
An Integrated and Automated Memory Optimization Flow for
FPGA Behavioral Synthesis

Yuxin Wang,1,3 Peng Zhang,2 Xu Cheng,1 Jason Cong2,3
1Computer Science Department, Peking University, China

2Computer Science Department, University of California, Los Angeles, USA
3UCLA/PKU Joint Research Institute in Science and Engineering and Center for Energy-Efficient Computing and Applications

ayerwang@pku.edu.cn, pengzh@cs.ucla.edu, chengxu@mprc.pku.edu.cn, cong@cs.ucla.edu

ABSTRACT
Behavioral synthesis tools have made significant progress in

compiling high-level programs into register-transfer level (RTL)
specifications. But manually rewriting code is still necessary in
order to obtain better quality of results in memory system
optimization. In recent years different automated memory
optimization techniques have been proposed and implemented,
such as data reuse and memory partitioning, but the problem of
integrating these techniques into an applicable flow to obtain a
better performance has become a challenge. In this paper we
integrate data reuse, loop pipelining, memory partitioning, and
memory merging into an automated optimization flow (AMO) for
FPGA behavioral synthesis. We develop memory padding to help
in the memory partitioning of indices with modulo operations.
Experimental results on Xilinx Virtex-6 FPGAs show that our
integrated approach can gain an average 5.8x throughput and 4.55x
latency improvement compared to the approach without memory
partitioning. Moreover, memory merging saves up to 44.32% of
block RAM (BRAM).

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids–automatic synthesis

General Terms
Algorithms, Performance, Design

Keywords
Behavioral Synthesis, Memory Partitioning, Memory Merging

1. INTRODUCTION
Automated synthesis flow from high-level specification (such as

C or C++) to RTL implementation (such as Verilog HDL or VHDL)
has been an active research goal for two decades. The advantages
and productivity gained from behavior-level synthesis have been
demonstrated by a number of state-of-the-art commercial tools such
as AutoPilot from AutoESL/Xilinx [1], C-to-Silicon from Cadence
[2], Catapult from Mentor Graphics [3], and Synphony from
Synopsys [4]. However the traditional scheduling and binding
algorithms are mainly designed for scalar operations. Most memory
optimizations are carried out manually by experienced designers. In
recent years, different automated flows for memory optimization
have been developed, including data reuse and memory partitioning
for pipelining. But research is required to integrate them into
automated behavioral synthesis flows properly.

Data reuse has been extensively researched for bandwidth and
power optimization during this decade (e.g., see [5, 6, 7, 8, 9, and
28]). Banakar [5] proposes the data reuse buffer as a power-
efficient alternative for cache. Panda [6] partitions the scalar and
array variables into off-chip DRAM with cache and on-chip reuse
buffer according to the variables’ size, lifetime, and conflicts.

Kandemir [7] manages reuse for arrays in loops mainly through
loop tiling. Issenin [8] builds a powerful dependence distance-
based approach to cover reused data in sets. Cong [9] establishes a
unified heuristic algorithm to manage reuse buffer allocation. Cong
[28] combines loop transformation and memory hierarchy
allocation to generate an on-chip reuse buffer. In all of this work,
the reuse buffer is shared among all the arrays without access
conflict because it is designed for a sequential execution model.
However in pipelined loops, concurrent data requests may cause
access conflict under port limitations of the physical RAMs. So
directly combining data reuse and loop pipeline may not achieve
the anticipated throughput improvement.

A large amount of previous work uses scheduling guided
memory allocation and binding to avoid access conflict. Kim [10]
chooses the best allocation and binding strategy by instruction-
level macro-rescheduling and memory access operation-level
micro-rescheduling. Wuytack [11] generates conflict graphs
depending on loop ordering and scheduling, and uses the graphs to
allocate conflict accesses into different physical memories.
Although these scheduling guided methodologies can minimize
access conflicts and reduce latency, the performance improvement
is limited without some sort of data layout optimization—like data
reuse.

