
Accelerate FPGA Routing with Parallel Recursive Partitioning

Minghua Shen† and Guojie Luo†‡§

†Center for Energy-efficient Computing and Applications, School of EECS, Peking University, China
‡PKU-UCLA Joint Research Institute in Science and Engineering

§Collaborative Innovation Center of High Performance Computing, NUDT, China
Email: {msung, gluo}@pku.edu.cn

Abstract—FPGA routing is a time-consuming step
in the EDA design flow. In this paper we present a
coarse-grained recursive partitioning approach to ex-
ploit parallelism. The basic idea is to partition the
nets into three subsets, where the first subset and the
other two subsets consist of potentially conflicting nets
and potentially conflicting-free nets, respectively. The
two potentially conflicting-free subsets are routed in
parallel after the first subset is routed. And all subsets
are recursively partitioned in the same way. Further-
more, we point out that the estimated runtime using
recursive bisection is close to the optimal estimated
runtime using the optimal recursive partitioning, which
we can find in polynomial time. The parallel router
is implemented using the Message Passing Interface
(MPI). Experimental results show that our parallel
router ParRoute+ achieves a 7.06× speedup compared
to the VPR 7.0 router. This is a 3.36× improvement over
a recent coarse-grained parallel router.

Keywords—FPGA routing, recursive partitioning,
parallelization, Message Passing Interface (MPI).

I. Introduction

As the density of FPGA devices keeps increasing, the
associated computer-aided design (CAD) tools typically
spend many hours synthesizing large designs. There are at
least two directions to solve this issue: one attractive direc-
tion is hierarchical design reuse [3], and the other promis-
ing direction is to design efficient CAD tools by paral-
lelization and hardware acceleration [2]. Though there are
existing works on the parallelization of CAD algorithms,
the parallelism and the currently available computational
power are not fully exploited with a concrete conclusion.
In this paper, we focus on the coarse-grained parallelism
to reduce the runtime of FPGA routing.

FPGA routing is undoubtedly one of the most time-
consuming steps in the CAD flow. The negotiation-based
routing algorithm, a.k.a. the PathFinder algorithm, has
been applied successfully in a variant of commercial FPGA
routers [6]. The computational kernel of PathFinder is
maze expansion - the algorithm used to find a tree to
connect the individual pins of a net on the routing resource
graph. During maze expansion, the algorithm temporally
permits congestion between different nets, such that two
different nets may be illegally routed using the same
routing resource. To legalize the routing result, congestion
penalties are imposed on the conflicting routing resources,
and the nets are ripped-up and rerouted according to
the increased penalties. The congestion penalties keep
adjusted to encourage alternative routes after each iter-
ation, until all the conflicts are resolved and the routing

becomes feasible. This PathFinder algorithm enables the
nets negotiate with each other to find a feasible routing,
but it is naturally sequential and the parallelization is non-
trivial.

Recently there have been several efforts in paralleliz-
ing the PathFinder algorithm [7], [11], [4]. Though the
algorithm is inherently sequential, it is intuitive that a
single net do not need to negotiate with a large number
of other nets. We use message passing interface (MPI)
[14] to exploit such coarse-grained parallelism by recursive
partitioning. At each level a cutline partitions the routing
resource graph into two subregions, so that the nets are
partitioned into three subsets, S0, S− and S+, where
S0 consists of the nets whose pins are across the two
subregions, and S− and S+ consist of the nets whose
pins are inside a single subregion. We first route the nets
in S0, which have higher chance to negotiate with each
other, and then route the nets in S− and S+ in parallel,
which have lower chance to compete for common routing
resources. We observe that this dexterous and efficient
approach has a positive influence to reduce the number
of iterations. Furthermore, this approach is compatible
with existing fine-grained parallelization approaches. We
strongly believe that the proposed approach with recur-
sive partitioning and routing convergence is a meaningful
solution to reduce FPGA routing time.

Our work makes contributions in the following aspects:

• The proposed approach is able to partition the
routing tasks into three subsets, S0, S− and S+,
where S0 is a small subset to be routed with little
sequential time, and S− and S+ are more-or-less
balanced subsets to be routed in parallel.

• Empirical results show that there are few conflicts
between S− and S+.

• We design a polynomial-time algorithm to find the
optimal recursive partitioning. Then we point out
that the recursive bisection results in a close-to-
optimal estimated runtime empirically.

• Experimental results show the efficiency and effi-
cacy of our parallelization approach, which is or-
thogonal to the existing fine-grained parallelization
and can achieve further speedup.

