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Abstract—Traditional transportation systems in metropolitan
areas always suffer from energy inefficiencies, evidenced by its
uncoordinated behaviors such as system capacity and traffic
demand change. With the advanced networked sensors are
prevalent deployed into the autonomous vehicles, the information
of system status and traffic demand can be collected in real-time.
These information provides the potential to perform different
types of coordination and control for autonomous vehicles in
large-scale intelligent transportation systems.

In this paper, we design a coordination-based energy-aware
control method for large-scale connected vehicles, named Tiguan.
Tiguan enables an iterative scheme to compute a practicable
solution, which all vehicles are controlled on different trajectory
paths of ground traffic network while achieving the close to the
optimal performance. Safety is guaranteed by enabling vehicle
to autonomously coordinate with other vehicles for a road traffic
resource, and thus determine which vehicle needs the resource
most. Experimental results show that Tiguan can effectively
generate a feasible control solution with collision avoidance, and
minimizing the energy consumption.

I. INTRODUCTION

With the recent advances in electronics, sensors, and com-
munication techniques are increasingly deployed in the large-
scale intelligent transportation systems, autonomous driving
techniques has made significant progress during the past
decade. These advances in autonomous driving vehicles have
fueled to apperceive the environment with their own sensors,
and also communicate with other vehicles and surrounding
infrastructures for vehicle safety and transportation efficiency.
There are many companies and academic institutions have
started experimenting with autonomous vehicles on intelligent
transportation systems. While research on energy-efficient
driving trajectory paths, such as eco-driving, has already
witnessed numerous efforts [1], it is still a grand challenge
to design an autonomous transportation system, which each
vehicle can autonomously coordinate with other vehicles and
drive itself on a road in energy-efficient with a safety guaran-
tee.

An intelligent transportation system in metropolitan areas
generally involves the following phases. First, users send their
requests through the clients installed in their vehicles to the
cloud servers. This requests, also called orders, mainly include
the current locations and destinations. After receiving these
orders, the system will generate a feasible solution based
on current network status and traffic demand in a holistic
environment. And at meanwhile, the corresponding trajectory

path of each vehicle will be published through wireless
networks. With the changes in network status, the system
will update the solution in real-time for vehicle safety and
transportation efficiency. Although such system has provided
great convenience for vehicle driving, it still exists several
non-negligible shortcomings. For instance, the choices are not
always the most energy-efficient ones.

It is non-trivial to accurately estimate the energy consump-
tion of large-scale connected vehicle in intelligent transporta-
tion systems [2]. Energy consumption should be estimated
on each of the different road segments in ground traffic
networks. Macroscopic and microscopic models are broadly
applied to estimate the vehicle energy consumption [3]. In
microscopic models, the vehicle acquires a larger amount of
driving data to decide a statistical cost on each road segment.
In macroscopic models, the vehicle only considers the driving
time and road grade, which are typically easier to obtain
through free or commercial historical databases. Specifically,
the road-based macroscopic models rely on the longitudinal
dynamics of the vehicles and are easier to calibrate using
vehicle construction parameters [4]. In this paper, we focus
on the macroscopic road-based energy consumption model to
control vehicle driving from one road segment to the adjacent
ones.

To utilize large-scale real-time information of the intelligent
transportation system, we present Tiguan, a computational
efficient, coordination-based performance-driven energy-aware
control framework. In Tiguan, an iteration algorithm that
balances the competing goals of eliminating collision between
vehicles and minimizing the energy consumption of trajectory
paths in this framework. Initially, all vehicles are allowed to
share the identical ground traffic resources, but subsequently
must coordinate with other vehicles to determine which vehicle
needs the shared resource most. The emphasis of our control
approach is to adjust the energy costs of traffic resources in
a gradual, semi-equilibrium fashion to achieve an optimum
distribution of resources. The contributions of this work are
as follows,
• To the best of our knowledge, we are the first to design

an energy-aware framework for large-scale vehicle con-
trolling.