A straightforward solution to reducing access conflicts is to
increase the number of memory ports. However to implement a
multi-port memory with quadratic growth in complexity and area
(e.g., see [12]) is inefficient and unrealistic. As an alternative,
partitioning memory into several banks can successfully manage
port constraint with an acceptable overhead. Ho [13] designs a
logical-to-physical mapping algorithm to break and pack memories
into dual-port RAM. Benini [14] partitions the on-chip SRAM
using an application-driven approach. Frequently accessed data is
mapped into a small power-efficient memory, guided by application
profiling. In reconfigurable architectures, Baradaran [15] attempts
to map data arrays to the heterogeneous storage resources through
memory distribution, replication, and scalar replacement. The
approach combines the high-level specification with scheduling.
For behavior-level synthesis, Ben-Asher [27] provides a profiling-
based approach for increasing memory parallelism by data
partitioning. That approach only considers the partitioning of
elements in the data structures. Cong [16] automates memory
partitioning in order to achieve the maximal throughput in loop
pipelining. All of these previous methods require the indices to be
affine. However the data reuse buffers are always updated
circularly to save buffer size. This brings modulo operations into
the indices. Under these circumstances, none of the above
strategies work.

In addition to data reuse, pipelining, and memory partitioning,
memory merging can also be taken into consideration in order to
reduce the huge increase of banks. In fact, some integration efforts
already exist. For example, Panda [26] combines array partitioning
and merging in logical to physical mapping for low power. The
approach splits the array into partitions according to access patterns

978-1-4673-0772-7/12/$31.00 ©2012 IEEE

3B-4

257

and merges the partitions into multiple memories. The partitioning
is tile based. In contrast to that work, we integrate data reuse and
loop pipelining in the flow. And the memory partitioning algorithm
is based on indices analysis and can support modulo operations.
Liu [17, 18] implements an integer non-linear programming model
for data reuse and loop-level parallelization. This resolves the
access conflict problem by using memory and data duplication. The
integrated solution leads to a better performance, but memory
duplication results in on-chip RAM increase and the redundant
movement of data. Our automated optimization flow can solve the
access conflict problem in a more efficient way, with the following
contributions.

1) We develop an integrated method for FPGA behavioral
synthesis by combining data reuse, loop pipelining, memory
partitioning, and memory merging to optimize the throughput
during pipelining and the area after memory partitioning.
2) For efficient partitioning of the reuse buffer, we propose
a buffer padding algorithm to handle array indices with modulo
operations.
3) We merge partitioned reuse banks into several larger
reorganized reuse buffers, with consideration of the area
overhead of address and control generation.

The remainder of this paper is organized as follows: Section 2
gives a motivational example for our integrated optimization;
Section 3 describes the overall design flow and the detailed
algorithm of memory partitioning and memory merging; Section 4
analyzes the experimental results, and is followed by conclusions in
Section 5.

2. A MOTIVATIONAL EXAMPLE
Our example is from the motion compensation procedure in the

H.264 official video decoder JM14.0 [19]. A loop belonging to the
decoding procedure is given in Fig. 1(a). In the inner loop iteration,
six pixels (pp0 ~ pp5) are accessed from an off-chip buffer
(lumabuffer) as the inputs of a filter to interpolate the current pixel.
In the next loop iteration, another six pixels are accessed, while
five of them can reuse the previously fetched data (pp1 ~ pp5). Fig.
2(a) shows the five reused pixels (the solid circles) between
iteration {i=0, j=0} and iteration {i=1, j=0}. We use the on-chip
buffer RUB to temporarily store the reusable data until it will no
longer be used and replace it with other reusable data; the rectangle
in Fig. 2(b) indicates RUB. Based on the reuse pattern, different
contents fill the buffer in different iterations. The dotted circle
represents new reusable data fetched in the iteration {i=1, j=0}
from lumabuffer to RUB. Meanwhile the RUB[0] is no longer
reusable, so it is replaced by the new data. According to our reuse
algorithm [9], the reuse buffer’s size is six depending on the reuse
distance in this example. We update the reuse buffer by replacing
the non-reusable data with new reusable data cyclically. The
transformed code for data reuse buffering is shown in Fig. 1 (b). It
shows the cyclic updating feature which introduces modulo
operations in the references.

Assuming that the on-chip memory has single port, the
throughput improvement achieved by loop pipelining will be
limited by the port constraint. Six cycles are required to read all the
reuse data and update the new data in the buffer, as shown in Fig.
1(b). Partitioning the reuse buffer into six banks is a
straightforward solution to reduce the access conflicts and improve
the throughput of loop pipelining.

For complex applications in practice, such as the H.264 decoder,
several reuse buffers are generated in different modules. Pre-
obtained scheduling results provide information for access conflict
analysis among reuse buffers. This gives us the opportunity to
merge partitioned banks, which are scheduled in different time
intervals, into less organized reuse buffers. For example, Fig. 3(a)

shows a result of two loops after data reuse and memory
partitioning. We assume that each loop is constructed in the same
shape as loop1 in Fig. 1(b). Based on our scheduling strategy,
loop1 and loop2 are in different time intervals. Thus there is no
conflict access between RUB0_i and RUB1_i. Our merging scheme
associates RUB0_i with RUB1_i in the reorganized RUBi, as shown
in Fig. 3(b), where RUBi+offset in loop2 represents the address of
RUB1_i in the reorganized buffer RUBi. After logical synthesis, the
reuse buffers will be mapped into physical memories, and the area
is saved due to the reduction of BRAMs and associated
interconnections.

