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ABSTRACT
Behavioral synthesis tools have made significant progress in 

compiling high-level programs into register-transfer level (RTL)
specifications. But manually rewriting code is still necessary in 
order to obtain better quality of results in memory system 
optimization. In recent years different automated memory 
optimization techniques have been proposed and implemented, 
such as data reuse and memory partitioning, but the problem of 
integrating these techniques into an applicable flow to obtain a 
better performance has become a challenge. In this paper we 
integrate data reuse, loop pipelining, memory partitioning, and 
memory merging into an automated optimization flow (AMO) for
FPGA behavioral synthesis. We develop memory padding to help 
in the memory partitioning of indices with modulo operations.
Experimental results on Xilinx Virtex-6 FPGAs show that our 
integrated approach can gain an average 5.8x throughput and 4.55x 
latency improvement compared to the approach without memory 
partitioning. Moreover, memory merging saves up to 44.32% of 
block RAM (BRAM).

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids–automatic synthesis

General Terms
Algorithms, Performance, Design

Keywords
Behavioral Synthesis, Memory Partitioning, Memory Merging

1. INTRODUCTION
Automated synthesis flow from high-level specification (such as 

C or C++) to RTL implementation (such as Verilog HDL or VHDL)
has been an active research goal for two decades. The advantages 
and productivity gained from behavior-level synthesis have been 
demonstrated by a number of state-of-the-art commercial tools such 
as AutoPilot from AutoESL/Xilinx [1], C-to-Silicon from Cadence 
[2], Catapult from Mentor Graphics [3], and Synphony from 
Synopsys [4]. However the traditional scheduling and binding 
algorithms are mainly designed for scalar operations. Most memory
optimizations are carried out manually by experienced designers. In 
recent years, different automated flows for memory optimization 
have been developed, including data reuse and memory partitioning
for pipelining. But research is required to integrate them into 
automated behavioral synthesis flows properly. 

Data reuse has been extensively researched for bandwidth and 
power optimization during this decade (e.g., see [5, 6, 7, 8, 9, and 
28]). Banakar [5] proposes the data reuse buffer as a power-
efficient alternative for cache. Panda [6] partitions the scalar and 
array variables into off-chip DRAM with cache and on-chip reuse 
buffer according to the variables’ size, lifetime, and conflicts.

Kandemir [7] manages reuse for arrays in loops mainly through 
loop tiling. Issenin [8] builds a powerful dependence distance-
based approach to cover reused data in sets. Cong [9] establishes a 
unified heuristic algorithm to manage reuse buffer allocation. Cong 
[28] combines loop transformation and memory hierarchy
allocation to generate an on-chip reuse buffer. In all of this work, 
the reuse buffer is shared among all the arrays without access
conflict because it is designed for a sequential execution model. 
However in pipelined loops, concurrent data requests may cause
access conflict under port limitations of the physical RAMs. So
directly combining data reuse and loop pipeline may not achieve
the anticipated throughput improvement. 

A large amount of previous work uses scheduling guided
memory allocation and binding to avoid access conflict. Kim [10] 
chooses the best allocation and binding strategy by instruction-
level macro-rescheduling and memory access operation-level 
micro-rescheduling. Wuytack [11] generates conflict graphs 
depending on loop ordering and scheduling, and uses the graphs to 
allocate conflict accesses into different physical memories. 
Although these scheduling guided methodologies can minimize
access conflicts and reduce latency, the performance improvement 
is limited without some sort of data layout optimization—like data 
reuse.

A straightforward solution to reducing access conflicts is to
increase the number of memory ports. However to implement a 
multi-port memory with quadratic growth in complexity and area
(e.g., see [12]) is inefficient and unrealistic. As an alternative,
partitioning memory into several banks can successfully manage 
port constraint with an acceptable overhead. Ho [13] designs a 
logical-to-physical mapping algorithm to break and pack memories 
into dual-port RAM. Benini [14] partitions the on-chip SRAM 
using an application-driven approach. Frequently accessed data is
mapped into a small power-efficient memory, guided by application 
profiling. In reconfigurable architectures, Baradaran [15] attempts 
to map data arrays to the heterogeneous storage resources through 
memory distribution, replication, and scalar replacement. The
approach combines the high-level specification with scheduling. 
For behavior-level synthesis, Ben-Asher [27] provides a profiling-
based approach for increasing memory parallelism by data 
partitioning. That approach only considers the partitioning of 
elements in the data structures. Cong [16] automates memory 
partitioning in order to achieve the maximal throughput in loop 
pipelining. All of these previous methods require the indices to be 
affine. However the data reuse buffers are always updated
circularly to save buffer size. This brings modulo operations into
the indices. Under these circumstances, none of the above 
strategies work.  