The remainder of this paper is organized as follows.
Section II summarizes the background on the PathFinder
routing algorithm, as well as the previous efforts on its par-
allelization. The proposed recursive partitioning approach
is described in Section III, and the parallel implementation

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 118

is presented in Section IV. In Section V the detailed ex-
perimental results and comparisons are presented. Finally,
conclusions and suggestions for future work are offered in
Section VI.

II. Background

The routing resources of an FPGA are represented by
a directed graph G = 〈V, E〉, called the routing resource
graph. A vertex n ∈ V corresponds to an electrical pin
or a wire segment, and an edge e ∈ E represents a
programmable connection point between an electrical pin
and a wire segment, or a programmable routing switch
between two wire segments.

The routing of a circuit is to map every net Ni ∈ N
onto the routing resource graph. A net Ni has one source
node si and a few sinks tij that are logically connected to
the source. Both sources and sinks are vertices in V , and
thus the net Ni is a subset of V . The routing of net Ni is
to find a subtree in graph G that includes all vertices in
Ni, and this subtree is called the routing tree RTi of net
Ni. The source si is the root node of RTi, and the sinks
tij are the terminal nodes. The routing trees for different
nets are disjoint in G, in order to prevent short circuits.

A. PathFinder Routing Algorithm

This section will review the congestion-driven
PathFinder routing algorithm [10] that we will parallelize.
Listing 1 shows a sketch of the PathFinder algorithm to
find routes for all the nets. PathFinder routes one net at
a time inside each iteration. Congestions are temporally
allowed in the intermediate routing results, and the nets
must negotiate with each other to determine which one
occupies the congested resource in subsequent iterations,
until all congestions are resolved and a complete legal
routing result is obtained.

Listing 1 The sequential PathFinder algorithm

1: PathFinder(nets {Ni}, arch G = 〈V, E〉)
2: while routing incomplete or congestion exists do
3: SeqMaze({Ni})
4: update history costs of the nodes in V
5: end while
6: end PathFinder
7:

8: SeqMaze(nets {Ni})
9: for each unrouted or congested net Ni do

10: rip-up RTi if exists
11: RTi ← {si}
12: for each unconnected sink tij do
13: Pj ← MazeExpand(RTi, tij)
14: RTi ← RTi ∪ {Pj}
15: end for
16: update present costs of the nodes in RTi

17: end for
18: end SeqMaze

The PathFinder algorithm is based on the adjustment
of congestions costs to resolve conflicts. The cost of a

routing resource n is given by

c(n) = (d(n) + h(n))× p(n)

where d(n) is the base cost which reflects the delay or the
length of the routing resource, h(n) contains the historical
congestion and changes after each iteration, and p(n)
reflects the present congestion (the total number of nets
that route through) in the current iteration.

B. Previous Parallel FPGA Routing

An early effort on the coarse-grained parallelization by
Chan and Schlag [1] achieves a 2.5× speedup using 3 pro-
cessors, targeting a distributed cluster. The disadvantage
of their method is that the results are extremely sensitive
to the order of the nets to be routed, due to the unbalanced
workload among processors. It is still an open problem to
determine the best net ordering [9]. Moreover, their results
are not deterministic, and different runs produce different
routing results.

Recently, Gort and Anderson [4] proposed a determin-
istic parallelization approach, which partitions the nets
into disjoint subsets, and these subsets are routed in
parallel with a proper synchronization scheme to maintain
deterministic results while minimizes the overhead of idle
time. Their approach achieves the speedups of 1.5×, 1.7×,
2.1× with 2, 3 and 4 cores, respectively.

Another fine-grained approach by Zhu et al. [12] parti-
tioned high fanout nets into several low fanout subnets
to be routed individually. Low fanout nets with non-
overlapping bounding boxes are routed in parallel since
they are unlikely to route in the same routing resource
node. They achieved a speedup of 1.9× on a quad-core
processor platform with 2.3% degradation in critical path
delay.

The most recent work by Moctar and Brisk [7] explores
the dynamic parallelism using Galois APIs. Galois is a
graph-based parallelization framework to exploit the ir-
regular and dynamic parallelism by speculative execution.
For the routing problem, different nets are routed at the
same time with speculation and an undo log, so that the
misspeculated routing can be undone once conflicts are
detected during execution. This dynamic approach exploits
more fine-grained parallelism than the static approaches.

In this paper, we present a novel coarse-grained paral-
lelization method by recursive partitioning. Our approach
is compatible with the fine-grained parallelization methods
for further acceleration.