//loop1
for (j = 0; j < 16 j++)

for (i = 0; i < 16; i++) {
pp0 = lumabuffer[j][i];
pp1 = lumabuffer[j][i+1];
pp2 = lumabuffer[j][i+2];
pp3 = lumabuffer[j][i+3];
pp4 = lumabuffer[j][i+4];
pp5 = lumabuffer[j][i+5];
filter(pp0,pp1,pp2,pp3,pp4,pp5,&out,…); }

(a)
//loop1
imgpel RUB[6];
for (j = 0; j < 16; j++)
{ //Reuse buffer pre-fetch from lumabuffer

RUB[0] = lumabuffer[j][0]; RUB[1]……
for (i = 0; i < 16 i++) {

pp0 = RUB[i%6];
pp1 = RUB[(i+1)%6];
pp2 = RUB[(i+2)%6];
pp3 = RUB[(i+3)%6];
pp4 = RUB[(i+4)%6];
pp5 = lumabuffer[j][i +5];
filter(pp0,pp1,pp2,pp3,pp4,pp5,&out,…);
RUB[(i+5)%6]=pp5; } }

(b)
Fig. 1. MC in H.264: (a) original program, (b) modified
program after data reuse

i=0 j=0

i=1 j=0

reuse

lumabuffer

RUB i=0 j=0

RUB i=1 j=0

lumabuffer

(a) (b)
Fig. 2. (a) data reuse between iterations, (b) reuse data
buffering
if(j==0)
loop1 (RUB0_0, RUB0_1, RUB0_2, RUB0_3, RUB0_4, RUB0_5)
else if(i==0)
loop2 (RUB1_0, RUB1_1, RUB1_2, RUB1_3, RUB1_4, RUB1_5)

(a)
// area(RUB0)=area(RUB0_0)+ area(RUB1_0)
if(j==0)

loop1 (RUB0, RUB1, RUB2, RUB3, RUB4, RUB5)
else if(i==0)
loop2 (RUB0+offset, RUB1+offset, RUB2+offset, RUB3+offset,
RUB4+ offset, RUB5+offset)

(b)
Fig. 3. Example of optimization process: (a) two similar
structures in the program after partitioning, (b) structure after
merging

3B-4

258

3. AMO FLOW DESCRIPTION
3.1 Design Flow Overview

Data reuse analysis

Partitioning,
Padding

Memory merging

Reorganized Reuse Buffers

Throughput
optimal?

Yes

 Scheduling,
Pipelining

High level
abstraction

Transformed
code

Reuse Buffers

Reuse Banks

Behavioral Synthesis
Frond-end

Behavioral Synthesis
Back-end

No

Fig. 4. AMO design flow
We will provide an overview of our AMO design flow in this

section (as shown in Fig. 4). The high-level application
specification is parsed into the behavioral synthesis front-end and
followed by data reuse analysis [9] for the arrays. In this step reuse
buffers are generated in different modules. Then scheduling and
pipelining iterations are carried out to optimize the loops for the
maximum throughput under certain resource constraints. A
lightweight scheduling and pipelining algorithm is applied here to
predict the result of these two steps [29]. Then, memory
partitioning (and padding, if needed) is performed on the reuse
buffers to reduce the access conflict. After reuse banks are
generated, memory merging analysis searches for the optimal reuse
banks merging scheme. The goal of this step is to reduce the area
overhead caused by memory partitioning. It merges the reuse banks
without access conflict into reorganized reuse buffers according to
scheduling and area analysis. The transformed code will be
synthesized into RTL implementation through the back-end of
behavioral synthesis.

3.2 Reuse Buffer Partitioning and Padding
Loop pipelining is widely used for throughput optimization in

data-intensive applications. But it is highly limited by resource
constraints, such as the number of function units and memory ports.
In Section 2 we illustrated that simultaneous accesses to the reuse
buffer are often desired in a loop. This section presents a method to
find an optimal memory partitioning scheme to achieve the target
throughput in the loop pipeline. When the references in the buffer
are affine, we formulate the problem as,
PROBLEM 1.