• We formulate the energy-efficient driving of road vehicles
as a control problem and design a close to the optimal
algorithm.
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• Experimental results show that our approach effectively
converges a feasible solution with collision avoidance and
maintains the energy-efficiency.

The rest is organized as follows. The preliminaries are in
Section II. The energy-aware control method is presented in
Section III. The results are given in Section IV. Related work is
shown in Section V, followed by the conclusion in Section VI.

II. PRELIMINARIES

A. Vehicle Control and Associated Terminology

Control is an important process for large-scale connected
vehicles in intelligent transportation systems. It consists in
assigning ground traffic resources to each vehicle of the
transportation system in order to connect its current location
to the destination. The resources in a road traffic network and
their connections are represented by a graph G = (V,E).
The set of vertices V corresponds to the road segments in the
ground traffic network and the edges E to the feasible links
that connect these nodes.

In conventional vehicle driving graphs, the weight associ-
ated with each node n is either the length of the segment or
vehicle travel time. In this energy-aware framework, each node
of the graph is assigned a weight that represents the travel
energy expenditure. Thus, we define a weighting function
w : V →W , which associates each node of the graph with a
weight.

Given a vehicle i in the ground traffic network, the vehicle
trajectory path Ti is the set of terminals including the source
terminal si and destination di. Ti forms a subset of V . A
feasible solution to the control problem for vehicle i is the
trajectory path Ti mapped onto the graph G and connecting
si with its di.

B. Vehicle Energy Consumption Model

To develop an energy-efficient scheme, we mainly focus on
the autonomous electric vehicles. Thus, the energy consump-
tion model is required to capture regenerative braking and
electric drive efficiency. In general, the vehicle longitudinal
dynamical model may be written as [5].

mv̇(t) = Fw − Fa − Ff − Fs (1)

where m is the vehicle mass, v̇(t) is the vehicle acceleration,
Fw is the force at the wheels, Fa denotes the aerodynamic
force, Ff represents the rolling resistance force, and Fs is the
gravity force. Thus, we have the vehicle model{

ẋ(t) = v(t)
mv̇(t) = Fw − 1

2ρaAfcdv(t)
2 −mgcr −mgsin(α(x))

(2)
where ρa is the external air density, Af is the vehicle frontal
area, cd is the aerodynamic drag coefficient, cr is the rolling
resistance coefficient, α(x) is the road slope as a function of
the position, and g is the gravity.

Note that the sum of aerodynamic and rolling frictions,
named road load force, is generally approximated as a second
order polynomial in the speed v. Thus, we have

Fa + Ff = a2v(t)
2 + a1v(t) + a0 (3)

where a0 , a1 and a2 are the constant parameters identified
for a considered vehicle. Thus, the force at the wheels can be
also expressed as followed.

Fw = mv̇(t) + a2v(t)
2 + a1v(t) + a0 +mgsin(α(x)) (4)

For each node n ∈ V of the graph, it is possible that we
can obtain road segment length ln and average traffic speed
vn of vehicle on this road. Because we can obtain the time
of the day, and the road grade αn(x), both of which varies
within the used road segment depending on the position.

Specifically, due to the time-variant speed or acceleration
profile is not available, the energy consumption model cannot
be directly used to assign the weights to each node of the
graph. Thus, we use average traffic speed v to replace the time-
variant speed v(t). All the vehicles on node n are supposed
to travel at average traffic speed vn. While it exists difference,
it can efficiently reflect real driving conditions. The previous
work also give a validation analysis to verify the accuracy [6].
Thus, the force expression in (4) is modified for each node n
as follows:

Fw,n = a2v
2
n + a1vn + a0 +mgsin(αn(x)) (5)

with no acceleration term. The torque requested from the
electric motor to meet the force demand at the wheels is given
as:

Tm,n =

{
Fm,nr
ρtηt

, if Fw,n ≥ 0
Fm,nrηt

ρt
, if Fw,n < 0

(6)

where r is the wheel radius, ρt and ηt are the transmission
ratio and efficiency, respectively. The electric motor rotational
regime is also constant over time if constant speed is assumed:

wn =
vnρt
r

(7)

Thus, the mechanical power available at the electric motor is
written as followed.