III. Routing Task Partitioning

Partitioning plays an important role in attacking the
complexity issue of circuit and system design. In this
section, we propose a strategy to generate a physical
hierarchy for task partitioning.

A. Location-based Partitioning

Instead of directly partition the routing resource graph
into subregions, we recursively partition the nets into

119

subregion2
net1

net2

n
e
t3

net4

net5 net7

net6

subregion1

(a) Subregions and nets
after partitioning

(b) Recursive partitioning

S0

S- S+

S-- S-+ S+- S++

S--- S--+ S-+- S-++ S+-- S+-+ S++- S+++

(c) A tree structure for task as-
signment

S00

S0- S0+

S0

(d) Parallelize the nets
across subregions

Fig. 1: Parallel recursive partitioning

subsets based on the locations of their pins, while the
nets in each subset are still routed in the complete routing
resource graph. In this way, all the routing resources are
available to every net during routing.

The subsets are defined indirectly by the partitioning
of the routing resource graph. We can assign locations to
the routing resource nodes, which could be the placement
coordinates of the logic blocks or routing tiles that these
nodes belong to. Given these locations, we use the median
cutline to bi-partition the routing resource region into two
subregions, and thus define three subsets of nets: the nets
S0 across two subregions, the nets S− in the left/lower
subregion, and the nets S+ in the right/upper subregion.
An example of the partitioning by the solid green line
at level 0 is shown in Figure 1(a), where the black nets
represent S− and S+ in separate subregions and both the
red and blue nets represent S0 across different subregions.

The nets in subsets S− and S+ continue to be bi-
partitioned, resulting in a recursive partitioning scheme.
An example with three levels of recursive partitioning
is shown in Figure 1(b). The nets in S− (or S+) are
partitioned by the solid yellow line at level 1 into three
subsets, S−0, S−− and S−+ (or S+0, S+− and S++). The
nets in S−0 and S+0 remain at level 1, and the subsets
S−−, S−+, S+− and S++ are further partitioned by the
solid purple line at level 2, respectively.

To enable further partitioning, the nets in subset S0 can
be partitioned in the same way. As shown in Figure 1(a),
S0 are partitioned by the dashed green line into three
subsets, where the red nets represent S00 and the blue nets
represent S0− and S0+.

B. Optimal Partitioning

Besides the simple task partitioning by the median
cutline introduced above, we formulate a general problem
of routing task partitioning, and present a polynomial-time
algorithm to find the optimal solution of this problem.
Though the polynomial is super-quadratic, the size only
depends on the number of partitions not the number of
nets. This size is user-defined, and the optimization itself
can also be parallelized.

The routing task partitioning problem is formulated as
follows with related notations in Table I. Given

• an FPGA routing architecture and a netlist,

• the coordinate of every pin in every net,

• the minimum unit and the maximum level of par-
titioning, and

• the runtime estimation to route a net,

find a hierarchical bi-partitioning such that the runtime
estimation for the parallelization under this partitioning
scheme is minimized.

Here we assume the runtime estimation t(n) of a net is
a constant during routing. We further assume that if we
route the net subset S1 sequentially, and then route the
net subsets S2 and S3 in parallel, the runtime estimation
is t(S1) + max{t(S2), t(S3)}. The minimum unit of parti-
tioning is K, such that any cutline will only go along the
cell edges but will not go through any cell. The maximum
level L limits the depth of partitioning, where the full set
of nets is at level 0 and the subsets S− and S+ after bi-
partitioning are at level 1.

The routing task partitioning can be optimally solved
by dynamic programming in polynomial time. Due to the
page limits, we only outline the idea of this algorithm.
Since the number of rectangles |{R}| and the number of
bi-partitions |{〈R, l〉}| are polynomial, we will only show
the time complexity related to a single rectangle or a single
bi-partition below.

The algorithm consists of two stages: the precomputa-
tion stage and the dynamic programming stage. We can
precompute the runtime estimation of all the t(σ(R1,1)) in
linear time, and then precompute the runtime estimation
of every single t(S0〈R

w,h, l〉) in O(w2h2) time, by summing
up t(σ(r)) for every r who is a subregion of R and
whose lower-left and upper-right corners are separated by
l. After that we can precompute the runtime estimation of
every single t(S(R)) in O(1) time, by a simple summation
t(S(R)) = t(S0〈R, l〉) + t(S(Rl

−)) + t(S(Rl
+)) when the

runtime estimations in smaller regions are available.