The approach in [16] partitions arrays with affine references.
Assuming that the target throughput requirement II=1 and the
memory port constraint pc=1 (the same assumption for the
following problems), we define the affine references to the array as
R1=a1*i+b1 and R2=a2*i+b2, where i is the induction variable. The
array is partitioned based on analyzing access conflict using the
following theorem.

Given k affine references on the same array, the target
throughput requirement II, and memory port constraint pc, find a
partition n such that target throughput is satisfied.

THEOREM 1.
Let
[16]

1n represent the number of banks, then
i 1 1 2 2a i b a i b 1mod n

1 2 1gcd(,)a a n 2 1()b b

However in the reuse buffers, the references have modulo
operations. In some cases, THEOREM 1 is unable to attain the
right partitioning, as shown in the following example.

For array RUB (the size is 99), the accesses RUB[i%99] and
RUB [(7*i+1)% 99], n1=2, s.t. gcd(6, 2) (1-0). The array is
partitioned into two banks for conflict-free access. But when i=20,
the two accesses, RUB[20] and RUB[42], are still in the same
bank.

EXAMPLE 1.

Our approach is an improvement of previous work [16] that dealt
with references to modulo operations. The partitioning problem is
formulated as,
PROBLEM 2.

To clarify our discussion, we unified the references in the form of
indexk=Rk%m. Rk denotes an affine function of induction variables.
Then two array accesses can be represented as index1=R1%m and
index2=R2%m. We derive the following result to attain partitioning
n2 considering both the buffer size and the boundary effect due to
modulo operation.

Given k modulo references on the same array, the
target throughput requirement II, memory port constraint pc, and
the reuse buffer size m, find a partition n such that target
throughput is satisfied.

THEOREM 2.
i 1 1 2 2()% ()%a i b m a i b m 2mod n

1 2 2gcd(, ,)a a m n 2 1()b b

We prove the converse-negative proposition of THEOREM 2.
PROOF.

i 1 1 2 2()% ()%a i b m a i b m 2mod n

1 1 2 2a i b a i b mod m 2mod n

,i h 1 2 2 2 1() *a a i h n b b mod m

, ,i h l 1 2 2 2 1() * *a a i h n l m b b

1 2 2gcd(, ,)a a m n | 2 1()b b (Bézout's lemma [25])

For array RUB (the size is 99), and the accesses RUB[i%99]
and RUB [(7*i+1)% 99], to achieve gcd(6, 99, n2) 1, the smallest
partition is 3. But if we increase the buffer size by 1 (the size
increased from 99 to 100), the smallest partition could be 2, s.t.
gcd(6, 100, 2) 1. This illustrates the benefit of memory padding.

EXAMPLE 2.

It’s trivial to prove that n1 from THEOREM 1 is always smaller
than or equal to n2 from THEOREM 2. Considering n1 is the
optimal partitioning for PROBLEM 1 [16], we define n1 as the
lower bound of the partitioning for modulo references and n2 as the
upper bound. Then we need to solve the problem as,
PROBLEM 3.

If n1=n2, then n1 is a partition candidate for the problem.
Otherwise our AMO flow starts padding the reuse buffer to search
for an available partitioning. A searching process is performed to
find partition candidate pairs (n, mp) in which the partition n is in
the range of [n1, n2], satisfying formula (1).

Given k modulo references on the same array, the
partitioning lower bound n1, the partitioning upper bound n2, and
the reuse buffer size m, find a partition candidate pairs set S, in
which each pair consists of a partition n and a padding mp such
that target throughput is satisfied.

1 2gcd(, ,)a a m mp n 2 1()b b (1)
Because the searching space is not large, we enumerate all the

possible partition candidate pairs. The rest of our extended

3B-4

259

partitioning approach for k modulo references is similar to that in
[16]. Scheduling is combined with partitioning for the throughput
optimization in the loop pipeline. Our approach is unique in that, in
contrast to previous work, we consider the trade-off between the
buffer size and the number of memory banks. On one hand,
padding decreases the partitions but increases the buffer size. On
the other hand, the solution without padding keeps the size of the
reuse buffer unchanged, but maybe largely increase the partitions,
control logic and interconnection. As a result, we consider a
combination of the partition n and the padding mp to minimize the
reuse banks area. The area overhead minimizing problem is
formulated as,
PROBLEM 4.

We define the array area after partitioning as area_partition in
formula (2) below.

Given partition candidate pairs set S on the same array
for k modulo array references, and the reuse buffer size m, find a
solution including the partition number n and a padding number
mp that minimizes the area overhead.

