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An Efficient Compiler Framework for
Cache Bypassing on GPUs

Yun Liang, Xiaolong Xie, Guangyu Sun, and Deming Chen

Abstract—Graphics processing units (GPUs) have become
ubiquitous for general purpose applications due to their tremen-
dous computing power. Initially, GPUs only employ scratchpad
memory as on-chip memory. Though scratchpad memory benefits
many applications, it is not ideal for those general purpose appli-
cations with irregular memory accesses. Hence, GPU vendors
have introduced caches in conjunction with scratchpad memory
in the recent generations of GPUs. The caches on GPUs are highly
configurable. The programmer or compiler can explicitly control
cache access or bypass for global load instructions. This highly
configurable feature of GPU caches opens up the opportunities
for optimizing the cache performance. In this paper, we propose
an efficient compiler framework for cache bypassing on GPUs.
Our objective is to efficiently utilize the configurable cache and
improve the overall performance for general purpose GPU appli-
cations. In order to achieve this goal, we first characterize GPU
cache utilization and develop performance metrics to estimate
the cache reuses and memory traffic. Next, we present efficient
algorithms that judiciously select global load instructions for
cache access or bypass. Finally, we present techniques to explore
the unified cache and shared memory design space. We inte-
grate our techniques into an automatic compiler framework that
leverages parallel thread execution instruction set architecture
to enable cache bypassing for GPUs. Experiments evaluation on
NVIDIA GTX680 using a variety of applications demonstrates
that compared to cache-all and bypass-all solutions, our tech-
niques improve the performance from 4.6% to 13.1% for 16 KB
L1 cache.

Index Terms—Cache bypassing, compiler, graphics processing
unit (GPU), performance.

I. INTRODUCTION

WITH the continuing evolution of heterogenous com-
puting platforms that consist of graphics processing
units (GPUs) and CPUs, GPUs are increasingly used for
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high-performance embedded computing. Due to their mas-
sively parallel architecture, GPUs benefit a variety of embed-
ded applications including imaging, audio, aerospace, military,
and medical applications [1]-[3]. Indeed, recent years have
also seen a rapid adoption of GPUs in mobile devices like
smartphones. Mobile devices typically use system-on-a-chip
(SoC) that integrates GPUs with CPUs, memory controllers,
and other application-specific accelerators. The major SoCs
with integrated GPUs available in the market include NVIDIA
Tegra series with low power GPU, Qualcomm’s Snapdragon
series with Adreno GPU, and Samsung’s Exynos series with
ARM Mali GPU.

Despite the high-computing power of GPUs, per-
formance optimization of GPUs is challenging. The
achieved performance speedup critically depends on memory
subsystem [4], [5]. In early GPUs, software-managed scratch-
pad memory (also known as shared memory) was employed
as the on-chip memory to hide the memory access latency.
Data allocation to scratchpad memory can be explicitly con-
trolled by the programmer or automatically by the compiler.
Scratchpad memory benefits certain applications with pre-
dictable data access patterns, but it is not appropriate for
applications with irregular access patterns. For these appli-
cations, they naturally prefer cache instead of scratchpad
memory. Ideally, the optimal memory hierarchy should com-
bine the benefits of both scratchpad memory and cache.
Indeed, in the recent generations of GPUs, GPU vendors have
introduced cache in conjunction with scratchpad memory to
improve the memory performance. For example, both NVIDIA
Fermi and Kepler have a unified cache (L1 cache) and scratch-
pad memory. These architectures also have a L2 cache to
further exploit data localities.

For both CPUs and GPUs, caches can effectively hide
the data access latency by exploiting the program localities.
However, GPU caches are quite distinct from CPU caches
in terms of design and utilization. Meanwhile, the caches
on GPUs are highly configurable. GPU architecture provides
interfaces for the programmer or compiler to explicitly con-
trol the L1 cache access or bypass for global load instructions.
Cache bypassing is very beneficial for applications with mem-
ory accesses that are scattered or have no data localities as it
can help to improve memory efficiency [6].

Although cache bypassing can potentially improve GPU
performance, it is a challenge for the programmer. Given
a program that consists of n global load instructions, the
number of possible cache bypassing solutions is exponen-
tial (2"). These global load instructions cannot be considered
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in isolation (O(n)) as they are usually dependent on each other
(i.e., data reuse or conflict). Obviously, it is infeasible for
the programmer to manually use the cache bypassing inter-
face and explore the huge design space exhaustively. More
importantly, recent work has shown that GPU caches have
counter-intuitive performance tradeoffs [7]. In particular, nei-
ther cache-all or bypass-all global load instructions is optimal;
if the cache bypassing is not done right, it may seriously
hurt the performance. Thus, it is very important to develop
automatic compiler techniques for cache bypassing on GPUs.

The unified memory architecture on GPUs (L1 cache
and shared memory) is configurable. For example, NVIDIA
Fermi and Kepler architectures allow the programmers a choice
over its L1 cache and shared memory partition. More specifi-
cally, on NVIDIA GTX680, the 64 KB unified memory can be
configured as either a 16 KB cache and 48 KB shared memory,
a 32 KB cache and 32 KB shared memory, or a 48 KB cache
and 16 KB shared memory. The trend in the unified memory
design will allow more fine-grained partition choices between
cache and shared memory [8]. The shared memory capacity
determines the number of parallel executing threads while the
L1 cache capacity determines the cache performance of a single
thread. Thus, the programmers have to strike the right balance
between the L1 cache and shared memory.

In this paper, we propose an efficient compiler frame-
work for cache bypassing on GPUs that aims to improve
the performance for general purpose GPU applications. We
first characterize GPU cache utilization and develop perfor-
mance metrics to accurately estimate the cache reuses and
memory traffic. In particular, we use light-weight profiling
to characterize each global load instruction, data reuse, load
efficiency, and memory traffic. We also use static analysis to
identify frequently used memory access patterns for accurate
load efficiency computation. Next, we develop algorithms that
judiciously select global load instructions for cache access
or bypass. One algorithm is based on integer liner program-
ming (ILP) and the other one is a heuristic. Finally, we
determine a good partition between the L1 cache and shared
memory. Our framework leverages the parallel thread execu-
tion (PTX) instruction set architecture (ISA). Experimental
results on NVIDIA GTX680 show that our compiler frame-
work for cache bypassing can effectively improve the overall
performance for GPU applications.