Based on all the precomputations in polynomial time,
we can start the dynamic programming algorithm. The
optimal time T (S(R), 0) = t(S(R)) since there are no
partitions to parallelize. The optimal time

T (S(Rw,h), L + 1) =

min

T (S(Rw,h), L)
t(S0〈R, l〉) + max{T (S(Rl

−), L), T (S(Rl
+), L))}

for all cutline l

120

0

0.1

0.2

0.3

0.4

0.5

0.6

− 0 + − 0 + − 0 +

P
ro

p
or

ti
on

of
P

in
s

S S−

S+

S−−

S−+

S+−

S++

(a) Number of pins in each subset

0

0.1

0.2

0.3

0.4

0.5

0.6

− 0 + − 0 + − 0 +

P
ro

p
or

ti
on

of
N

et
s

S S−

S+

S−−

S−+

S+−

S++

(b) Number of nets in each subset

0

0.1

0.2

0.3

0.4

0.5

0.6

− 0 + − 0 + − 0 +

P
ro

p
or

ti
on

of
R

u
n
ti

m
e

S S−

S+

S−−

S−+

S+−

S++

(c) Runtime of routing for each subset

Fig. 2: Statistics of the task size and the runtime of ParRoute+

TABLE I: Notations for the partitioning problem

Notation Description
n ∈ S Net n belong to the net subset S.
K The minimum unit of partitioning: the routing re-

gion is partitioned to K × K cells, with the grid
point (0, 0) and (K + 1, K + 1) at the lower-left and
upper-right corners respectively. For simplicity, we
assume that a pin does not collide with any edge or
any grid point.

L The maximum level of partitioning.

Rw,h
x,y The rectangle with its lower-left corner at (x, y),

width w and heigh h. When there is no ambiguity,
the subscript and the superscript may be omitted.

(Rl
−

, Rl
+) =

〈R, l〉
A bi-partitioning of R by the segment l. l is a
horizontal or vertical segment, which consists of the
grid points inside R with two endpoints on the edges
of R. R is partitioned by l into two subregions Rl

−

and Rl
+.

σ(R) The nets whose minimum bounding box is R.
S(R) The nets whose minimum bounding box is inside R

(inclusive).
S0〈R, l〉 The nets in S(R) across the cutline l.
t(n) or t(S) The sequential runtime estimation to route the

net(s).
T (S, L) The parallel runtime estimation with L as the max-

imum level of partitioning.

where a single entry can be computed in O(w + h) time
and there are (K + 1)2K2/4 entries in total. The solution
of the routing task partitioning problem is T (RK,K

0,0 , L).

It can be proved by induction that the dynamic pro-
gramming algorithm generates the optimal task partition-
ing. Detailed analysis can show that the whole algorithms
consumes polynomial time and space.

C. Effectiveness of Recursive Bisection

Table II illustrate the effectiveness of the recursive
bisection for five representative benchmarks. The columns
from left to right are respectively: the circuit name, the
number of CLBs, the size of FPGA, the number of nets,
the channel width that is 1.4× the minimum channel width
[4], [7] and the speedup of optimal recursive partitioning
(OPT) and recursive bisection (BIS) using various levels
of partitioning.

To obtain the optimal partitioning in feasible time,
we set the K in Table I to 20 for all benchmarks. The
results are given from 1 to 5 levels of recursive partitioning.
Average speedup is also included for comparison.

These data show that the recursive bisection results in
a close-to-optimal estimated runtime. Thus, we use the re-
cursive bisection for the parallel routing in the experiments
in Section V. Even if the estimated runtime of the recursive
bisection is far from optimal for some other circuits, we can
include an extra step at the beginning of the routing flow
and switch to the optimal recursive partitioning.

D. Partitioning Balance

To balance the task load in the two subsets at the
same level, we must find an easy-to-compute metric that is
highly correlated with the actual runtime. We considered
two different metrics for partitioning:

1) Number of pins, which was shown to be highly
correlated with the runtime in [4].

2) Number of nets, which is even easier to compute.

Figure 2(a) and 2(b) shows the statistics data of the pins
and nets in each subset for the benchmark mcml. The y-
axis shows the percentage of these metrics for different
subsets at each level, where the first 3 bars represent
the first level, the next 6 bars represent the second level,
and the last 9 bars represent the third level. Runtime in
Figure 2(c) is included for comparison.

IV. Routing Task Parallelization

We present our coarse-grained parallel PathFinder
routing algorithm: ParRoute and ParRoute+. ParRoute
partitions the routing tasks into three subsets, and two
of these subsets are recursively partitioned and routed
in parallel. ParRoute+ recursively partitions and routes
all three subsets to get further speedup. The effects on
the number of iterations and the convergence are also
analyzed.