(,)s n mp S ,

_ () * _ ()area partition memarea m mp Inter p n (2),

where S = {(n, mp)} is the partition candidate pair set, in which
each candidate pair is a solution to PROBLEM 1. Function
memarea() is mapping from logical size to the physical area.
Inter_p(n) is the control logic and interconnection due to the
partition n. It is highly affected by whether the partition is a power
of two. Coefficient reflects the trade-off between the buffer size
and the interconnection.

Our algorithm finds the optimal partitioning for the target
throughput optimization and minimizes the area overhead. The
complexity for Problem 3 applied on k references is O(nk2), where
n is for the enumeration of partition number and k2 is for checking
formula (1) for each reference pair of the array.

3.3 Reuse Banks Merging
Memory partitioning can increase the throughput of loop

pipelining. However, the size, amount and placement of BRAM are
fixed in FPGA, so straightforward partitioning sometimes results in
a large amount of small banks, which may occupy BRAMs
inefficiently. When the BRAM resource is relatively insufficient,
some arrays fail to be implemented on-chip, which leads to more
accesses to the external memory with long latency and power
consumption. To address the BRAM utilization problem, we design
a merging scheme to efficiently merge partitioned banks into
reorganized reuse buffers without the loss of throughput speedup
gained by memory partitioning.

A1 A2 A3 A4 B1 B2

C1 C2

D1 D2 D3 D4

T
i
m
e

I
n
t
e
r
v
a
l
s

Memory Partitions

buffer1

buffer2buffer3

0

1

2

Fig. 5. Merging depends on time conflict and area
Automatic memory merging has been well studied in previous

work and implemented in tools. Xilinx ISE can automatically
merge two single-port memories into a dual-port BRAM without
considering port sharing among the merged memories [24].
Conflict graph-based methods were proposed for the general
memory mapping problem; they achieve minimal overhead
according to scheduling [2, 7]. Compared to general memory

mapping, our approach merges reuse banks considering address
translation logic sharing.

As Fig.5 shows, the reuse banks are scheduled into the different
time intervals. Shaded blocks represent reuse banks partitioned
from the reuse buffers labeled by the capital letters in the names.
The banks in the same time interval conflict with each other, which
means they cannot be merged into one bank, such as {A1, A2} and
{A1, B1}. Our approach analyzes reuse banks in the different
intervals to seek the optimal merging strategy. Merging results are
represented by dashed blocks. A1 and C1 are the first partitioning
banks of reuse buffers A and C, respectively. So they could share
part of the address translation logic. Our approach merges them
into one bank, as buffer1. We formulate our merging problem as,
PROBLEM 5.

The optimal merging scheme is determined by minimizing the
area overhead shown in formula (3) as below,

Given reuse bank set V on r arrays, and the scheduling
T for all the reuse banks, our goal is to find a merging scheme that
merges reuse banks into reorganized reuse buffers set W to
minimize the area without changing the throughput.

0 0
_ (()) _ ()W k

i g k g
area merge memarea M i Inter m V (3),

where g represents the number of reorganized reuse buffers, M(i) is
the size of ith reorganized reuse buffer, and VWk is the subset of
reuse banks merged into the kth reorganized reuse buffers. The
function Inter_m(VWk) is the area cost of the control logic and
interconnection for reuse banks set VWk. We propose a heuristic
algorithm, which merges the reuse banks into the minimum number
of reorganized buffers. The area minimization problem in the
approach is resolved as a sub-problem as following.
PROBLEM 6.

The area cost for this problem is shown in formula (4).

Given a reuse bank v, and the reorganized reuse
buffers set W, find a merging scheme that keeps the throughput
unchanged and minimizes the area.

(,) (()) _ (,),0i i W iarea v W memarea M i Inter m v V i g (4)

To keep the throughput unchanged, the conflicting banks that are
scheduled into the same time interval cannot be merged into the
same reorganized buffer. So the minimum number of reorganized
reuse buffers is the maximum number of conflict banks among all
the time intervals. For example, the maximum number of conflict
banks in Fig. 5 is six in time interval two. The following heuristic
flow describes how we merge the reuse banks into the minimum
reorganized reuse buffers.

Step 1: Assuming g as the maximum number of conflict banks
for all the time intervals, create g empty reorganized reuse buffers.

Step 2: According to the scheduling T, arrange all the reuse
banks in a bank queue in the increasing order of time intervals.

Step 3: Pick one reuse bank from the front of the bank queue and
remove it from the queue. Find every reorganized reuse buffer
which does not conflict with the current bank as a candidate
merging buffer.