This paper contributes to the state-of-the-art in GPU opti-
mization with the following.

1) Compiler Framework: We develop an efficient compiler
framework for cache bypassing on GPUs. It automati-
cally analyzes GPU code and implements the optimized
cache bypassing solution by leveraging the PTX ISA.

2) Cache Bypassing Algorithms: We develop two algo-
rithms for cache bypassing optimization. One algorithm
is based on ILP and the other is an efficient heuristic.
Both algorithms are based on traffic reduction graph,
which captures the data reuse, conflicts between global
load instructions and load efficiencies.

3) Unified Cache and Shared Memory Exploration: We
demonstrate the tradeoff in the cache and shared
memory capacity and develop regression model based
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performance metrics to guide the design space explo-
ration and determine the best partition between L1 cache
and shared memory.

4) Experimental Evaluation: We use a variety of appli-
cations for evaluation. Experiments on the NVIDIA
GTX680 show that compared to cache-all solution, our
cache bypassing technique improves the average cache
benefits from 4.6% to 13.1% for 16 KB L1 cache. The
performance speedup of our cache bypassing with uni-
fied cache and shared memory exploration technique is
up to 2.62x.

A preliminary version of this paper was reported in [9]. In
this paper, we propose load efficiency computation techniques
for frequently used access patterns and explore unified cache
and shared memory space.

This paper is organized as follows. In Section II, we pro-
vide some background on GPUs and present a motivational
example for our cache bypassing study. In Section III, we
introduce our compiler framework and the involved analysis
components. In Sections IV and V, we detail the characteri-
zation and optimization components. Section VI presents the
experimental results. Section VII discusses the related work.
Finally, Section VIII concludes this paper.

II. BACKGROUND AND MOTIVATION

This section provides the background details and motiva-
tion of this paper. We use the NVIDIA Kepler GTX680 GPU
architecture and CUDA terminology in this paper. But our
techniques are equally applicable to other GPUs with caches
and the OpenCL programming model.

A. Background

State-of-the-art GPUs are many-core architectures. Based
on NVIDIA terminology, a GPU is composed of multiple
streaming multiprocessors (SMs), which in turn is composed
of multiple streaming processors (SPs). For example, the
NVIDIA GTX680 used in this paper has eight SMs, each
of which has 192 SPs. Thus, there are 1536 cores in total.
Each SM has private registers, which are shared among the
threads running on it. Threads are organized into thread blocks.
A thread block is scheduled to execute on one of the SMs.
CUDA provides synchronization barrier routine for the threads
within a thread block. Upon a synchronization point, threads
have to wait until all the other threads reach the barrier. On
one SM, threads are scheduled in units of warps (32 threads).
The threads in a warp execute in an SIMD style.

Fig. 1 shows the memory hierarchy of recent generations of
GPUs with caches. Each SM is equipped with caches in con-
junction with scratchpad memory. The low latency on-chip
scratchpad memory is also called shared memory for GPUs.
For example, each SM of the NVIDIA Fermi and Kepler archi-
tectures contains a configurable 64 KB on-chip memory, which
is shared by scratchpad memory and L1 data cache [10], [11].
The programmer can choose how much storage to devote to the
L1 cache versus shared memory (16 versus 48 KB, 32 versus
32 KB, and 48 versus 16 KB). Shared memory is allocated per
thread block. The same shared memory can be accessed by all
the threads within the same thread block. The data stored in
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Fig. 1. GPU memory hierarchy.

TABLE I
PARAMETERS OF GTX680

Parameters Values
Compute capability 3.0
Number of SMs 8
Number of SPs per SM 192

L2 cache size
L1 cache size

512 KB (32-byte block)
16, 32, 48 KB (128-byte block)

Shared memory size 48, 32, 16 KB
Maximum threads per SM 2048
Maximum thread blocks per 16

SM

Number of 32-bit registers 64K

per SM

Graphics core clock 1006 Mhz

on-chip shared memory can be accessed much faster than that
stored in off-chip global memory. All the SMs share a unified
L2 cache.

Global and local memories reside in cached device memory.
In other words, the accesses to data in global and local mem-
ory have to go through the two-level cache hierarchy. Local
memory is used as a per-thread private memory space for reg-
ister spills, function calls, and automatic array variables. For
GPU applications, the majority of cached data accesses are
from/to global memory. Thus, in this paper, we focus on the
cache bypassing for the global memory. Table I describes the
architecture details of NVIDIA GTX680 (Kepler architecture)
used in this paper.

NVIDIA Fermi and Kepler architectures provide interfaces
to explicitly control the L1 cache access or bypass for global
load instructions. In particular, the programmer or the compiler
can configure the L1 cache in either coarse- or fine-grained
manner. In a coarse-grained manner, all the global load instruc-
tions are cached or bypassed. We refer to this as “cache-all” or
“bypass-all,” respectively. This is controlled by using compi-
lation flags (-dlcm=ca or -dlcm=cg). In a fine-grained manner,
each individual global load instruction can choose either
cache access or cache bypass (detailed program interface in
Section IIT). L1 caches on different SMs are not coherent
while L2 cache is coherent across all the SMs on the chip.
Finally, current NVIDIA GPUs do not cache global store data
in L1 cache because L1 caches are not coherent for global
data. Thus, global stores ignore L1 caches, and discard any
L1 cache line if it is matched. This behavior is not config-
urable in the current GPU architecture. Thus, in this paper we
only focus on global memory loads.

B. Motivation

Here, we present the performance speedup potential through
cache bypassing on GPUs and the need of automatic compiler
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Fig. 2. Performance variation of particle filter with different cache bypassing
solutions.

support. We use the kernel particle filter from Rodinia bench-
mark suite [12] as our case study. There are totally 14 load
instructions in particle filter. To limit the design space, we
only choose six global load instructions with high-access fre-
quencies to be cache bypassing candidates. Fig. 2 shows how
the performance speedup varies with the cache bypassing solu-
tions for this sub-space. The results are normalized to cache-all
(e.g., cache all the six chosen global load instructions). The
horizontal axis represents the subset of design space (2° = 64
solutions), the left-most point represents cache-all and the
right-most point represents bypass-all. The performance can
be increased to 1.18 x by using the best bypassing solution as
shown in Fig. 2. The other eight loads have small impact on
performance as they not frequently used. If we consider the
entire design space (all the 14 loads), the best performance
speedup can be increased only to 1.21x. The experiments are
performed on NVIDIA Kepler GTX680 and we use NVIDIA
profiler to collect the kernel performance.