A. Recursively Parallel Routing

Our parallelization approach is to partition the nets
into three subsets recursively, which are formulated as
tasks and then map to separate processes. Each task routes
its own set of nets and maintains its own data structures,
including a routing resource graph and the associated
congestion information. The owner of a tasks uses MPI

121

TABLE II: Comparison of estimated speedup between optimal and bisectional partitioning

Benchmark CLBs Array Size Nets Channel Width
1 level 2 level 3 level 4 level 5 level

OPT BIS OPT BIS OPT BIS OPT BIS OPT BIS

diffeq1 1460 35x35 3953 48 1.36 1.36 2.43 2.23 3.29 3.08 4.29 4.01 5.25 4.93
blob_merge 2702 51x51 6606 68 1.38 1.34 2.47 2.27 3.36 3.12 4.19 3.87 5.48 4.84
mkPktMerge 3767 58x58 7474 52 1.47 1.47 3.12 2.97 4.13 3.62 5.21 4.97 6.03 5.48
bgm 4225 73x73 27853 116 1.42 1.42 2.54 2.28 3.48 3.17 4.50 4.41 5.12 4.93
mcml 7934 101x101 81282 196 1.47 1.47 3.16 3.03 4.23 3.99 5.26 5.04 6.08 5.57

Avg. 1.42 1.41 2.74 2.56 3.70 3.40 4.69 4.46 5.59 5.15

messages to assign sub-tasks to other processes and collect
partial routing results from the owner of the sub-tasks.

In Listing 2 we implement the parallel PathFinder al-
gorithm using MPI in a distributed-memory system, where
the send and receive operations are the primitives for
communications and synchronizations among processes.
The master process in line 4-8 are responsible for the whole
routing flow, which is similar to Listing 1 except for the
parallel kernel in line 5. The other processes in line 10-14
are responsible for performing the task assignments. The
tasks form a binary tree as illustrated in Figure 1(c), where
the dashed lines in red represent the task assignments, and
the dashed lines in blue represent the recursive function
calls.

We statically assign tasks to processes, so that each
process knows whom it should ask for tasks at line 12, as
well as whom it should assign tasks to at line 25. The task
labeled t in a perfect binary tree generated by the recursive
task partitioning has the properties that parent(t) = ⌊(t−
1)/2⌋, lchild(t) = 2×t+1 and rchild(t) = 2×t+2. The top-
level task assignment assigns the root node with task id t =
0 in an L-level perfect binary tree to process with id p = 0.
Process p first completes the routing task t; then it assigns
the (L−1)-level subtree rooted at task rchild(t) to process
p + 2L−1 using MPI message, and assigns another (L− 1)-
level subtree rooted at task lchild(t) to itself by recursive
function call (or replace this tail recursion by iteration).
According to such static assignment, we can compute the
task_id(p) at line 10, which is the first task assigned to
process p by MPI message, and compute the owner_pid(t)
at line 11 and 25, which is the id of the process responsible
for performing the routing task t.

B. Enhanced Recursive Parallel Routing

The two processes on the left in Figure 3 show the syn-
chronization scheme in ParRoute. Using synchronization
we impose artificial orders that the routing of S− and S+

do not start until S0 finishes, and the routing of S0 in
the next iteration does not start until S− and S+ finish.
The nets in each subset are either routed sequentially or
partitioned in the same way and routed in parallel. It is
clear that our parallel routing algorithm is deterministic.

The idle time affects the efficiency of the parallelization.
In order to improve efficiency and reduce runtime, the nets
in S0 is also parallelized in the same way. An example is
shown on the right in Figure 3, where it leads to an effective
runtime reduction.

Listing 2 Parallel PathFinder

1: ParRoute(nets {Ni}, arch G = 〈V, E〉)
2: pid← process_id()
3: if pid == 0 then
4: while routing incomplete or congestion exists do
5: {RTi} ← ParMaze(0, {Ni})
6: update history costs of the nodes in V
7: end while
8: return {RTi}
9: else

10: tid← task_id(pid)
11: manger ← owner_pid(parent(tid))
12: receive nets {Nj} from manager
13: {RTj} ← ParMaze(tid, {Nj})
14: send {RTj} to manager
15: end if
16: end ParRoute
17:

18: ParMaze(task id tid, nets {Nj})
19: if tid is at the last level then
20: {RTj} ← SeqMaze(tid, {Nj})
21: return {RTj}
22: else
23: (S0, S−, S+)← partition({Nj})

24: {RTj : Nj ∈ S0} ← SeqMaze(S0)

25: worker = owner_pid(rchild(tid))
26: send S+ to worker
27: {RTj : Nj ∈ S−} ← ParMaze(lchild(tid), S−)
28: receive {RTj : Nj ∈ S+} from worker
29: return {RTj}
30: end if
31: end ParMaze

Such runtime reduction can be implemented by modify-
ing line 24 in Listing 2, in the same way as the procedure of
ParMaze to explore further parallelism without adversely
affecting the routing quality. The enhanced parallel imple-
mentation is call ParRoute+.