In addition to data reuse, pipelining, and memory partitioning,
memory merging can also be taken into consideration in order to 
reduce the huge increase of banks. In fact, some integration efforts 
already exist. For example, Panda [26] combines array partitioning 
and merging in logical to physical mapping for low power. The 
approach splits the array into partitions according to access patterns
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and merges the partitions into multiple memories. The partitioning
is tile based. In contrast to that work, we integrate data reuse and 
loop pipelining in the flow. And the memory partitioning algorithm 
is based on indices analysis and can support modulo operations.
Liu [17, 18] implements an integer non-linear programming model 
for data reuse and loop-level parallelization. This resolves the 
access conflict problem by using memory and data duplication. The 
integrated solution leads to a better performance, but memory 
duplication results in on-chip RAM increase and the redundant
movement of data. Our automated optimization flow can solve the 
access conflict problem in a more efficient way, with the following 
contributions.

1) We develop an integrated method for FPGA behavioral 
synthesis by combining data reuse, loop pipelining, memory 
partitioning, and memory merging to optimize the throughput 
during pipelining and the area after memory partitioning.
2) For efficient partitioning of the reuse buffer, we propose 
a buffer padding algorithm to handle array indices with modulo 
operations.
3) We merge partitioned reuse banks into several larger 
reorganized reuse buffers, with consideration of the area 
overhead of address and control generation.  

The remainder of this paper is organized as follows: Section 2
gives a motivational example for our integrated optimization;
Section 3 describes the overall design flow and the detailed
algorithm of memory partitioning and memory merging; Section 4
analyzes the experimental results, and is followed by conclusions in 
Section 5.

2. A MOTIVATIONAL EXAMPLE
Our example is from the motion compensation procedure in the 

H.264 official video decoder JM14.0 [19]. A loop belonging to the
decoding procedure is given in Fig. 1(a). In the inner loop iteration,
six pixels (pp0 ~ pp5) are accessed from an off-chip buffer 
(lumabuffer) as the inputs of a filter to interpolate the current pixel. 
In the next loop iteration, another six pixels are accessed, while 
five of them can reuse the previously fetched data (pp1 ~ pp5). Fig. 
2(a) shows the five reused pixels (the solid circles) between 
iteration {i=0, j=0} and iteration {i=1, j=0}. We use the on-chip 
buffer RUB to temporarily store the reusable data until it will no 
longer be used and replace it with other reusable data; the rectangle 
in Fig. 2(b) indicates RUB. Based on the reuse pattern, different
contents fill the buffer in different iterations. The dotted circle
represents new reusable data fetched in the iteration {i=1, j=0}
from lumabuffer to RUB. Meanwhile the RUB[0] is no longer 
reusable, so it is replaced by the new data. According to our reuse 
algorithm [9], the reuse buffer’s size is six depending on the reuse 
distance in this example. We update the reuse buffer by replacing 
the non-reusable data with new reusable data cyclically. The 
transformed code for data reuse buffering is shown in Fig. 1 (b). It 
shows the cyclic updating feature which introduces modulo 
operations in the references.

Assuming that the on-chip memory has single port, the 
throughput improvement achieved by loop pipelining will be 
limited by the port constraint. Six cycles are required to read all the 
reuse data and update the new data in the buffer, as shown in Fig.
1(b). Partitioning the reuse buffer into six banks is a 
straightforward solution to reduce the access conflicts and improve 
the throughput of loop pipelining.