As shown in Fig. 2, the performance speedup critically
depends on the cache bypassing solutions. Neither cache-all or
bypass-all ensures good performance. More importantly, there
is a considerable performance speedup potential by exploiting
the cache bypassing interface. Meanwhile, the cache bypassing
optimization necessitates an automatic compiler framework as
it is infeasible to manually explore such a huge design space
for GPU applications.

III. COMPILER FRAMEWORK

Fig. 3 presents our compiler framework for cache bypassing
on GPUs. The CUDA code is first precompiled to PTX code,
which is CUDAs intermediate representation used in NVIDIA
CUDA compiler. Our compiler framework takes the unmod-
ified PTX code as input and outputs the optimized CUDA
binaries. The framework involves three components: charac-
terization, optimization, and instrumentation. Initially, charac-
terization component collects the data access, reuse, and load
efficiency through light-weight profiling. Then, optimization
component determines cache access or bypass for every global
load instruction. Finally, instrumentation component imple-
ments the optimized solution determined by the optimization
component by leveraging the PTX ISA. The characterization
component is also assisted with the instrumentation component
for profiling.
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Fig. 3. Compiler framework for cache bypassing on GPUs.
1 |1d.global.f32 %f2, [%rd23+0];

2 | st.shared.f32 [%rd14+0], %f2,;

3 |.loc 14 82 0

4 |1d. global.f32 %f3, [%rdl9+0];

5 | st.shared.f32 [%rdl15+0], %f3;

Listing. 1. Original PTX code

1 |1d.global.cg.f32 %f2, [%rd23+0];
2 | st.shared.f32 [%rd14+0], %f2;

3 |.1loc 14 82 0

4 |1d.global.ca.f32 %f3, [%rdl19+0];
5 | st.shared.f32 [%rd15+0], %f3;

Listing. 2. Modified PTX code

The characterization and optimization components are
detailed in Sections IV and V, respectively. Here, we describe
the details of the instrumentation component. Our implemen-
tation leverages the PTX ISA. Global memory loads in PTX
are in the following format:

1d.global.L1_cache_option dst, src
LI_cache_option has six possible values
ca, cg, cs, lu, cv, empty

among which we focus on ca, cg, empty, which represent
cache access, cache bypass, and default setting.

For each global load, we can explicitly control its cache
access or bypass by using different L/_cache_option. More
clearly, we implement cache access using option ca and imple-
ment cache bypass using option cg. After all these changes, we
need to update the PTX section size and embed it into CUDA
binary. We illustrate the PTX code instrumentation using an
example (Listings 1 and 2). After the PTX code instrumen-
tation, the first global load (line 1 in Listing 2) bypasses
the L1 cache while the last global load (line 4 in Listing 2)
accesses the L1 cache.

IV. CHARACTERIZATION COMPONENT

GPU architecture is quite distinct from CPU architecture. In
this section, we first characterize the distinct features in terms
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of cache utilization on GPUs and then present the performance
metrics and load efficiency computation for cache bypassing
optimization component.

A. Cache Block Size

For GPUs, the cache block sizes are different for L1 and L2
caches [10], [11]. In particular, L1 cache has 128 bytes block
size while L2 cache has 32 bytes block size. Depending on the
requested data size and data access patterns, data transfers are
separated into one or more cache blocks. More clearly, when
L1 cache is used, the hardware issues transfers of 128 bytes;
otherwise, the hardware issues transfers of 32 bytes. However,
not all the transferred data in a cache block are useful, that is
to say, the global load efficiency is less than or equal to 100%.
According to the NVIDIA profiler, the global load efficiency
is defined as

ffici useful data
efficiency = ———.
y transferred data

We use E,, to denote the global load efficiency when
L1 cache is accessed and Eyf to denote the global load
efficiency when L1 cache is bypassed. For example, for an
aligned 16-byte data request, Eop is 16/128 = 12.5% and Eg 1S
16/32 = 50%. Hence, L1 cache bypassing is very beneficial for
applications with scattered memory accesses, because a mem-
ory access that fetches 128 bytes for L1 cache significantly
wastes the memory bandwidth. In this case, L1 cache bypass-
ing can help to improve the load efficiency and thus reduce
memory traffic.

B. Data Locality

GPUs are many-core architectures. Thousands of threads
may execute and share the L1 cache simultaneously on the
same SM. As a result, cache contention among threads is
more significant on GPUs than on CPUs. In the extreme case,
if all the threads in a thread block execute together in lock-
step style, then it is less likely for caches to exploit temporal
locality. However, in the real GPU hardware, threads execute
in warps, and the scheduler may execute a few instructions
for the current warp before it switches to the next warp. Thus,
GPU caches still exploit both spatial and temporal localities.
We define two types of data localities on GPUs.

1) Intrawarp Spatial/Temporal Locality: The threads within

the same warp access the same cache line.

2) Interwarp Spatial/Temporal Locality: The threads within

different warps access the same cache line.
The threads in a warp are executed in an SIMD style. Intrawarp
spatial locality refers to the memory coalescing for GPUs.
The continuous memory accesses from the threads within a
warp lead to coalesced accesses. Intrawarp spatial locality is
determined by the data access pattern of the warp and the
coalescing policy of the GPU architecture. Intrawarp temporal
locality exists because the threads within a warp may execute
a few instructions before switching to the next warp and the
neighboring instructions tend to have data localities. In fact,
intrawarp temporal locality is very significant for the GPU
benchmarks we studied in the experiments. For example, dif-
ferent fields of a data structure are accessed consecutively in
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the code. Finally, interwarp locality is possible as different
warps may access the same data (e.g., array [tid % 32]).

The above data localities are closely related. More impor-
tantly, both intrawarp and interwarp localities depend on the
warp scheduling policy of the real hardware. Thus, it is dif-
ficult to analyze them separately and statically. In this paper,
we use light-weight profiling to characterize the data localities
as shown in the next section.