Step 4: For each candidate merging buffer, compute the area cost
of merging with the current bank as shown in formula (4). Merge
the current bank into the reorganized reuse buffer which minimizes
the area cost.

Step 5: Repeat the approach from Step 3 until the bank queue is
empty.

Our algorithm guarantees a solution with the minimum number of
reorganized reuse buffers to allocate conflict banks at each time
interval. From the algorithm, we can see the complexity of our
merging approach is O(g× |V|), where |V| (the number of reuse
banks) is for the loop in Step 5, and g for the area minimization in
Step 4.

3B-4

260

4. EXPERIMENTAL RESULTS
We implement the AMO flow in C++ and evaluate it on five

benchmarks. The optimized benchmarks are fed into the behavioral
synthesis platform AutoPilot [1] to compile into RTL, and then
implemented by Xilinx ISE 11.5 [20] on Xilinx Virtex-6. Among
all of the five benchmarks, MYTEST is an integrated benchmark
from several real-life applications, which we designed as controlled
experiments. The other four benchmarks are data-intensive
applications from medical imaging processing. DENOISE [21]
removes noise from an image based on Rician-denoise.
SEGMENTATION [22] detects objects in 2D/3D images.
REGISTRATION [23] is a fluid registration algorithm. CONVO-
LUTION [30] is a TV-based deconvolution for medical imaging.

Our experimental data and comparison results are shown in
Table 1. We report selected comparisons for every benchmark.
Some of the results show the improvement after partitioning and
others present the benefits from the whole approach. Columns three
and four show the throughput speedup and latency reduction after
data reuse, loop pipelining, and memory partitioning. The
throughput speedup depends on the initiation interval (II) of the
pipeline. The next two columns, which are from the Xilinx FPGA
implementation reports, present the number of lookup tables (LUT)
and clock period (CP). The column BRAM w_pad shows the
amount of BRAMs after partitioning with padding, after memory
merging, and the reduction of BRAMs after merging. The BRAM
wo_pad column shows the results using the algorithm directly
extended from [16] without padding. The last two columns are the
padding size of reuse buffers and the padding area percentage of
each benchmark.

Throughput speedup is shown in the first two columns. The
columns are throughput and latency improvement after memory
partitioning, compared to the approach that only uses data reuse
and loop pipelining. There is a 5.8x throughput speedup on average,
which is very similar to the speedup of 5.67x in [16]. The latency
improvement is 4.55x on average. Memory partitioning increases
the parallelism of the reuse buffer accesses and improves the
throughput and latency.

Area optimization is presented in the rest of the columns. In the
column BRAM w_pad, the average area decrease after memory
merging is 44.32%. Among all the benchmarks, the best
improvement (69.23%) is in MYTEST. Because the number of
arrays and loops in MYTEST are more than in other benchmarks,
there are more possibilities for reuse banks without merging
conflicts. Moreover, each partition is small enough to store in a
BRAM. According to our analysis, the number of banks after
partitioning is directly related to the number of accesses in the
loops.

The column BRAM wo_pad is the partitioning result without
padding. The algorithm is a direct extension from [16]. The reuse
buffer size m, the bank number n, the index R1=a1*i+b1, and
R2=a2*i+b2 satisfy gcd(a1-a2, m, n) (b2-b1). There is no available
partition for benchmarks REGISTRATION and SEGMEN-
TATION because a1-a2 and m are relatively prime numbers. Also
the number of partitioning in CONVOLUTION is too high to be
acceptable. Because of unsatisfactory results compared to the
padding scheme, we ceased further experimentation on memory
merging based on this scheme. Buffer padding can solve the
problem easily with a slight overhead. The last two columns
padding (byte) and padding (%) show the amount and percentage
of the padding portion in the reuse buffer. Due to the partitioning
lower boundn1 and gcd(a1-a2, n1), the searching space of padding
size k won’t be too large.

In general, memory partitioning and merging increases the
interconnection and control logic. But as shown in the LUT report,
the increase is acceptable (around 10%). Also given the slightly

changed CP, we believe that the critical path is almost unchanged
after optimization.

Although padding can help the designers largely decrease the
partitions, the subscript expressions of all the access references
need to be revised. This modification is easy to perform on the
automatically generated reuse buffers. Instead of statically padding
the reuse buffer for modulo partitioning, extending the partitioning
approach in [16] with a dynamic scheme that stalls the conflict
accesses will also help solve the modulo-subscript problem. But the
dynamic scheme needs to detect the access conflicts during
execution and stall the whole pipeline when serializing the accesses.
Compared to the small padding size, the dynamic control
introduces a much larger hardware overhead, and the throughput
will be impacted by the stall.