For complex applications in practice, such as the H.264 decoder, 
several reuse buffers are generated in different modules. Pre-
obtained scheduling results provide information for access conflict 
analysis among reuse buffers. This gives us the opportunity to 
merge partitioned banks, which are scheduled in different time
intervals, into less organized reuse buffers. For example, Fig. 3(a)

shows a result of two loops after data reuse and memory 
partitioning. We assume that each loop is constructed in the same
shape as loop1 in Fig. 1(b). Based on our scheduling strategy,
loop1 and loop2 are in different time intervals. Thus there is no 
conflict access between RUB0_i and RUB1_i. Our merging scheme 
associates RUB0_i with RUB1_i in the reorganized RUBi, as shown
in Fig. 3(b), where RUBi+offset in loop2 represents the address of 
RUB1_i in the reorganized buffer RUBi. After logical synthesis, the 
reuse buffers will be mapped into physical memories, and the area 
is saved due to the reduction of BRAMs and associated 
interconnections.

//loop1
for (j = 0; j < 16 j++)

for (i = 0; i < 16; i++) {
pp0 = lumabuffer[j][i];
pp1 = lumabuffer[j][i+1];
pp2 = lumabuffer[j][i+2];
pp3 = lumabuffer[j][i+3];
pp4 = lumabuffer[j][i+4];
pp5 = lumabuffer[j][i+5]; 
filter(pp0,pp1,pp2,pp3,pp4,pp5,&out,…); }

(a)
//loop1
imgpel RUB[6];
for (j = 0; j < 16; j++)
{ //Reuse buffer pre-fetch from lumabuffer

RUB[0] = lumabuffer[j][0]; RUB[1]……
for (i = 0; i < 16 i++) {

pp0 = RUB[i%6];
pp1 = RUB[(i+1)%6];
pp2 = RUB[(i+2)%6];
pp3 = RUB[(i+3)%6];
pp4 = RUB[(i+4)%6];
pp5 = lumabuffer[j][i +5];
filter(pp0,pp1,pp2,pp3,pp4,pp5,&out,…);
RUB[(i+5)%6]=pp5; } }

(b)
Fig. 1. MC in H.264: (a) original program, (b) modified 
program after data reuse

i=0 j=0

i=1 j=0

reuse

lumabuffer

RUB i=0 j=0

RUB i=1 j=0

lumabuffer

(a) (b)
Fig. 2. (a) data reuse between iterations, (b) reuse data 
buffering
if(j==0)
loop1 (RUB0_0, RUB0_1, RUB0_2, RUB0_3, RUB0_4, RUB0_5)
else if(i==0)
loop2 (RUB1_0, RUB1_1, RUB1_2, RUB1_3, RUB1_4, RUB1_5)

(a)
// area(RUB0)=area(RUB0_0)+ area(RUB1_0)
if(j==0)

loop1 (RUB0, RUB1, RUB2, RUB3, RUB4, RUB5)
else if(i==0)
loop2 (RUB0+offset, RUB1+offset, RUB2+offset, RUB3+offset,
RUB4+ offset, RUB5+offset)

(b)
Fig. 3. Example of optimization process: (a) two similar
structures in the program after partitioning, (b) structure after 
merging
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3. AMO FLOW DESCRIPTION
3.1 Design Flow Overview

Data reuse analysis

Partitioning,
Padding

Memory merging

Reorganized Reuse Buffers

Throughput
optimal?

Yes

 Scheduling,
Pipelining

High level
abstraction

Transformed
code

Reuse Buffers

Reuse Banks

Behavioral Synthesis 
Frond-end

Behavioral Synthesis 
Back-end

No

Fig. 4. AMO design flow
We will provide an overview of our AMO design flow in this 

section (as shown in Fig. 4). The high-level application 
specification is parsed into the behavioral synthesis front-end and
followed by data reuse analysis [9] for the arrays. In this step reuse 
buffers are generated in different modules. Then scheduling and 
pipelining iterations are carried out to optimize the loops for the 
maximum throughput under certain resource constraints. A
lightweight scheduling and pipelining algorithm is applied here to 
predict the result of these two steps [29]. Then, memory 
partitioning (and padding, if needed) is performed on the reuse 
buffers to reduce the access conflict. After reuse banks are 
generated, memory merging analysis searches for the optimal reuse 
banks merging scheme. The goal of this step is to reduce the area 
overhead caused by memory partitioning. It merges the reuse banks 
without access conflict into reorganized reuse buffers according to
scheduling and area analysis. The transformed code will be 
synthesized into RTL implementation through the back-end of 
behavioral synthesis.