C. Performance Metrics

Let the GPU kernel have N global load instructions. We
order the global load instructions according to their program
order. We use 1d; to denote the ith global load instruction. We
rely on the instrumentation component described in Section III
to modify the GPU code and use the NVIDIA profiler to
collect the following metrics.

1) access;: The number of L1 cache accesses for 1d;. This
number is obtained using profiler by bypassing L1 cache
for all the global load instructions except 1d;.

2) hit;: The number of L1 cache hits for 1d;. This number
is obtained as a by-product of access;.

3) hit;j: The number of L1 cache hits for 1d; and Id;
together. This number is obtained using profiler by
bypassing L1 cache for all the global load instructions
except 1d; and Id;.

Let us define gain; ;

gaini‘j = hit; j — (hit,' + hitj).

We use gain; ; to measure the data reuses or conflicts between
1d; and 1d;. Note that, gain; ; may be either positive or negative.
If gain, ; is positive, it means 1d; and 1d; have data reuses, and
we should cache them together to exploit the data localities
between them; otherwise, 1d; and 1d; conflict with each other,
and we should bypass either one of them, or both of them.
We could use gain; ; to estimate L1 cache hit rate. However,
L1 cache hit rate does not predict performance well as demon-
strated in prior work [7]. High-L1 hit rate does not guarantee
high performance as fetching L1 cache block (128 bytes)
leads to high-L2 cache traffic. Hence, we extend our metrics
with awareness of cache block size and use L2 cache traffic
as performance indicator. For 1d;, we use Ton(1d;) (Tor(1d;))
to denote the L2 cache traffic when L1 cache is accessed
(bypassed) for 1d;

Ton(1d;) = (access; — hit;) x L1_block_size.

Depending on the data access patterns, one data transfer from
L1 cache may be separated into n (1 < n < 4) transfers from
L2 cache when L1 cache is bypassed. Note that, n» may not
always be 4 = 128/32. For example, to transfer an aligned
64-byte data, we need one 128-byte transfer if L1 cache is
cached; otherwise, we need two 32-byte transfers if L1 cache
is bypassed (L2 cache block is 32 bytes). For this case, n = 2.
However, NVIDIA profiler does not give the exact number
of transferred L2 blocks for each global load. Instead, we
compute Tofr(1d;) as follows:

access; x L1_block_size x Eqn(1d;)
Eoft(1d;)

Tore(1d;) =
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where Eo,(1d;) (Eofr(ld;)) is the load efficiency of 1d; when
L1 cache is accessed (bypassed). We present the computation
of Eon(1d;) (Eofr(ld;)) in Section I'V-D.

Definition 1 (Traffic Reduction Graph): Let traffic reduc-
tion graph TG = (V, E) be a weighted and complete graph,
where node v; € V represents ld;. Nodes and edges are
weighted using function W. The weight of node v;, W(v;) =
Tofe(1d;) — Ton(1d;); the weight of edge e(v;, vy), W(e(vi, v))) =
gaini’ j X L1 block_size.

The weight function W estimates the L2 cache traffic reduc-
tion of cache access over cache bypass. W(v;) or W(e(v;, v}))
could be either positive or negative. If it is positive, it means
L1 cache access can reduce L2 cache traffic by exploiting data
localities; otherwise, it means L1 cache access can increase the
L2 cache traffic due to cache conflicts or low-load efficiency.
The negative nodes and edges prefer cache bypassing.

In this paper, we use profiling to characterize the data
locality, load efficiency, and L2 cache traffic. The profiling
runs very fast (see Section VI). More importantly, GPU ker-
nels usually are frequently called for many times. Thus, the
profiling overhead is very low compared to the kernel run-
time. For the applications with dynamic behaviors, a more
detailed profiling may be necessary. However, for embedded
system applications, their program behaviors are more pre-
dictable and thus tend to be stable across inputs. In Section VI,
we will demonstrate the robustness of this profiling based
method across different inputs. More clearly, we use different
inputs for profiling and evaluation and show high-performance
speedup.

D. Computation of Load Efficiency

Global loads are mainly used to load data from arrays stored
in global memory. For each global load, its load efficiency is
defined as the ratio of the useful data to the transferred data.
Based on this definition, we know that the load efficiency is
determined by the access pattern of the load, cache line size,
and memory coalescing policy. Thus, different loads may have
different load efficiencies as they may use different access pat-
terns. In order to compute the load efficiency, we can use the
NVIDIA profiler. However, the existing profiler has very rudi-
mentary support for load efficiency profiling. Specifically, it
only gives the overall load efficiency for the entire application.
In this section, we present an automatic analysis that identifies
a few frequently used access patterns and compute their load
efficiencies statically.

Our analysis parses the PTX code of the kernel and iden-
tifies three commonly used array access patterns shown in
Table II. The first pattern refers to streaming data access with
a stride. The second pattern refers to partial sharing access pat-
tern, where a few threads share the same data. The third pattern
refers to full sharing, where all the threads share the same data.
For each access pattern, Table II gives the computation of load
efficiency.

We use the examples in Listing 3 to illustrate the load
efficiency computation for each access pattern. bfs_kernel
is from benchmark BFS. In this example, the global load
(graph_nodes[i + tid]) is executed in a loop. When executing
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TABLE 1T
ANALYZABLE ACCESS PATTERNS

Array Access Patterns

Load Efficiency

min(max(Bsize/(Esize x Cy),1),32) X Dsize

V +tid x Co (Co > 1)

Bsize

min(maz(Esize x 32/Co, 1), Bsize) X Dsize

14 +tid/00 Co>1)

FEsize x Bsize

\%

Dsize

1)

min(

Bsize’

1 |__global__ void bfs_kernel (Nodex
graph_nodes, ....)
2 4

3 int tid = blockldx .x+*THREAD NUM +
threadldx .x;
4 for(int i = 0;i < End;i+=Stride)

50 A
6 int tmp = graph_nodes[i+tid].
edges

7

8| }

9|}

10 | __global__ void srk_kernel (float =
d_data, int num,...)