Our integrated flow AMO can also be used in ASIC behavioral
synthesis. But we notice that the results for ASIC might be
different than FPGA in some cases. Memory partitioning could still
improve the throughput by reducing the access conflicts. But for
on-chip SRAMs in ASIC, we may not gain much area savings after
merging, because merging organizes small partitions into one
BRAM and reduces the insufficient use of BRAM. Compared to a
fixed-size BRAM, SRAM is available for various shapes and sizes.
Although the port sharing and the interconnection reduction will
optimize the area, the improvement is not as much as the FPGA
design shows. As a result bank merging is more important for the
FPGA design with fixed-size BRAMs.

5. CONCLUSIONS
In this paper we present an integrated automatic approach for

combining memory partitioning and merging with data reuse and
pipelining to generate a memory optimization flow for FPGA
behavioral synthesis. To our knowledge, this is the first work to
combine these four techniques in an automatic optimization flow
and the first to solve the problem of memory partitioning for
indices with modulo operations.

6. ACKNOWLEDGMENTS
This work was supported in part by the Semiconductor Research

Corporation (SRC) under Contract 2009-TJ-1879, and in part by
the National Science Foundation (NSF) under the Expeditions in
Computing Program CCF-0926127. Yuxin Wang gratefully
acknowledges the support from the China Scholarship Council
(CSC). We would like to thank Xilinx for supporting the
UCLA/PKU Joint Research Institute in Science and Engineering
(JRI). Also we give special thanks to Janice Martin-Wheeler from
UCLA for proof-reading.

7. REFERENCES
[1] AutoPilot, http://www.autoesl.com
[2] C-to-Silicon Compiler, Cadence,
http://www.cadence.com/products/sd/silicon_compiler/
[3] Catapult C Synthesis, Mentor Graphics,
http://www.mentor.com/esl/catapult/overview
[4] Synphony C Compiler, Synopsys,
http://www.synopsys.com/Systems/BlockDesign/HLS/
[5] R. Banakar, S. Steinke, B. Lee, “Scratchpad memory design alternative for
cache on-chip memory in embedded systems,” in Proc. of the 10th Int. Symp.
on Hardware/Software Codesign (CODES), 2002, pp. 73 - 78.
[6] P.R. Panda, N.D. Dutt, A. Nicolau, “Efficient utilization of scratch-pad
memory in embedded processor applications,” in IEEE Trans. European Design
and Test Conference (ED&TC), 1997, pp. 7.
[7] M. Kandemir, J. Ramanujam, M.J. Irwin, et al, “A Compiler-Based
Approach for Dynamically Managing Scratch-Pad Memories in Embedded
Systems,” in IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2004, pp. 243 - 260.
[8] I. Issenin, E. Brockmeyer, M. Miranda, et al, “DRDU: A Data Reuse

Analysis Technique for Efficient Scratch-Pad Memory Management,” in ACM
Trans. on Design Automation of Electronic Systems (TODAES), 2007, Vol. 12,
No. 2, Article 15.

3B-4

261

[9] J. Cong, H. Huang, C. Liu, Y. Zou, “A Reuse-Aware Prefetching Scheme
for Scratchpad Memory,” in Proc. of the 48th Annual Design Automation
Conference (DAC), 2011, pp. 960-965.
[10] T. Kim, J. Kim, “Integration of Code Scheduling, Memory Allocation, and
Array Binding for Memory-Access Optimization,” in IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2007, pp.
142 - 151.
[11] S. Wuytack, F. Catthoor, G. de Jong, et al, “Minimizing the Required
Memory Bandwidth in VLSI System Realizations,” in IEEE Trans. on Very
Large Scale Integration Systems (TVLSI), 1999, pp. 433 - 441.
[12] Y. Tatsumi, H. Mattausch, “Fast quadratic increase of multiport-storage-
cell area with port number,” in Electronics Letters, 1999.
[13] W.K.C. Ho, S.J.E. Wilton, “Logical-to-Physical Memory Mapping for