3.2 Reuse Buffer Partitioning and Padding
Loop pipelining is widely used for throughput optimization in 

data-intensive applications. But it is highly limited by resource 
constraints, such as the number of function units and memory ports.
In Section 2 we illustrated that simultaneous accesses to the reuse 
buffer are often desired in a loop. This section presents a method to 
find an optimal memory partitioning scheme to achieve the target
throughput in the loop pipeline. When the references in the buffer 
are affine, we formulate the problem as,
PROBLEM 1.

The approach in [16] partitions arrays with affine references. 
Assuming that the target throughput requirement II=1 and the 
memory port constraint pc=1 (the same assumption for the 
following problems), we define the affine references to the array as
R1=a1*i+b1 and R2=a2*i+b2, where i is the induction variable. The 
array is partitioned based on analyzing access conflict using the 
following theorem.

Given k affine references on the same array, the target 
throughput requirement II, and memory port constraint pc, find a 
partition n such that target throughput is satisfied.

THEOREM  1. 
Let
[16]

1n represent the number of banks, then
i 1 1 2 2a i b a i b 1mod n

1 2 1gcd( , )a a n 2 1( )b b

However in the reuse buffers, the references have modulo 
operations. In some cases, THEOREM 1 is unable to attain the 
right partitioning, as shown in the following example.

For array RUB (the size is 99), the accesses RUB[i%99] and 
RUB [(7*i+1)% 99], n1=2, s.t. gcd(6, 2) (1-0). The array is 
partitioned into two banks for conflict-free access. But when i=20, 
the two accesses, RUB[20] and RUB[42], are still in the same 
bank.

EXAMPLE 1.

Our approach is an improvement of previous work [16] that dealt 
with references to modulo operations. The partitioning problem is 
formulated as,
PROBLEM 2.

To clarify our discussion, we unified the references in the form of 
indexk=Rk%m. Rk denotes an affine function of induction variables.
Then two array accesses can be represented as index1=R1%m and
index2=R2%m. We derive the following result to attain partitioning
n2 considering both the buffer size and the boundary effect due to 
modulo operation. 

Given k modulo references on the same array, the 
target throughput requirement II, memory port constraint pc, and
the reuse buffer size m, find a partition n such that target 
throughput is satisfied.

THEOREM 2.
i 1 1 2 2( )% ( )%a i b m a i b m 2mod n

1 2 2gcd( , , )a a m n 2 1( )b b

We prove the converse-negative proposition of THEOREM 2.
PROOF.

i 1 1 2 2( )% ( )%a i b m a i b m 2mod n

1 1 2 2a i b a i b mod m 2mod n

,i h 1 2 2 2 1( ) *a a i h n b b mod m

, ,i h l 1 2 2 2 1( ) * *a a i h n l m b b

1 2 2gcd( , , )a a m n | 2 1( )b b (Bézout's lemma [25])

For array RUB (the size is 99), and the accesses RUB[i%99] 
and RUB [(7*i+1)% 99], to achieve gcd(6, 99, n2) 1, the smallest
partition is 3. But if we increase the buffer size by 1 (the size 
increased from 99 to 100), the smallest partition could be 2, s.t.
gcd(6, 100, 2) 1. This illustrates the benefit of memory padding.

EXAMPLE 2.

It’s trivial to prove that n1 from THEOREM 1 is always smaller 
than or equal to n2 from THEOREM 2. Considering n1 is the 
optimal partitioning for PROBLEM 1 [16], we define n1 as the 
lower bound of the partitioning for modulo references and n2 as the
upper bound. Then we need to solve the problem as,
PROBLEM 3.

If n1=n2, then n1 is a partition candidate for the problem.
Otherwise our AMO flow starts padding the reuse buffer to search
for an available partitioning. A searching process is performed to 
find partition candidate pairs (n, mp) in which the partition n is in 
the range of [n1, n2], satisfying formula (1).

Given k modulo references on the same array, the
partitioning lower bound n1, the partitioning upper bound n2, and
the reuse buffer size m, find a partition candidate pairs set S, in 
which each pair consists of a partition n and a padding mp such 
that target throughput is satisfied.