11 [{

12 int tid=blockIdx .x*xblockDim.x+
threadldx .x;

13 int index=tid/16;

14 float bound=d_data[num+index ];
15

16 |}

17 | __global__ void spm_kernel(float x
dst_vector , int idx)

18 |{

19

20 int j = dst_vector[idx];

21

2 |}

Listing. 3. Examples for Load Efficiency Computation

the load instructions, the data transfer unit size is the cache
block size (Bsize). For each cache block transfer, the use-
ful data size is the product of the number of threads and the
requested data size per thread (Dsize). Threads on GPUs are
executed in the unit of warps (32 threads). Thus, the number
of threads involved in the transfer of one cache block is

min(max(Bsize/(Esize x Cy), 1), 32)

where Esize represents the array element size. In bfs_kernel,
its array element size is the size of data structure Node and
its access stride Cop = 1. The requested data size per thread
(Dsize) is the size of an integer (variable tmp on line 6).
Then, the load efficiency can be computed using the formula as

shown in Table II. Note that, for each load 1d;, we compute its
Eon(1d;) and Eof(1d;) using Bsize = 128 and 32, respectively.

Similarly, we can compute the load efficiencies for the other
two patterns. For example, srk_kernel from benchmark SRK
in Listing 3 is an instance of the second pattern, where every
16 threads share the same data (e.g., tid/16); spm_kernel from
benchmark SPM in Listing 3 is an instance of the third pattern,
where all the threads load from the same memory location. For
the access patterns not in Table II, we refer them as unknown
access patterns. For the unknown access patterns, we use the
global load efficiency of the program given by the profiler as
their load efficiency.

V. OPTIMIZATION COMPONENT
A. Problem Formulation

Given N global load instructions, we could select a subset of
global load instructions for cache bypassing. Thus, there exist
2V cache bypassing solutions. For each candidate solution, we
could use compiler framework that automatically generates the
compilable PTX code, runs the code and empirically evaluates
the performance and chooses the best one. However, obviously
this approach is infeasible for complex and large programs.

Our solution is developed based on the traffic reduction
graph. We consider the traffic reduction graph as if it were
an exact representation of L2 cache traffic reduction. Given
a complete subgraph G’ = (V',E’) of TG = (V, E) where
V' C V and E' C E, we define the traffic reduction by caching
all the global load instructions in G’ as

TG) =Y W)+ Y W)

veV’ ecE’

Therefore, we formulate a problem that maximizes the
L2 cache traffic reduction as follows.

Problem 1 (Traffic Reduction Maximization): Given traffic
reduction graph G = (V,E), find a complete subgraph
G = (V/,E') where V' C V and E' C E, such that T(G)
is maximized.

Theorem 1: Traffic reduction maximization problem is
NP hard.

Proof: We show a reduction from maximal clique
problem [13]. Given an instance of maximal clique problem,
i.e., a graph G = (V, E), we construct an instance of traf-
fic reduction maximization problem. Let TG = (V/, E', W),
where V' = V and TG is a complete graph. Thus, E C E'.
Let Vv € V., Wk = 1, Ye € E,W() = 1, and
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Ve € E' \ E, W(e) = —oc. This reduction is polynomial time.
Then, to solve the maximal clique problem for G = (V, E), we
just need to solve the traffic reduction maximization problem
for TG = (V/, E', W’). Thus, traffic reduction maximization
problem is NP hard. |

B. ILP Formulation

We develop an ILP formulation to solve the traffic reduction
maximization problem exactly. In practice, the ILP solution
can be applied to programs with small number of global load
instructions.

For a traffic reduction graph TG = (V, E), our optimization
objective is to maximize

STWe) x N+ > We(vi ) x My,
vieV e(vivj)eE
where N,; and Mv,«,\;j are 0-1 decision variable

N — 1 cache 1d;
Vi 10 bypass 1d;.

We have the following constraints:
My, v; = Ny; X Ny,.
We linearize the above equations as follows:

Ny, My, v = Oorl
MV,',Vj S NV,'
MV,',VI' E ij‘
M, ; = Ny, + Ny, — L.
For each global load 1d;, it is cached if N,, = 1; otherwise, it
is bypassed.
C. Heuristic Algorithm

ILP formulation is not scalable to large programs. Thus,
we also develop an efficient polynomial-time heuristic.
Algorithm 1 presents the details of our heuristic. It is an itera-
tive algorithm. In each iteration, for every global load, we first
evaluate its potential traffic reduction if it is cached together

lustration of our heuristic algorithm. (a) Original traffic reduction graph. (b) and (c) Updated traffic reduction graph.

Algorithm 1: Heuristic Approach
Input: 7G = (V, E)
Output: V 4, the set of cached global loads,
Viypass> the set of bypassed global loads
Viemain = V; //nitialization
while |V,emain| > 0 do
3 //find the min_v € V,eain With minimal traffic
reduction with the others;
4 min_T = INFINITE; min_v = NULL,
5 foreach v; € V,4in do

[

Tother(Vi) = Z W(e(Vi, vj))

Vi€ Veache

D>

Vk € Vremain \Vk #Vi

W(e(i, vi))

if Toiner(vi) < min_T then
7 ‘ min_T = Togper(vi); min_v = vj;

8 T = Tother(min_v) + W(min_v);
9 if (T <0) then

10 //bypass it;

11 delete (min_v) from TG;

12 add min_y to Vpypass;

13 else

14 /Icache it;

15 add min_v to Viache;

16 delete (min_v) from Viemain;

with other cached and remaining global loads (line 6). We
select the one with the minimal traffic reduction (line 7). Then,
we add its own traffic reduction. If the overall traffic reduction
is positive, it is cached; otherwise, it is bypassed. If a node is
bypassed, then it is deleted from the traffic reduction graph;
otherwise it is kept in the traffic reduction graph for evaluation
of the remaining nodes.

Fig. 4 shows an example of the heuristic algorithm. The traf-
fic reduction graph consists of four nodes (four global loads).
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performance is normalized to 16 KB L1 cache and 48 KB shared memory.

The nodes and edges are weighted based on the traffic reduc-
tion metrics. In the first iteration of the algorithm, the node V3
is selected as it has the minimal traffic reduction with others
(=5 —5—4 = —14); and V3 is bypassed as its overall traffic
reduction is negative (—14+41 = —13). In the second iteration,
we choose V4 and it is cached. Note that, the traffic reduction
graph is updated only when the selected node is bypassed.

