,
sinking to flash incurs a flash write. Whether the future benefit is worth this
write depends on the cost ratio between flash read and write as well as the
hotness of the page being sunk. An example of sinking is illustrated in Fig 4. We
take a probability psink to control the ratio of sinking to flash. A main memory
evicted page has chance of psink to replace a flash page, otherwise, it will be
discarded directly or written back to disk if it is dirty. Let’s see why this works.
We assume the main memory evicted page is M (page 51 in Fig 4 (a)), and the
replaced page from flash is F(page 18 in Fig 4 (a)), respectively. The larger psink
is, the more evicted pages are sunk to flash, and the closer the hotness of M
and F are. Consequently, the benefit of sinking to flash will be small for close
hotness of M and F. By setting proper value of pelevate and psink, we can achieve
a better trade-off between main memory and flash accesses and the overall I/O
cost diminishes. We will talk about the parameter tuning in the Section 4.

The pseudocode of HyPro are listed in Algorithm 1. A structure named frame
is used to store the position of each page, and the frames are organized in a
hash table to facilitate searching. The Algorithm 1 illustrates the routine of
page access. First, the position of the page is determined, and then different
operations are conducted according to the page position. The Algorithm 1(line
13) may invoke Algorithm 2. Algorithm 2 loads a page from disk and puts this
page to the right position according to the psink. Although LRU is adopted in
our experiments for main memory and flash memory management, HyPro can
support other strategies such as LIRS [12] and ARC [17]. The HyPro is easy to
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Fig. 4. A sink example

implement and quick enough for online processing. The time complexity is O(1)
for each page access.

In this paper, we focus on the data migration design. Nevertheless, some
optimizations can be supported in HyPro applied to further improve the per-
formance e.g. by considering the asymmetric I/O and the access pattern (ran-
dom/sequential). For example, if the asymmetric I/O is considered, different
probabilities can be allocated to read and write operations respectively, which
can make one write operation equivalent to the effect of n read operations. Fur-
thermore, we could also manage flash in FIFO manner as FaCE to transform
flash space allocation into sequential pattern.

4 Parameter Tuning

The probabilities of transforming data among different memory levels are the
crucial part in our stochastic page management policy. In this section, we provide
study on how to automatically tune these probabilities based on the “cost”
analysis. Table 2 facilitates fast check on the notations used in this section.

Definition 1. For a cache management algorithm, we denote the place of the
page to be evicted as the “evict position”. (For example, the end of the LRU
queue). Nevict is defined as the total hit number on the “evict position”.

To begin with, a definition is introduced. Note that we consider the hit number
on a “position” instead of on a specific page in this definition. For example, if
LRU algorithm is adopted in main memory, the Nevict stands for the number of
accesses on the LRU end. If a read operation is hit on the least recently used
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Algorithm 1. The HyPro algorithm

Input: an operation request on page p
if p exists in main memory then1

Perform read/write operation in main memory;2

else if p exists in Flash memory then3

if rand() < pelevate then4

AcquireFreeMemPage();5

write the evicted page to flash memory if any;6

read from Flash memory, or just write to main memory;7

else8

Perform read/write operation towards Flash memory;9

end10

else11

call OnMemFull algorithm when main memory is full;12

AcquireFreeMemPage();13

read from disk, or just write to main memory;14

end15

Algorithm 2. The OnMemFull algorithm

Output: a free page in memory
if memory is full then1

get a victim page from the buffer manager;2

if rand() < psink then3

AcquireFreeFlashPage();4

flush the page to Flash memory;5

end6

flush the page to disk if dirty;7

return the page;8

end9

return a free page;10

Table 2. Parameters used in this section

Parameters Description

Cdr,Cfr The read time cost of one page on disk, flash re-
spectively

Cdw,Cfw The write time cost of one page on disk, flash re-
spectively

pelevate The probability to elevate

psink The probability to sink

Rfevict,Rmevict The number of read hit on the evict position of
flash, main memory respectively

Wfevict,Wmevict The number of write hit on the evict position of
flash, main memory respectively
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page P , Nevict increases. However, at this time page P is moved to LRU head
and a new page named P ′ is moved to LRU end. Then next time we increase
Nevict when the P ′ is accessed rather than P .

Assume that in a certain time period, a page Pf on flash is read Rf times
and written Wf times. Rmevict and Wmevict stand for the read and write times
on the “evict position” in the main memory during the same time period. The
read and write costs of flash are denoted as Cfr and Cfw.

In HyPro, psink is adopted to balance the eviction to flash and disk. Hence,
we discuss the tuning of psink by comparing the cost of the two cases: 1)evict
the page to flash (Figure 4 (c)) and 2)evict the page to disk (Figure 4 (b)). The
I/O costs of two cases are calculated as follows respectively.

Case 1. Evict page Pmevict to flash, and if flash is full evict the Pfevict to disk
(when dirty). Consequently, Pmevict will be accessed from flash and Pfevict from
disk, and thereby the corresponding I/O cost is:

Csinkf =RmevictCfr +WmevictCfw +RfevictCdr +WfevictCdw + Cfw (1)

Case 2. Evict page Pmevict to disk. In this case Pmevict will be accessed from
disk while the Pmevict mentioned in Case 1 is still accessed from flash. Thus the
I/O cost is:

Csinkd =RmevictCdr +WmevictCdw +RfevictCfr +WfevictCfw (2)

In the case of Csinkf < Csinkd, it is more I/O efficient to evict a page to flash,
and hence, psink should be increased and vice versa. The above analysis only
takes the I/O cost of page transferred, that is, page evicted and page elevated
into consideration. Actually, the I/O costs of other pages will also be influenced
which are not the primary cost and experiments show that the obtained Csinkf

and Csinkd can deal with parameter adjusting effectively.
The Csinkf and Csinkd are very small and unstable for a single page on a short

period of time. In practice, we accumulate Csinkf and Csinkd on all the evicted
page in a certain window on the trace, so that the psink can be adjusted based
on the comparison of Csinkf and Csinkd on each accumulation. Note that the
calculation and parameter tuning described above need only O(1) time for each
access. The tuning will not significantly increase the overhead of whole strategy.