Pm,n =


Tm,max · wn, if Tm,n ≥ Tm,max
Tm,n · wn, if Tm,min < Tm,n < Tm,max
Tm,min · wn, if Tm,n ≤ Tm,min

(8)
In the following we assumed that the saturation torque is
independent from the motor regime. Finally, the power demand
at the battery of the electric vehicle, considering the electric
drive efficiency ηb constant, can be written as:

P b,n =

{
Pm,n

ηb
, if Pm,n ≥ 0

Pm,n · ηb, if Pm,n < 0
(9)

and ultimately, we have the battery energy consumption over
the generic travel time Tn.

Eb,n =

∫ Tn

0

P b,ndt = P b,nTn (10)

where Tn = ln/vn is the travel time on segment node n when
traveling at the average traffic speed vn.



C. Problem Formulation

The objective of this work is to design an energy-efficient
control framework for large-scale connected vehicles on the
road transportation networks. Thus, the weight assigned to
each node of the graph represents only the associated en-
ergy consumption. Furthermore, the framework can be easily
extended to consider also travel time, and the optimization
would search then for a tradeoff solution between energy
consumption and travel time minimization. In this paper, we
solely focus on energy aspects.

The control problem of road vehicles consists in the actual
minimization of the energy consumption to drive from a
selected origin to a destination in the road network with
collision free. Minimization of an energy cost in a graph can
be solved by means of a standard shortest path algorithm.
However, it is challenge to mitigate the collision between
vehicles in the same time to guarantee the safety.

Notice that vehicle control is a technology-specific variation
of the disjoint path problem from graph theory, which is one
of Karp’s original NP-complete problems [7]. In a graph, two
trajectory paths are disjoint if they share no vertices or edges.

III. METHODOLOGY

In this section, we present a control algorithm to minimize
the energy consumption and guarantee the collision free be-
tween vehicles.

A. Overview

The design scheme of the proposed energy-aware control
for large-scale connected vehicles is summarized in Fig. 1.

No
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Output

Increase the penalties for collision

Control all vehicles

Collision free

Input

Control all vehicles (permit collision)

Fig. 1. Overview.

First, Tiguan enables all vehicles in a transportation network
to be controlled in the best manner possible to minimize
the energy resource consumption. Meanwhile, Tiguan permits
the collision between the vehicles, which means that two
different vehicles may use the same resource1 on the network.
After initial solution, each vehicle is controlled with its ideal
trajectory path, while it is infeasible owing to the collisions.
Then, the penalties associated with collisions are increased,

1In practice, the occupation of same resource must be less than or equal to
the capacity to guarantee the collision avoidance.

and the driving of vehicles is re-controlled with consideration
of the increased penalties. The process of increasing the
penalties for collisions and re-controlling the vehicle driving
continues iteratively until all collisions are removed and the
solution is feasible.

In essence, the vehicles coordinate with each other to
determine which vehicle gets to keep a shared resource.

B. Energy-Aware Control Algorithm

Controlling a vehicle driving involves assigning road re-
sources such that the destination are reachable from the source.
When controlling a set of vehicles sequentially, the order in
which the vehicle driving are controlled may be critical since
some road resources needed by a vehicle may be occupied by
other vehicles.

The principal idea of Tiguan algorithm is to permit unlim-
ited sharing of road resources initially and then repeatedly
re-control the vehicle driving until no resources are shared.
By assigning collision costs to the shared road resources, and
increasing these costs with each iteration through the vehicles,
the control algorithm encourages alternative trajectory paths to
be explored until all the collisions are resolved.

Here we impose the cost of each road resource n inspired
by PathFinder [11]. In Tiguan algorithm, this cost has three
terms, which can be adjusted to eliminate the collision between
vehicles.

cn = (bn + hn)× pn (11)

where bn is the base cost of using road resource n, which can
be used to reflect the energy of the road resource. A reasonable
choice for bn is the intrinsic energy en of the node n, since
minimizing the energy consumption of a vehicle is equivalent
to minimize the road resources of a vehicle in nature. In the
remainder of our work, we set bn = en.