D. Unified Memory Exploration

In Sections V-B and V-C, we have presented algorithms
to select beneficial load instructions for cache bypassing for
a specific cache size. The state-of-the-art GPU architectures
(Fermi and Kepler) feature with configurable unified mem-
ory, which is shared by the L1 cache and shared memory. For
example, the NVIDIA GTX680 allows three partition choices
between the L1 cache and shared memory (16 versus 48 KB,
32 versus 32 KB, and 48 versus 16 KB). However, the com-
piler chooses 16 KB L1 cache and 48 KB shared memory for
all the applications by default. It leaves the partition challenge
to the programmers.

Large shared memory capacity improves the thread level
parallelism (TLP) if the shared memory usage is the resource
bottleneck. High TLP provides more opportunities to enhance
performance by hiding the long memory latency through
thread context switch. Hence, one would suggest to use maxi-
mum shared memory size (48 KB). However, maximum shared
memory size leads to minimal L1 cache size (16 KB). Small
L1 cache size may decrease L1 cache hit rate and thus increase
the L2 cache traffic. If the increase in TLP does not compen-
sate the increase in cache traffic, then the overall performance
might be degraded. Furthermore, high TLP may aggravate
cache contention among threads and lead to higher L1 and L2
cache misses. Hence, large shared memory with high TLP does
not always guarantee good performance for GPU applications.
The best L1 cache and shared memory partition may vary for
different applications depending on their shared memory usage
and data localities.

To evaluate different L1 cache and shared memory parti-
tions, we need to model both TLP and cache performance.
On one hand, for different shared memory capacity, we use
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occupancy to model the TLP. Occupancy is a metric to mea-
sure the application and platform parallelism. It is defined as
the ratio of the number of simultaneously active threads to
the maximum number of threads supported on one SM [14].
Occupancy is determined by the resource usage per thread
block including registers, shared memory, and the architec-
ture limits of specific GPU architecture. The NVIDIA NVCC
compiler provides an interface to obtain the occupancy at
compile time [14]. Let us assume the maximum number of
threads supported on one SM is 1024 and a thread block
with 256 threads requires 16 KB of shared memory. If the
shared memory capacity is 16 KB, then only one thread block
can execute simultaneously. This leads occupancy as 0.25
(256/1024). If we increase the shared memory capacity to
48 KB, then three thread blocks can execute simultaneously
and this leads to occupancy as 0.75.

On the other hand, we use L1 cache hit rate to model
the cache performance, it could be obtained by trace-driven
simulation or analysis models [15], [16].

Fig. 5 presents the occupancy, L1 cache hit rate, and per-
formance for different shared memory and cache partitions for
the BAA and BFS applications. In this example, we do not
use cache bypassing for any global loads. In other words, all
the loads access the cache. The best shared memory and cache
partition are different for these two applications as they are dif-
ferent in terms of shared memory usage, data localities, and
thread numbers. For BAA, 16 KB cache and 48 KB shared
memory is the best as it leads to high occupancy. In addition,
for BAA, 16 KB cache gives good cache performance as the
program working set can fit into it. For BFS, 32 KB cache
and 32 KB shared memory is the best as it achieves a balance
between the occupancy and cache performance.

We wuse Occ to denote the achieved occupancy.
0 < Occ <1. We use HitRate to denote the L1 cache
hit rate when all the loads are cached. 0 < HitRate < 1. To
model the performance effect of thread level parallelism and
cache, we build a regression based performance model using
Occ and HitRate as follows:

Perf = By + B1 x Occ + By x HitRate
+ B3 x Occ x HitRate. (1)
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TABLE III
BENCHMARK CHARACTERISTICS
‘ Benchmark [ Source [ Description | Shared Memory (KB) | Input 1 [ Input 2 |
backprop (BAA) Rodinia [13] backward propagation algorithm 16 32768 65536
bfs (BES) Rodinia [13] breadth first search 16 64K nodes 1M nodes
euler3d (EUF) Rodinia [13] redundant flux computation 16 193K 0.2M
kmeans (KMI) Rodinia [13] k-means clustering 16 97M 25M
particle filter (PFFL) Rodinia [13] particle filter algorithm 4 128*128*1000 128*128*10000
srad prepare (SRP) Rodinia [13] data preparation for anisotropic diffusion 2 50*0.5*502*458 | 100%0.5*502%458
srad reduce (SRR) Rodinia [13] 1D Vector reduce 4 50*0.5%502%458 100#0.5*502%458
srad kernel (SRS) Rodinia [13] speckle reducing anisotropic diffusion 0 50*0.5%502*458 100#0.5*502%458
spmv (SPM) Parboil [19] sparse matrix-vector multiplication 0 2M 60M
mri-gridding (MGR) Parboil [19] magnetic resonance imaging gridding 0 IM 2.6M
3dc kernel(3DC) Polybench [20] 3D convolution 0 512%512%512 256%256%256
syrk kernel(SRK) Polybench [20] symmetric rank-k operations 0 2048*512 1024*512
gemm kernel(GEM) Polybench [20] matrix multiplication 0 50k 100k
aligntypes(ALT) SDK [21] data alignment evaluation 0 30k 50k
mri-q (MRQ) SDK [21] magnetic resonance image reconstruction 0 32%32%32 64*%64*64

We include Occ x HitRate factor as the TLP and cache perfor-
mance are correlated. Note that, Perf is not designed for the
absolute performance, but for relative comparison of different
shared memory and L1 cache partitions.

We fit the unknown parameters (8o, 81, B2, and B3) using
linear least square regression method. More clearly, we choose
six cache or shared memory usage sensitive benchmarks
(BAA, BFS, EUF, KMI, SRP, and SRR) from Table III as
the training set. For each benchmark, we collect its perfor-
mance metrics for all the three possible L1 cache and shared
memory partitions. Then, we fit the parameters (Bo, B1, B2,
and B3) using the training data. The achieved mean square
error is 0.035. Note that parameters (8o, B1, B2, and B3) are
platform dependent. This training and fitting only need to be
done once on one platform.

Now, with (1), we can determine a good shared mem-
ory and L1 cache partition, then we use the algorithms in
Section V-C to choose the global loads for cache bypassing
for this partition.