1 2gcd( , , )a a m mp n 2 1( )b b (1)
Because the searching space is not large, we enumerate all the 

possible partition candidate pairs. The rest of our extended 
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partitioning approach for k modulo references is similar to that in 
[16]. Scheduling is combined with partitioning for the throughput 
optimization in the loop pipeline. Our approach is unique in that, in
contrast to previous work, we consider the trade-off between the 
buffer size and the number of memory banks. On one hand,
padding decreases the partitions but increases the buffer size. On 
the other hand, the solution without padding keeps the size of the 
reuse buffer unchanged, but maybe largely increase the partitions,
control logic and interconnection. As a result, we consider a
combination of the partition n and the padding mp to minimize the 
reuse banks area. The area overhead minimizing problem is 
formulated as,
PROBLEM 4.

We define the array area after partitioning as area_partition in 
formula (2) below.

Given partition candidate pairs set S on the same array
for k modulo array references, and the reuse buffer size m, find a
solution including the partition number n and a padding number
mp that minimizes the area overhead.

( , )s n mp S ,

_ ( ) * _ ( )area partition memarea m mp Inter p n      (2),

where S = {(n, mp)} is the partition candidate pair set, in which 
each candidate pair is a solution to PROBLEM 1. Function
memarea() is mapping from logical size to the physical area.
Inter_p(n) is the control logic and interconnection due to the 
partition n. It is highly affected by whether the partition is a power 
of two. Coefficient reflects the trade-off between the buffer size 
and the interconnection.

Our algorithm finds the optimal partitioning for the target 
throughput optimization and minimizes the area overhead. The
complexity for Problem 3 applied on k references is O(nk2), where 
n is for the enumeration of partition number and k2 is for checking
formula (1) for each reference pair of the array.

3.3 Reuse Banks Merging
Memory partitioning can increase the throughput of loop 

pipelining. However, the size, amount and placement of BRAM are
fixed in FPGA, so straightforward partitioning sometimes results in
a large amount of small banks, which may occupy BRAMs
inefficiently. When the BRAM resource is relatively insufficient, 
some arrays fail to be implemented on-chip, which leads to more 
accesses to the external memory with long latency and power 
consumption. To address the BRAM utilization problem, we design 
a merging scheme to efficiently merge partitioned banks into 
reorganized reuse buffers without the loss of throughput speedup 
gained by memory partitioning.

A1 A2 A3 A4 B1 B2

C1 C2

D1 D2 D3 D4

T
i
m
e
 
I
n
t
e
r
v
a
l
s

Memory Partitions

buffer1

buffer2buffer3

0

1

2

Fig. 5. Merging depends on time conflict and area
Automatic memory merging has been well studied in previous 

work and implemented in tools. Xilinx ISE can automatically 
merge two single-port memories into a dual-port BRAM without 
considering port sharing among the merged memories [24].
Conflict graph-based methods were proposed for the general 
memory mapping problem; they achieve minimal overhead
according to scheduling [2, 7]. Compared to general memory 

mapping, our approach merges reuse banks considering address 
translation logic sharing.

As Fig.5 shows, the reuse banks are scheduled into the different 
time intervals. Shaded blocks represent reuse banks partitioned 
from the reuse buffers labeled by the capital letters in the names.
The banks in the same time interval conflict with each other, which 
means they cannot be merged into one bank, such as {A1, A2} and 
{A1, B1}. Our approach analyzes reuse banks in the different
intervals to seek the optimal merging strategy. Merging results are 
represented by dashed blocks. A1 and C1 are the first partitioning 
banks of reuse buffers A and C, respectively. So they could share 
part of the address translation logic. Our approach merges them
into one bank, as buffer1. We formulate our merging problem as,
PROBLEM 5.

The optimal merging scheme is determined by minimizing the 
area overhead shown in formula (3) as below,

Given reuse bank set V on r arrays, and the scheduling 
T for all the reuse banks, our goal is to find a merging scheme that 
merges reuse banks into reorganized reuse buffers set W to 
minimize the area without changing the throughput.