The tuning of pelevate can be performed in a similar way with psink, and thus
is omitted here due to space limitation.

5 Performance Evaluation

In this section, we conduct a trace-driven simulation to evaluate the effective-
ness of the proposed framework. The traces used include TPC-B, TATP [3] and
making Linux kernel (MLK for short) to further evaluate the performance on
various workloads. TAC and FaCE are chosen as the competitors. The simulation
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is developed in Visual Studio 2010 using C#. All experiments are run on a
Windows 7 PC with a 2.4 GHz Intel Quad CPU and 2 GB of physical memory.

5.1 Experimental Setup

We use three traces mentioned above for performance evaluation. The bench-
marks namely TPC-B [4], and TATP [3] are run on PostgreSQL 9.0.0 with
default settings, e.g., the page size is 8KB. Dataset size of both TPC-B and
TATP are 2GB. The MLK is a record of the page accesses of making Linux
kernel 2.6.27.39. We use a tool named strace to monitor theses processes and
obtain the disk access history. Specification on the traces was given in Table 3.

Table 3. Specification on the Traces

Filename Page Number (103) Reference Number (106) Write Ratio

MLK 97.2 27.2 0.43%

TATP 135.1 2.5 4.59%

TPC-B 35.1 10.7 19.46%

In our experiment, the total I/O time is used as the primary metric to eval-
uate the performance. We employ The samsung SSD (64GB, 470 series) in our
experiment. We obtain its access latency by testing. Access latency of hard disk
is obtained from paper [15]. The parameters used in our experiments are listed in
Table 4, in which Flashsize/Pages denotes the ratio between flash and dataset
size. We fixed the main memory size to the 1% of the dataset size.

Table 4. Experimental Parameters

Parameter Value

Cr, Cw(µs) 271, 803 (for SSD)
12700, 13700 (for hard disk)

F lashsize/Pages 1.25%, 2.5%, 5%, 10%, 20%

pelevate 0.001,0.01, 0.015,0.02,...,0.1

psink 0.01, 0.1,0.2,...,0.9

5.2 Parameter Tuning

To begin with, we inspect the effect of parameters on performance of algorithms.
We illustrate how the performance of HyPro varies with psink in Figure 5 (a),
along with the values of Csinkf and Csinkd. The HyPro achieves the best perfor-
mance at around psink = 0.15. psink reflects the chance for a page evicted from
main memory to be stored into flash. A low psink will result in a poor utility
of flash memory. On the contrary, an excessive high psink would incurs great
exchange cost between main memory and flash. Thus, our approach achieves the
best performance with proper psink.
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(a) psink tuning on HyPro (b) pelevate tuning on HyPro

Fig. 5. Parameters Tuning

The performance of our approach also significantly varies with the pelevate, as
shown in Figure 5 (b) , and the minimum I/O time is reached when it locates
between 0.01 and 0.02. As the pelevate controls whether a page on flash should be
elevated, large pelvevate will cause more exchanges between main memory and
flash, which may deteriorates the whole performance, while no exchange will
cause pages on flash has no opportunity to get into main memory (corresponding
to the case pelevate = 0). Other testings also show that the best parameter is
often around 0.02 and 0.2, and thus, we adopt these values as the initial value
and use dynamic parameter tuning in the following experiments.

5.3 Comparison with Other Approaches

In this part, we compare HyPro with FaCE and TAC. We test extensive configu-
rations, but only shows some results here in Figure 6 due to the space limitation.
In the following results, the main memory is 1% of the total workload size and
the flash size varies from 1.25% to 20%. Our approach shows similar or better
performance compared with FaCE and TAC approach. Our approach can re-
duce upto 50% of the total I/O time against other competitors. In MLK trace,
FaCE performs the worst, since many pages in MLK are accessed only once, but
the FaCE still cache these pages in flash memory. On TATP, HyPro and Face
has similar performance and better than TAC. Because the TATP is not a very
stable access pattern. FaCE and HyPro can adapt themselves to the workload
changes quickly, but TAC needs a rather long time to learn this change. On
TPC-B trace TAC has the best performance when the flash size is low, this is
because the temperature-based hot detection can accurately discover the hottest
pages, which has superiority when the cache size is low. However, When the flash
size is large, the performance of TAC degrades. This phenomenon is partially
because precisely hot page detection is not necessary for a larger cache size, and
partially because of the write through cache design, as the write ratio is very
high in TPC-B according to Table 3. The HyPro can adapt itself to the flash
size enlargement and shows a good performance in all the cases.
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(a) Low-end SSD performance on MLK trace

(b) High-end SSD performance on TATP

trace

(c) Low-end SSD performance on TPC-B

trace

Fig. 6. I/O performance comparison on benchmark traces

6 Conclusion

In this paper we propose a novel stochastic approach for flash based hybrid stor-
age system management named HyPro. Different from the existing deterministic
models, HyPro controls the data migration between devices using two probabili-
ties. One probability describes the chance of which one page will be kept in main
memory after accessed from flash. Another probability is adopted to determine
the place where a page should be put after evicted from main memory. By doing
this, Hypro can achieves lower hard disk access with a little exchange overhead
increment on flash writes. We also developed an approach to determine the prob-
abilities based on cost analysis. The experiments show that HyPro outperforms
other competitors.
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