C. Empirical Results on Convergence

We observe an interesting fact in Figure 4(a) that the
number of iterations decreases as the number of processes
increases. This is because that our ParRoute/ParRoute+
imposes different net ordering. We performed experiments
to change the net orders in the sequential PathFinder as
in ParRoute/ParRoute+, and also observed the reduction
in the number of iterations. Unfortunately such reduction

122

6

8

10

12

14

16

18

20

Baseline 2-process 4-process 8-process 16-process 32-process

N
u
m

b
er

of
It

er
at

io
n
s

mkDelayW.
blob-merge

or1200
LU8PEEng

mcml

(a) Number of iterations

−2000

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m

b
er

of
C

on
ge

st
ed

N
o
d
es

Congested Nodes in S0US−

Congested Nodes in S0US+

Common Congested Nodes

(b) Congested nodes in S0

−2000

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m

b
er

of
C

on
ge

st
ed

N
o
d
es

Congested Nodes in S−

Congested Nodes in S+

Common Congested Nodes

(c) Common congested nodes in S
−

and S+

Fig. 4: Convergence Data from ParRoute+.

S0

S- S+

S0-

S00

S0+

sync

sync

runtime reduction
sync

sync

Parallelize

sync

S- S+

Fig. 3: Runtime reduction in ParRoute+

is not free, in Section V we will show the impact on routed
wirelength. Regardless, net ordering enables the trade-off
between quality and runtime.

The PathFinder algorithm converges when the usage of
every routing resource node is below its capacity. In order
to empirically investigate in the convergence property,
we count the number of congested nodes in Figure 4(b)
and 4(c), where the x-axis is the iteration number, and
the y-axis is the number of congested nodes. Figure 4(b)
shows the congested nodes in S0 ∪ S−, S0 ∪ S+ and their
intersection, and Figure 4(c) shows the congested nodes in
S−, S+ and their intersection. The data tells us that there
is only a small percentage of common congested nodes,
and the number of common congested nodes reduces to
zero much more quickly than the other congested nodes.
Therefore, the separated routing of nets in S− and S+ has
small impact on the convergence.

V. Experimental Study

In this section, we present and analyze the results ob-
tained using the parallelized routing algorithm ParRoute
and ParRoute+ described in the previous section. We
evaluate the speedup and quality of both methods, and
also compare them with the original VPR 7.0 router and
the state-of-the-art parallel FPGA routers.

A. Experimental Setup

Experiments were performed on Linux servers, where
each node has two 6-core Intel Xeon E5-2430 processors
at 2.2GHz and 32GB shared memory. We ran our parallel
router using 2, 4, 8, 16 and 32 processes, and use four

TABLE III: Benchmark summary

Benchmark Architecture File Nets
mkDelayW. k6_frac_N10_mem32K_40nm 5224
blob_merge k4_N4_90nm 6606
mkSMAdap. k4_N4_90nm 7154
mkPKtMerge k4_N4_90nm 7474
or1200 k4_N4_90nm 8078
stereovision0 k6_frac_N10_mem32K_40nm 9312
stereovision1 k6_frac_N10_mem32K_40nm 13523
LU8PEEng k6_frac_N10_mem32K_40nm 16278
bgm k6_frac_N10_mem32K_40nm 27853
stereovision2 k6_frac_N10_mem32K_40nm 36479
mcml k6_frac_N10_mem32K_40nm 81282

networked nodes when the number of processes exceeds 8.
The baseline for comparison is the original single-process
single-thread VPR, which was implemented in C without
any parallelization overhead.

As it is more important to reduce runtime of large
circuits, only those circuits with more than 5000 nets
are included in our experiments; smaller circuits were
excluded. All the experiments were run with the 11 largest
circuits from VTR benchmarks commonly used in FPGA
CAD research [8]. Table III summarizes the benchmark
circuits, the architecture file, and the number of nets.
The larger circuits are synthesized and placed on the
architecture k6_frac_N10_mem32K_40nm that is similar
to modern FPGAs, and the smaller circuits are synthesized
and placed on a simple architecture k4_N4_90nm to
increase the problem size. The FPGA routing architecture
contains unidirectional wire segments that span two logic
block tiles.