VI. EXPERIMENTAL EVALUATION
A. Experiments Setup

We evaluate our technique on NVIDIA GTX680 (Kepler
architecture). The hardware details of GTX680 are presented
in Table I. We test a variety of benchmarks from bench-
mark suite Rodinia [12], Parboil [17], Polybench [18], and
NVIDIA GPU Computing SDK [19]. The tested benchmarks
are general-purpose GPU applications with diverse character-
istics including thread structure, computation, and memory
access patterns. The benchmark details are shown in Table III.
For each benchmark, our compiler framework performs a light-
weight profiling to characterize the data locality and load
efficiency, builds the traffic reduction graph, invokes our cache
bypassing optimization algorithms, and modifies the CUDA
PTX code to reflect the optimized cache bypassing solution.
In our experiment, for each benchmark, we provide two inputs
to evaluate the robustness of our profiling-based techniques
against different inputs as shown in Table III.

We implement both optimal and heuristic algorithms. For
the optimal solution, we use MOSEK [20] to solve the

ILP problem. NVIDIA GTX680 has configurable unified
memory design. Through CUDA library call, it can be con-
figured to 16 KB cache and 48 KB shared memory, 32 KB
cache and 32 KB shared memory, or 48 KB cache and 16 KB
shared memory. In the following, we first show the perfor-
mance of our cache bypassing on different cache sizes in
Section VI-B. Then, we present the input sensitivity study and
unified memory exploration results in Sections VI-C and VI-D,
respectively. Finally, we show the efficiency (run-time) of our
compiler framework. In our experiments, all the performance
data are measured through NVIDIA profiler.!-?

B. Performance Results

We compare four solutions: bypass-all, cache-all, heuristic,
and ILP. In cache-all solution, all the global load instructions
go through the L1 cache; in bypass-all solution, all the global
load instructions bypass the L1 cache. We try all the three pos-
sible size of caches (16, 32, and 48 KB) on NVIDIA GTX680.
Fig. 6 presents the performance results for different size of
caches. The performance is normalized to the bypass-all solu-
tion. In this experiment, we use input 1 in Table III for both
profiling and evaluation.

First of all, neither cache-all or bypass-all solution guaran-
tees good performance for all the benchmarks. Such coarse-
grained solutions may be good for small benchmarks that
have loads with similar access patterns (e.g., KMI), but most
likely give bad performance for benchmarks that have loads
with diverse access patterns (e.g., 3DC and PFFL). In con-
trast, our heuristic performs consistently well across all the
benchmarks. The performance speedup of our cache bypass-
ing technique is up to 2.62x. More clearly, for 16 KB cache,
heuristic improves the performance by 13.1% on average while
cache-all improves the performance by only 4.6% on aver-
age; for 32 KB cache, heuristic improves the performance by
19.1% on average while cache-all improves the performance
by 13.0% on average; for 48 KB cache, heuristic improves the
performance by 23.4% on average while cache-all improves

IPFFL is tested only using 16 KB cache as its memory allocation is
unsuccessful for 32 and 48 KB caches.

2For applications BAA, BFS, EUF, and KMI, we use the versions with
shared memory.
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Fig. 6. Performance comparison for different size of caches.

the performance by 20.1% on average. The average value is
computed based on geometric mean.

The performance improvement of heuristic solution linearly
increases as the cache size increases. This is because a larger
cache offers more opportunities to exploit data localities than
a smaller cache. We also notice that the speedup of heuristic
over cache-all diminishes as the cache size increases. This is
because a larger cache leads to larger per-thread cache capacity
and less cache contention. For example, for application 3DC,
its working set fit into 32 and 48 KB caches. Hence, in these
two settings, heuristic solution does not give any speedup for
3DC compared to cache-all solution. However, large caches
do not solve all the problems. Designing large caches implies
less space for other components. For example, NVIDIA Fermi
and Kepler architectures use unified cache and shared memory
designs. In this unified design, cache size increase leads to
shared memory size decrease. However, shared memory size

decrease may hurt the performance as the number of active
thread blocks might be reduced. We will demonstrate this in
Section VI-D.

Our heuristic and ILP solution return the same results for
most of the benchmarks. However, there are a few cases that
heuristic is slightly better than ILP solution. This is because
for those benchmarks the load efficiencies of some loads are
not analyzable statically and approximation using the global
efficiency is inaccurate (Section IV-D). Therefore, it is possible
that ILP solution results in a sub-optimal solution in practice.
But overall heuristic and ILP solutions perform consistently
well across all the benchmarks and cache settings.

C. Input Sensitivity

In previous section, we use the same input (input 1) for
profiling and evaluation. Here, we evaluate the sensitivity of



LIANG et al.: EFFICIENT COMPILER FRAMEWORK FOR CACHE BYPASSING ON GPUs

1687

16KB-cache
13 2.5,2.62,2.62 1.31,1.31
S Bypass-all m—
; ache-all
© 12 Heuristic
E ILP s
E= 11 f
57
Z2 1ta Al vl rm el vwmraal vl v el el el el e w
g
52 09 |
£
3
= 0.8 |
&
0.7
7, @ <4, & & PN < Ny Ry 3 <
<»47%%%%QP¢QQ@¢A'P¢’?@’?¢OO %%0
[
32KB-cache
13 2.55,2.62,2.62  1.57,1.66,1.66
S Bypass-all m—
; ache-all
© 12 Heuristic
E ILP s
]
= L1f
Z2 1tal-al a2l 2t a B vl el vwm el el e w Al Al
$2
52 09 |
£
3
= 0.8 |
&
0.7
. 4 4 £ Q Ry Ky Xy Ky Iy ) <
g«zyep%%% %”sz%@) Y e e e T,
Se
48K B-cache
13 1.49,1.51,1.51 249,262,262 1.62,1.70,1.70
S Bypass-all m—
; ache-all
© L2 Heuristic s
E ILP s
]
= 1.1 |
Z8 1talt-al vl vl 2B 2l A4 2l v sl a2 e el A
$2
52 09 |
=
3
= 0.8
&
0.7
& 4 £ Q Ry Ky Ky Ky iy 5 <
ot % e % N T TRy T e R R e e T
(<

Fig. 7. Input sensitivity study for different size of caches.

our profile-based analysis across different inputs. More clearly,
we profile the application using input 1 and evaluate the cache
bypassing using input 2 shown in Table III. The performance
result is shown in Fig. 7. The performance is normalized to
the bypass-all solution.

As shown, for most of benchmarks, high-performance
speedup 1is still maintained. On average, heuristic improves
the performance by 12.9%, 18.2%, and 25.2% for 16, 32, and
48 KB cache, respectively. High-performance improvement is
still achieved because different inputs tend to stay stable in
terms of the behaviors of global loads.