The first-order collision term pn is the number of vehicles
that are presently occupying the same road resource. The
second-order collision term hn is related to the history of
collision on a road resource n during previous iterations. This
history cost hn grows monotonically with each iteration in
which the road resource is shared. In fact, the hn increases
by a fixed amount each time when a vehicle is re-controlled
through an already occupied node.

The implementation details of the Tiguan are shown in
Algorithm 1. This algorithm can be divided into three nested
iterations. In outermost iterations, Tiguan enables the vehicles
to coordinate with each other to decide who will make a detour
around the collisional resource nodes, until all the collisions
are resolved to obtain a complete legal control solution. In
middle iterations, the sequential control loop starts at step 8.
The vehicle trajectory path Ti from the previous outermost
iterations is erased and initialized to the vehicle source. and
at the meanwhile, it will invoke the shortest-path algorithm,
which computes a path from the source to the sink in the
network resource graph. In innermost iterations, it employs the
single source shortest path algorithm, which is implemented
by Dijkstra’s algorithm. After a sink is found, all nodes along



a backtraced path from the sink to source are added to Ti, and
at last, if the solution is feasible, the algorithm is complete.

Algorithm 1 The vehicle control algorithm
1: Tiguan(vehicles {i}, network G = 〈V,E〉)
2: while control incomplete or collision exists do
3: Sequential-Control({i})
4: update history costs {hn} of the nodes in V
5: end while
6: end Tiguan
7:
8: Sequential-Control(vehicles {i})
9: for each uncontrolled or collision vehicle i do

10: erase Ti if exists
11: Ti ← {si}
12: Ti ← Find-Shortest-Path(Ti, di)
13: update present costs {pn} of the nodes in Ti
14: end for
15: end Sequential-Control
16:
17: Find-Shortest-Path(Ti, di)
18: for each node n in Ti do
19: enqueue n onto Q with key 0
20: end for
21: while a sink of di has not been found do
22: dequeue node, p with lowest key from Q
23: if p was not previously dequeued then
24: for each neighbor n of p do
25: enqueue n on Q with cost of n + key of p
26: end for
27: end if
28: end while
29: backtrace from sink to a node of Ti that is reached
30: return this path
31: end Find-Shortest-Path

Specifically, the energy of the points chosen by this algo-
rithm is a challenge problem. However, finding the optimal
or even near-optimal points is not essential in the Tiguan
algorithm. The key of algorithm is successfully feasible in
adjusting costs to eliminate the collision between vehicles to
drive itself on a road with a safety guarantee.

C. Energy and Collision Tradeoffs

To introduce energy into Tiguan algorithm, we redefine the
cost of using node n when controlling a vehicle i driving from
source si to sink di.

Cn = σien + (1− σi)cn (12)

where cn is defined in (11) and σi is the balance ratio.

σi = Ei/Emax (13)

where Ei is the longest trajectory path from si to di, and
Emax is the maximum over all trajectory paths, and here,
we call critical trajectory path energy. Thus, 0 < σi ≤ 1.
The first term in equation (12) is the energy-sensitive term,

while the second term is the collision-based term. Note that
the long trajectory path will produce more energy consumption
for vehicle driving. Fig. 2 shows the vehicle may drive on the
alternative path due to the collision in the shortest path.

si

di

shortest path

alternative path

collision road

Fig. 2. Trajectory path selection.

Equations. (12) and (13) are the crucial to provide the ap-
propriate mix of minimum-energy and minimum-cost trajectory
path. If a source-sink pair relies on the critical trajectory
path, then σi = 1 and the cost for using node n is simply
energy term. Thus, a minimum-energy control will be used
and collision will be ignored. If a source-sink pair belongs
on a trajectory path whose energy is much smaller than the
critical trajectory path energy, its σi will be small and the
collision term will dominate, resulting in a solution which
avoids collision at the expense of extra energy.