We used ABC [13] for logic synthesis and technology
mapping, and use T-VPack [5] and VPR placer [8] for
packing and placement respectively. Across all runs, every
benchmark was routed using a channel width of 1.4× the
minimum channel width [4], [7] needed by VPR.

B. Experimental Results

Figure 5 shows the speedups of ParRoute versus the
number of processes. The speedups of each circuit are
shown in a cluster of bars, and the average speedups
are shown in the last cluster. On average, speedups of
1.49×, 2.94×, 3.95×, 4.43× and 5.88× are achieved with
2, 4, 8, 16 and 32 processes, respectively. These results

123

0

2

4

6

8

10

12

m
kD

elayW
.

blob-m
erge

m
kSM

A
dap.

m
kPktM

erge

or1200

stereovision0

stereovision1

LU
8PEEng

bgm
stereovison2

m
cm

l

average

S
p

ee
d
u
p

Baseline
2-process
4-process
8-process

16-process
32-process

Fig. 5: Speedup of ParRoute with 2, 4, 8, 16 and 32
processes

0

2

4

6

8

10

12

m
kD

elayW
.

blob-m
erge

m
kSM

A
dap.

m
kPktM

erge

or1200

stereovision0

stereovision1

LU
8PEEng

bgm
stereovison2

m
cm

l

average

S
p

ee
d
u
p

Baseline
2-process
4-process
8-process

16-process
32-process

Fig. 6: Speedup of ParRoute+ with 2, 4, 8, 16 and 32
processes

demonstrate adequate accelerations of ParRoute with up
to 32 processes, and it is expected that we can use more
processes to accelerate the routing of even larger circuits.

Moreover, ParRoute can be enhanced by parallelizing
the routing tasks of the nets across subregions, the overall
runtime can be further reduced. Figure 6 reports the
speedups of ParRoute+, which achieves average speedups
of 1.56×, 3.15×, 4.62×, 6.02× and 7.06× with 2, 4, 8,
16 and 32 processes, respectively. Please note that the
computing resources that required by ParRoute+ are not
greater than ParRoute.

For comparison, we list the results of previous coarse-
grained and fine-grained parallelization methods in Fig-
ure 7. An early coarse-grained parallel router by Chan
and Schlag[1] reported a speedup of 2.5× using three
processors, and Gort and Anderson [4] reported a speedup
of 2.1× using four cores with deterministic parallelization.
The latest work by Moctar and Brisk [7] based on fine-
grained speculative parallelism shows a speedup of 5.46×
using 8 threads. Given adequate amount of computing re-

0

1

2

3

4

5

6

7

8

2-core

3-core

4-core

8-core

16-core

32-core

2-core

3-core

4-core

8-core

16-core

32-core

S
p

ee
d
u
p

Different Parallel Routing with Multiple Cores

Gort[4]
Zhu[13]

Moctar[8] Chan[1]
Gort[4]

ParRoute
ParRoute+

Coarse-Grained Parall RoutingFine-Grained Parall Routing

Fig. 7: Comparisons between ParRoute/ParRoute+ and
state of the arts

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

m
kD

elayW
.

blob-m
erge

m
kSM

A
dap.

m
kPktM

erge

or1200

stereovision0

stereovision1

LU
8PEEng

bgm
stereovision2

m
cm

l

average

N
or

m
al

iz
ed

T
ot

al
W

ir
el

en
gt

h

Baseline
2-process
4-process
8-process

16-process
32-process

Fig. 8: Impacts on the routed wirelength

sources, our ParRoute+ achieves the maximum speedup of
7.06× among existing results. Please note that ParRoute+
is compatible with the fine-grained parallelization, and can
get much further speedup. The expected speedup mixing
ParRoute+ and fine-grained speculative parallelism can be
as great as 7.06× 5.46 ≈ 38 using 32× 8 = 256 processing
elements.

Figure 8 reports the normalized routed wirelength of
ParRoute+ using various processes. Though on average the
routed wirelength is increased by 10% using ParRoute+
using 32 processes, it is still meaningful for non-timing-
critical applications and fast design iterations.