0 0
_ ( ( )) _ ( )W k

i g k g
area merge memarea M i Inter m V (3),

where g represents the number of reorganized reuse buffers, M(i) is 
the size of ith reorganized reuse buffer, and VWk is the subset of 
reuse banks merged into the kth reorganized reuse buffers. The 
function Inter_m(VWk) is the area cost of the control logic and 
interconnection for reuse banks set VWk. We propose a heuristic 
algorithm, which merges the reuse banks into the minimum number 
of reorganized buffers. The area minimization problem in the 
approach is resolved as a sub-problem as following.
PROBLEM 6.

The area cost for this problem is shown in formula (4).

Given a reuse bank v, and the reorganized reuse 
buffers set W, find a merging scheme that keeps the throughput 
unchanged and minimizes the area.

( , ) ( ( )) _ ( , ),0i i W iarea v W memarea M i Inter m v V i g (4) 

To keep the throughput unchanged, the conflicting banks that are 
scheduled into the same time interval cannot be merged into the 
same reorganized buffer. So the minimum number of reorganized 
reuse buffers is the maximum number of conflict banks among all 
the time intervals. For example, the maximum number of conflict 
banks in Fig. 5 is six in time interval two. The following heuristic 
flow describes how we merge the reuse banks into the minimum
reorganized reuse buffers.

Step 1: Assuming g as the maximum number of conflict banks 
for all the time intervals, create g empty reorganized reuse buffers.

Step 2: According to the scheduling T, arrange all the reuse 
banks in a bank queue in the increasing order of time intervals.

Step 3: Pick one reuse bank from the front of the bank queue and 
remove it from the queue. Find every reorganized reuse buffer 
which does not conflict with the current bank as a candidate 
merging buffer.

Step 4: For each candidate merging buffer, compute the area cost 
of merging with the current bank as shown in formula (4). Merge 
the current bank into the reorganized reuse buffer which minimizes
the area cost. 

Step 5: Repeat the approach from Step 3 until the bank queue is 
empty.

Our algorithm guarantees a solution with the minimum number of 
reorganized reuse buffers to allocate conflict banks at each time 
interval. From the algorithm, we can see the complexity of our 
merging approach is O(g× |V|), where |V| (the number of reuse 
banks) is for the loop in Step 5, and g for the area minimization in 
Step 4.
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4. EXPERIMENTAL RESULTS
We implement the AMO flow in C++ and evaluate it on five 

benchmarks. The optimized benchmarks are fed into the behavioral
synthesis platform AutoPilot [1] to compile into RTL, and then 
implemented by Xilinx ISE 11.5 [20] on Xilinx Virtex-6. Among 
all of the five benchmarks, MYTEST is an integrated benchmark
from several real-life applications, which we designed as controlled 
experiments. The other four benchmarks are data-intensive 
applications from medical imaging processing. DENOISE [21]
removes noise from an image based on Rician-denoise.
SEGMENTATION [22] detects objects in 2D/3D images.
REGISTRATION [23] is a fluid registration algorithm. CONVO-
LUTION [30] is a TV-based deconvolution for medical imaging.

Our experimental data and comparison results are shown in 
Table 1. We report selected comparisons for every benchmark. 
Some of the results show the improvement after partitioning and 
others present the benefits from the whole approach. Columns three 
and four show the throughput speedup and latency reduction after 
data reuse, loop pipelining, and memory partitioning. The 
throughput speedup depends on the initiation interval (II) of the 
pipeline. The next two columns, which are from the Xilinx FPGA 
implementation reports, present the number of lookup tables (LUT)
and clock period (CP). The column BRAM w_pad shows the 
amount of BRAMs after partitioning with padding, after memory 
merging, and the reduction of BRAMs after merging. The BRAM 
wo_pad column shows the results using the algorithm directly 
extended from [16] without padding. The last two columns are the 
padding size of reuse buffers and the padding area percentage of
each benchmark.

Throughput speedup is shown in the first two columns. The 
columns are throughput and latency improvement after memory
partitioning, compared to the approach that only uses data reuse 
and loop pipelining. There is a 5.8x throughput speedup on average, 
which is very similar to the speedup of 5.67x in [16]. The latency 
improvement is 4.55x on average. Memory partitioning increases 
the parallelism of the reuse buffer accesses and improves the 
throughput and latency.