To accommodate energy, the Tiguan algorithm is changed
as follows. First, the σi are initialized to 1. Thus, the Tiguan
searches the minimum-energy trajectory path for every vehicle
during the first iteration. The σi are recomputed in each
subsequent iteration. Second, the destination are reached in
decreasing σi order. Third, the priority queue is initialized to
Ti at cost σiei. The control effect of this initialization is that
nodes that are already in the partial trajectory path will have
only a energy component. These modifications will be refered
in our Tiguan algorithm.

The Tiguan completes when no more collisional resources
exist. Note that by recomputing the σi, we have kept a tight
reign on the critical trajectory path. Over the process of
iterations, the critical trajectory path increases only to the
extent that requires to resolve the collision. Our approach first
reduce the energy consumption and then attempt to resolve
the collision by re-controlling vehicle driving.

D. Energy Consumption Analysis

In this section, we present the energy consumption analysis
of the Tiguan algorithm.

We consider that if hn is constrained by en, then Tiguan
algorithm will produce a worst case trajectory path energy,
which is equal to the minimum-energy path of the critical
trajectory path. It means that Tiguan algorithm converges the
fastest implementation in the transportation network graph.

In practice, hn is allowed to increase gradually until a
complete solution is found. While the hn maybe exceed en
in very collisional transportation networks, Tiguan still comes
very close to this constraint in practice.

THEOREM 1. If hn ≤ en for all nodes of graph, then the
energy of any vehicle path consumed by Tiguan algorithm



is constrained by Emax, the energy of the longest minimum-
energy path in the ground traffic graph.

Proof. When Tiguan algorithm terminates successfully, the pn
term in equation (12) is 1 and thus, cn = en + hn. Let
R represents the most critical used path and S denotes the
shortest path energy for R. The cost of S is given by:

CS =
∑
n∈S

Cn (14)

=
∑
n∈S

(σien + (1− σi)(en + hn)) (15)

=
∑
n∈S

en + (1− σi)
∑
n∈S

hn (16)

According to our assumption hn ≤ en,

CS ≤
∑
n∈S

en + (1− σi)
∑
n∈S

en (17)

= Ei + (1− σi)Ei (18)
= (2− σi)Ei (19)
= (2− σi)σiEmax (20)

Since 0 ≤ σi ≤ 1, we have 0 ≤ (2− σi)σi ≤ 1 and

CS ≤ Emax (21)

The cost of R must be less than the cost of S, thus, the energy
of R must be less than the cost of S, which is less than Emax.

E. Performance Enhancements

We consider several enhancements to improve the runtime
of Tiguan algorithm without adversely affecting the energy
consumption of vehicle driving.

One enhancement is to employ the A∗ algorithm into the
shortest path search loop. A∗ leverages lower constraints on
road segment lengths to reduce the search space on traffic
network graph. Alternately, A∗ can be applied to the collision-
avoidance energy-aware control algorithm, which adjusts the
cost of minimum-energy trajectory paths from every node to
the potential sink. During the first iteration, the search can be
performed linearly in the number of nodes along a minimum-
energy trajectory path. With iterations progress, increasing pn
and hn make this lower constraint to prove more and more
efficient, and the search continues. As a result, this algorithm
remains less than a full space search and improve the runtime.

Another enhancement is to control only the vehicles, which
are involved in the collisional road resources. This is because
in large-scale transportation network, there exists more suf-
ficient ground traffic resources compared to the collisional
resources. While this strategy may lead to the energy con-
sumption, the runtime will improve. To validate we have not
seen any cases where controlling only collisional resources
resulted in a more energy consumption. In our experience, the
number of iterations increases, but the total runtime decreases.

In summary, these two techniques efficiently accelerate our
control algorithm runtime, and improve the ability of real-time
updating in intelligent transportation systems.