D. Unified Memory Exploration

Though NVIDIA Kepler GTX680 features with config-
urable unified memory design, by default the NVIDIA NVCC
compiler chooses 16 KB cache and 48 KB shared memory
for all the benchmarks. However, different applications have

different behaviors and thus may prefer different unified mem-
ory partitions. Fig. 8 shows the performance of three different
unified memory partitions for six benchmarks. For example,
benchmarks BAA and EUF prefer 16 KB cache and 48 KB
shared memory partition. It is because for these two bench-
marks each thread block uses 16 KB shared memory as shown
in Table III and thus they can execute three thread blocks
concurrently with 48 KB shared memory, but only one thread
block with 16 KB shared memory. Conversely, for benchmark
SRS, 48 KB cache and 16 KB shared memory partition is the
best as SRS does not use any shared memory.

In Section V-D, we propose a regression based perfor-
mance model to compare different cache and shared memory
partitions. Our model considers both TLP and cache per-
formance. Fig. 8 compares the actual performance with the
estimated performance returned by the model. As stated in
Section V-D, the model is not intended to accurately pre-
dict performance, but just to compare different shared memory
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Performance speedup of the unified memory exploration with different cache bypassing solutions. Performance is normalized to the default setting

(16 KB cache and 48 KB shared memory and all the global loads are bypassed).

and L1 cache partitions. As shown in Fig. 8, our model actually
captures the performance trend and predicts the best cache and
shared memory partition. Next, we combine our unified mem-
ory exploration with the heuristic cache bypassing algorithm.
In other words, we first use our unified memory exploration
to select a good cache and shared memory partition, and
then apply our cache bypassing heuristic algorithm to further
improve the performance. We refer this as unified memory
optimization.

We first compare our unified memory optimization with
three possible cache and shared memory partitions with heuris-
tic cache bypassing algorithm separately. For each possible
cache and shared memory partition, we test it for all the
benchmarks. Fig. 9 shows the comparison. The performance

is normalized to the default setting (16 KB cache and 48 KB
shared memory partition and cache-all loads). As shown,
our unified memory optimization performs consistently well
across all the benchmarks. In contrast, the other partitions
only benefit a subset of applications. For example, 48 KB
cache and 16 KB shared memory partition is a good choice
for applications with big memory footprint MGR and SRK,
but turns out to be a bad choice for applications with big
shared memory usage (e.g., BAA and BFS). Overall, our
unified memory optimization achieves 28.3% speedup on
average.

We also combine unified memory exploration with cache-
all and bypass-all and compare them with our unified memory
optimization. The comparison results are shown in Fig. 9.
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TABLE IV
COMPILER FRAMEWORK EXECUTION TIME

Benchmark Runtime (sec)
16KB | 32KB | 48KB
ALT 0.79 0.77 0.77
BAA 1.19 1.103 1.112
BFS 0.44 0.42 0.41
EUF 3526 | 35.43 35.34
GEM 0.42 0.44 0.42
KMI 0.04 0.05 0.04
MGR 0.33 0.33 0.33
MRQ 19.67 19.52 19.54
PFFL 1.37 - -
SPM 0.71 0.71 0.67
SRP 0.06 0.06 0.06
SRR 0.10 0.10 0.10
SRS 0.59 0.59 0.59
SRK 0.99 0.98 1.01
TDC 0.64 0.65 0.65

We observe that coarse-grained bypassing solutions (cache-
all and bypass-all) do not perform well even coupled with
unified memory exploration. Our unified memory optimization
synergistically combines unified memory exploration and fine-
grained cache bypassing, and thus achieves better performance
improvement.

E. Efficiency

Our compiler framework runs very efficiently, Table IV
shows the execution time of our compiler framework with
heuristic algorithm for various size of caches. For all the
benchmarks, it only takes a few seconds to complete.

VII. RELATED WORK
A. GPU Performance Optimization

Although GPUs promise high performance, tuning GPUs for
high performance is not a trivial task [4]. Both analytical per-
formance models [21], [22] and optimization techniques are
developed. The state-of-the-art GPU performance optimiza-
tion techniques focus on automatic data movement, data layout
transformation, thread and warp throttling, control flow diver-
gence, register allocation, multitasking, and power and aging
optimization [23]-[27]. However, none of above works targets
cache bypassing for GPUs.

B. Cache Bypassing for GPUs

There are a few recent studies that explore cache bypassing
for GPUs. Runtime cache bypassing with extra hardware sup-
ports are proposed in [28]-[30]. As an alternative to hardware
approach, static cache bypassing technique has been developed
in [7]. More clearly, Jia et al. [7] presented a characterization
and optimization study for GPU caches. Their characterization
study demonstrates that on GPUs L1 cache hit rate does not
correlate with performance. However, they analyze the data
access patterns manually and thus this is not scalable to large
applications. They also assume there is no data reuse between
global load instructions and different iterations of the same
global load instructions. In contrast, the goal of this paper is to
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develop an automatic compilation framework that can system-
atically model both temporal and spatial localities and select
the beneficial global loads for cache bypassing. Finally, our
technique also explores the unified cache and shared memory
partition design space.

C. Cache Bypassing for CPUs

Cache bypassing has been widely used for CPU caches
to alleviate cache pressure. Both hardware and compiler
bypassing techniques are proposed in [31] and [32]. However,
these techniques mainly use cache hit rate as performance
metrics to guide the cache bypassing optimization. Hence,
these techniques are not applicable to GPUs as cache hit
rate does not correlate well with performance on GPUs as
demonstrated in [7].

VIII. CONCLUSION

Nowadays, heterogenous computing platforms that consist
of CPUs and GPUs are widely adopted for high-performance
embedded computing. Recently, caches are also included in
modern GPUs. GPU caches allow fine-grained cache bypass-
ing for each global load instruction. In this paper, we develop
an efficient compiler framework for cache bypassing on GPUs.
Our compiler framework can automatically analyze the GPU
code and optimize the code through bypassing the load
instructions with low-data reuse, low efficiency, or high-cache
conflicts with others. Experiments on NVIDIA GTX680 show
that our techniques improve the average cache benefits to
13.1%, 19.1%, and 23.4% for 16, 32, and 48 KB caches,
respectively.
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