Area optimization is presented in the rest of the columns. In the 
column BRAM w_pad, the average area decrease after memory 
merging is 44.32%. Among all the benchmarks, the best 
improvement (69.23%) is in MYTEST. Because the number of 
arrays and loops in MYTEST are more than in other benchmarks,
there are more possibilities for reuse banks without merging 
conflicts. Moreover, each partition is small enough to store in a
BRAM. According to our analysis, the number of banks after 
partitioning is directly related to the number of accesses in the 
loops.

The column BRAM wo_pad is the partitioning result without 
padding. The algorithm is a direct extension from [16]. The reuse 
buffer size m, the bank number n, the index R1=a1*i+b1, and
R2=a2*i+b2 satisfy gcd(a1-a2, m, n) (b2-b1). There is no available 
partition for benchmarks REGISTRATION and SEGMEN-
TATION because a1-a2 and m are relatively prime numbers. Also 
the number of partitioning in CONVOLUTION is too high to be 
acceptable. Because of unsatisfactory results compared to the 
padding scheme, we ceased further experimentation on memory 
merging based on this scheme. Buffer padding can solve the 
problem easily with a slight overhead. The last two columns 
padding (byte) and padding (%) show the amount and percentage 
of the padding portion in the reuse buffer. Due to the partitioning 
lower boundn1 and gcd(a1-a2, n1), the searching space of padding 
size k won’t be too large.

In general, memory partitioning and merging increases the 
interconnection and control logic. But as shown in the LUT report, 
the increase is acceptable (around 10%). Also given the slightly 

changed CP, we believe that the critical path is almost unchanged 
after optimization.

Although padding can help the designers largely decrease the 
partitions, the subscript expressions of all the access references 
need to be revised. This modification is easy to perform on the 
automatically generated reuse buffers. Instead of statically padding 
the reuse buffer for modulo partitioning, extending the partitioning
approach in [16] with a dynamic scheme that stalls the conflict 
accesses will also help solve the modulo-subscript problem. But the 
dynamic scheme needs to detect the access conflicts during 
execution and stall the whole pipeline when serializing the accesses. 
Compared to the small padding size, the dynamic control 
introduces a much larger hardware overhead, and the throughput 
will be impacted by the stall.

Our integrated flow AMO can also be used in ASIC behavioral 
synthesis. But we notice that the results for ASIC might be 
different than FPGA in some cases. Memory partitioning could still 
improve the throughput by reducing the access conflicts. But for 
on-chip SRAMs in ASIC, we may not gain much area savings after 
merging, because merging organizes small partitions into one 
BRAM and reduces the insufficient use of BRAM. Compared to a
fixed-size BRAM, SRAM is available for various shapes and sizes.
Although the port sharing and the interconnection reduction will 
optimize the area, the improvement is not as much as the FPGA 
design shows. As a result bank merging is more important for the 
FPGA design with fixed-size BRAMs.

5. CONCLUSIONS
In this paper we present an integrated automatic approach for

combining memory partitioning and merging with data reuse and 
pipelining to generate a memory optimization flow for FPGA 
behavioral synthesis. To our knowledge, this is the first work to 
combine these four techniques in an automatic optimization flow 
and the first to solve the problem of memory partitioning for 
indices with modulo operations.
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Table 1. Comparison of Different Benchmarks
throughput
speedup

latency
improve

LUT CP(ns) BRAM w_pad BRAM wo_pad padding(byte) padding(%)

MYTEST partition 3x 1.825x 3289 4.860 26 38 12 1.7%
merging 3684 4.929 8
improve -12% -1.42% 69.23%

DENOISE partition 10x 2.675x 11849 4.983 40 40 0 0
merging 14715 4.997 30
improve -24% -0.28% 25%

REGISTRATION partition 6x 7.02x 32990 4.996 72 no solution 64 0.7%
merging 33341 4.992 54
improve -1% 0.09% 25%

SEGMENTATION partition 7x 7.16x 30938 5.000 36 no solution 32 0.3%
merging 31723 4.998 18
improve -2.5% 0.04% 50%

CONVOLUTION partition 3x 4.11x 6164 4.963 42 4096 32 0.3%
merging 6938 4.893 20
improve -12.6% 1.41% 52.38%

AVERAGE improve 5.8x 4.55x -10.4% 0.00% 44.32%
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