VI. Conclusions and Future Work

Parallelization is a promising direction to reduce the
runtime of FPGA CAD tools. In this paper, we present a
recursive partitioning approach for deterministic parallel
FPGA routing. The effectiveness of the recursive bisection
approach is demonstrated by comparing with the optimal
recursive partitioning. In the recursive partitioning strat-
egy, we partition the nets into three subsets by imposing
a pseudo-cutline in the routing resource graph, where

124

the subset of nets across the cutline will be routed first,
and the two remaining subsets of nets separated by the
cutline will be recursively partitioned. We invoke multiple
processes to complete the partitioned routing tasks, and
use message passing interface (MPI) for synchronization
and data exchange. We further show that the nets across
the cutline can be further partitioned for more parallelism.
Results show that our parallel approach provides 6.02×
speedup using 16 processes and 7.06× speedup using 32
processes. Although the proposed approach increases the
routed wirelength by 10% on average using 32 processes, it
is still meaningful for non-timing-critical applications and
fast design iterations.

The future work include the following aspects. 1) The
quality degradation of routed wirelength could be reduced
by more data synchronizations between the tasks in S−

and S+, while currently there are no data synchronizations
within one routing iterations. 2) The current median-
cutline partitioning approach can be significantly improved
by solving the routing task partitioning problem. 3) The
impact on the critical path delay in the timing-driven mode
will be studied. 4) More in-depth analysis about the net
ratio in S0, and the chances of net conflicts among S− and
S+.

Acknowledgment

This work is partly supported by National Natural
Science Foundation of China (NSFC) Grant 61202073,
Research Fund for the Doctoral Program of Higher Ed-
ucation of China (MoE/RFDP) Grant 20120001120124,
and Beijing Natural Science Foundation (BJNSF) Grant
4142022.

References

[1] P. Chan and M. Schlag, “Acceleration of an FPGA router,”
IEEE Symp. Field Programmable Custom Computing Machines,

[2] A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-
assisted fast routing,” Proc. 10th Annu. IEEE Symp. Field-
Programmable Cust. Comput. Mach., pp. 205-215, 2002.

[3] M. Gort and J. Anderson, “Design Re-Use for Compile Time
Reduction in FPGA High-Level Synthesis Flows,” In ACM Int’l
Symp. on FPT, pages 4-11, 2014.

[4] M. Gort and J. Anderson, “Deterministic multi-core parallel
routing for FPGAs,” Int. Conf. Field Programmable Technology,
pp. 61-69, Dec. 8-10, 2010.

[5] A. Marquardt, V. Betz, and J. Rose. “Using cluster based logic
blocks and timing-driven packing to improve FPGA speed and
density,” In Int’l Sym. on FPGAs, pages 37-46, Monterey, CA,
1999.

[6] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-
based performance-driven router for FPGAs,” in Proc, 3rd Int,
ACM/SIGDA Symp. Field-Programmable Gate Arrays, Mon-
terey, CA, Feb. 1995, pp.111-117.

[7] Y. Moctar and P. Brisk, “Parallel FPGA Routing based on
the Operator Formulation,” ACM/IEEE Design Automation
Conference, San Francisco, CA, USA, June 01-15, 2014.

[8] J. Rose, J. Luu, C. Yu, O. Densmore, J. Goeders, A. Somerville,
K. Kent, P. Jamieson and J. Anderson, “The VTR Project:
Architecture and CAD for FPGAs from Verilog to Routing,”
ACM/SIGDA Int. Symp. FPGAs, pp. 77-86, 2012.

[9] R. Rubin and A. Dehon, “Timing-driven pathfinder pathology
and remediation: quantifying and reducing delays noise in VPR-
pathfinder,” ACM/SIGDA Int. Symp. FPGAs, pp. 173-176, Feb.
27- Mar. 1st, 2011.

[10] J. Swartz, V. Betz and J. Rose, “A fast routability-driven router
for FPGAs,” ACM/SIGDA Int. Symp. FPGAs, pp. 140-149,
Feb. 22-24, 1998.

[11] I. Watson, C. Kirkham and M. Lujan, “A Study of a Transac-
tional Parallel Routing Algorithm,” in International Conference
on Parallel Architecture and Compilation Techniques, 2007.

[12] C. Zhu, J. Wang, and J. Lai. “A novel net-partition-based
multithreaded FPGA routing method,” In Int’l Sym. on FPL,
Sept. 2-4, 2013.

[13] Berkeley Logic Synthesis and Verification Group. “ABC: A
system for sequential synthesis and verification, Release 70930.”
http://www.eecs.berkeley.edu/ alanmi/abc/.

[14] “Open MPI: Open source high performance computing,”
http://www.open-mpi.org/, 2010.

125

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20150527105016
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