FPGAs with Dual-Port Embedded Arrays,” in Field Programmable Logic and
Applications, Lecture Notes in Computer Science, 2004, pp. 111-123.
[14] L. Benini, L. Macchiarulo, A. Macii, et al, “Layout-driven memory
synthesis for embedded systems-on-chip,” in IEEE Trans. Very Large Scale
Integration Systems (TVLSI), 2002, pp. 96 - 105.
[15] N. Baradaran, P.C. Diniz, “A compiler approach to managing storage and
memory bandwidth in configurable architectures,” in ACM Trans. on Design
Automation of Electronic Systems (TODAES), 2008, Vol. 13, No. 4, Article 61.
[16] J. Cong, W. Jiang, B. Liu, Y. Zou, “Automatic Memory Partitioning and
Scheduling for Throughput and Power Optimization,” in ACM Trans. on Design
Automation of Electronic Systems (TODAES), 2011, Vol. 16 Issue 2, Article 15
[17] L. Qiang, G.A. Constantinides, K. Masselos, et al, “Combining Data Reuse
With Data-Level Parallelization for FPGA Targeted Hardware Compilation: a
Geometric Programming Framework,” in IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2009, pp. 305 - 315.
[18] L. Qiang, T. Todman, W. Luk, “Combining Optimizations in Automated
Low Power Design,” in Proc. of Design, Automation and Test Europe (DATE),
2010, pp. 1791-1796.

[19] JM Software, H.264/AVC Software Coordination,
http://iphome.hhi.de/suehring/tml/
[20] Xilinx ISE Design Suite, http://www.xilinx.com/
[21] P. Getreuer, “tvreg: Variational imaging methods for denoising,
deconvolution, inpainting, and segmentation,” online available:
http://www.math.ucla.edu/getreuer/tvreg.html
[22] T. Chan, L. Vese, “Active contours without edges,” in IEEE Trans. on
Image Processing, 2001, vol. 10, no. 2, pp. 266-277.
[23] E.D’Agostino, F. Maes, D. Vandermeulen, and P. Suetens, “A viscous
fluid model for multimodel non-rigid image registration using mutual
information,” in the Int. Conf. on Medical Image Computing and Computer
Assisted Intervention (MICCAI), 2002, pp. 541-548
[24] XST User Guide, online available:
http://www.xilinx.com/itp/xilinx10/books/docs/xst/xst.pdf
[25] Frances Kirwan, “Complex Algebraic Curves,” Cambridge University
Press, 1992.
[26] P.R. Panda, N.D. Dutt, “Low Power Mapping of Behavioral Arrays to
Multiple Memories,” in ACM/IEEE Int. Symp. on Low Power Electronics and
Design (ISLPED), 1996, pp. 289 – 292.
[27] Y. Ben-Asher, N. Rotem, “Automatic memory partitioning: increasing
memory parallelism via data structure partitioning,” in Proc. of the 8th Int. Conf.
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010,
pp, 155 - 162.
[28] J. Cong, P. Zhang and Y. Zou, "Combined Loop Transformation and
Hierarchy Allocation in Data Reuse Optimization," in Proc. of the 2011 Int.
Conf. on Computer-Aided Design (ICCAD), 2011, pp. 185-192
[29] B. R. Rau, ”Iterative modulo scheduling: an algorithm for software
pipelining loops,” in Proc. of the 27th Annual Int. Symp. on Microarchitecture,
1994.
[30] P. Getreuer, “TV-Based Deconvolution for Medical Imaging,” 2009.

[9] J. Cong, H. Huang, C. Liu, Y. Zou, “A Reuse-Aware Prefetching Scheme
for Scratchpad Memory,” in Proc. of the 48th Annual Design Automation
Conference (DAC()C 2011 pp 960 965

[19] JM Software, H.264/AVC Software Coordination,
http://iphome.hhi.de/suehring/tml/
[20] Xilinx ISE Design Suite http://www xilinx com/

Table 1. Comparison of Different Benchmarks
throughput
speedup

latency
improve

LUT CP(ns) BRAM w_pad BRAM wo_pad padding(byte) padding(%)

MYTEST partition 3x 1.825x 3289 4.860 26 38 12 1.7%
merging 3684 4.929 8
improve -12% -1.42% 69.23%

DENOISE partition 10x 2.675x 11849 4.983 40 40 0 0
merging 14715 4.997 30
improve -24% -0.28% 25%

REGISTRATION partition 6x 7.02x 32990 4.996 72 no solution 64 0.7%
merging 33341 4.992 54
improve -1% 0.09% 25%

SEGMENTATION partition 7x 7.16x 30938 5.000 36 no solution 32 0.3%
merging 31723 4.998 18
improve -2.5% 0.04% 50%

CONVOLUTION partition 3x 4.11x 6164 4.963 42 4096 32 0.3%
merging 6938 4.893 20
improve -12.6% 1.41% 52.38%

AVERAGE improve 5.8x 4.55x -10.4% 0.00% 44.32%

3B-4

262

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