IV. EVALUATION

A. Experimental Setup

The energy-aware control framework was implemented in
the C++ programming language on a Intel Xeon E5-2430 pro-
cessor at 2.2GHz and 32GB memory. The simulation study and
the experimental campaign were conducted on ten different
test cases, all of which are extracted from the ground traffic
network of the California state (i.e., about 1,965,206 nodes and
2,766,607 links) [17]. Because there exists no available free
dataset about the road segment length, road grade, and current
traffic conditions as previously discussed, we implemented
a random algorithm to produce these information, including
the corresponding average traffic speed of each vehicle, the
number of vehicles with different origin-destination pairs in
the considered network. By this way, we can compute the
energy-consumption weight of each node in traffic resource
graph while it is synthetic.

TABLE I
ROAD NETWORK INFORMATION

Bench. #Nodes #Vehicles
case1 27120 788
case2 76386 1946
case3 43872 2380
case4 104176 3710
case5 110250 3953
case6 283792 5224
case7 305082 6606
case8 283338 7154
case9 311112 7474
case10 492570 8078

Table. I shows the extracted ground traffic network bench-
mark. Specifically, the size of road network is increased in a
gradual manner, because the scalability of control algorithm
is very crucial in the large-scale connected vehicles. In our
simulation study, our mainly focus on the runtime and energy
consumption of control algorithm. In general, we leverage
the usage of road segment resources to evaluate the energy
consumption.

B. Experimental Results
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Fig. 3. Runtime of Tiguan algorithm.

Fig. 3 gives the total runtime of Tiguan algorithm for
each case of large-scale connected vehicles on ground traffic
networks. The convergence time of Tiguan algorithm will take



the average 258 seconds to achieve a feasible solution, which
all vehicles can drive itself on a road with a collision-free
guarantee. Specifically, our Tiguan algorithm only takes about
5 seconds to find a practicable solution for the case1, it is
close to the scale of a city. It is meaningful for large-scale
intelligent transportation systems, which can be processed by
region partitioning and coverage control so that coordinated
vehicles can perform tasks in their specified regions [8], [9].
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To evaluate the energy consumption, we introduce an en-
ergy consumption ratio, which is between the total energy
consumption of all vehicles and the available energy of ground
traffic networks. Fig. 4 reports the probability distribution of
the energy consumption ratio provided by Tiguan algorithm.
On average, the energy consumption ratio is only about 29%
using our energy-aware framework to control such a large-
scale connected vehicles. In particular, our Tiguan algorithm
only consumes about 10% energy to achieve a feasible solution
for the case6. The proposed energy-aware control framework
has the potential to implement the energy-efficient control for
the large-scale connected vehicles in intelligent transportation
systems.

V. RELATED WORK

Existing efforts related to our work are multi-agent coor-
dination and control. Different from our method, these works
usually leverage the idea of region partitioning and coverage
control to coordinate the agents to perform tasks in their
specified regions [8], [9], [10]. Also, these works can not
fully overcome the challenge of collision between multiple
agents, and the scale of agents is small. Other related works
include multiple vehicles routing without communications and
robust traffic flow management under uncertainty [12], [13].
Their task models and design objectives are different from
energy-aware control problem. Moreover, these works do not
consider the advances in communication techniques to enable
the vehicle to coordinate with each other to drive itself on a
road with collision free. Recently, the model predictive control
has also been widely used to solve the problem of process
control, task scheduling, cruise control, and multi-agent trans-
portation networks [14], [15], [16]. These works provide solid
results for related mobility scheduling and control problems.
However, none of these works incorporates both the current

and historical mobility patterns into the large-scale connected
vehicles control design, leveraging the iteration scheme to
solve the collision between vehicles.

VI. CONCLUSIONS AND FUTURE WORK

Control is an important process for large-scale connected
vehicles in intelligent transportation systems. In this paper,
we design an energy-aware collision-free control framework,
namely Tiguan. Tiguan leverages an iteration scheme to guar-
antee the safety driving with collision avoidance between
vehicles. At the meanwhile, energy-efficient is maintained by
minimizing the usage of road segment resources. Specifically,
Tiguan is the first energy-aware work with a safety guarantee.
While the runtime of Tiguan algorithm is possibly length
for very-large-scale connected vehicles, it is still practically
meaningful for the autonomous transportation applications.

The future work is to leverage the parallelization techniques
to accelerate this process.
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