
Active SSD Design for Energy-efficiency Improvement of Web-scale Data Analysis

Jian Ouyang1, Shiding Lin1, Zhenyu Hou1, Peng Wang2, Yong Wang1, Guangyu Sun2,
1Baidu, Inc.

2Center for Energy-efficient Computing and Applications, Peking University
{ouyangjian, linshiding, houzhenyu, wangyong03}@baidu.com, {wang peng, gsun}@pku.edu.cn

Abstract— NAND flash based solid state drives (SSDs) have been
widely adopted as storage devices in modern data centers to provide
high performance I/O services. Recently, researchers proposed several
schemes to improve energy efficiency of the system by off-loading
specific computation tasks from generic processors to local processing
elements in SSD controllers. However, it is inefficient to directly apply
these approaches to the web-scale data analysis system equipped with
modern SSDs using FPGA based controllers. More important, the
design schemess proposed in prior work cannot work with our target
system. In order to overcome the limitation, we present our Active
SSD design, considering unique features of computation tasks in web-
scale data analysis. In addition, we address an important issue about
interference between normal data processing and local computation in
Active SSDs. The detailed architecture of our Active SSD is described,
and a prototype is implemented. Moreover, the modification to the
whole system is also introduced to enable the Active SSD. Experimental
results based on real applications show that the energy efficiency can
be significantly improved with our design.

Keywords— Active SSD, web-scale data analysis, FPGA controller

I . INTRODUCTION

Compared to traditional hard disk drives (HDDs), N A N D flash
based SSDs have many advantages, such as high throughput, low
power consumption, light weight, etc. SSDs have been widely
adopted as storage devices in various systems ranging from portable
devices to high performance clusters [9], [10], [5], [13]. Recently,
as the per-bit price of N A N D flash keeps decreasing, SSDs have
also been employed in enterprise-scale data-centers to provide high
throughput, low latency data access for web-scale data analysis.
For example, some famous companies, such as Amazon, Baidu,
and Dropbox, etc., have started using SSDs in their data centers.

Besides the advantage of high performance, prior research
has shown that SSDs can provide energy-efficient computing
capability[5], [13]. The basic idea is to offload some specific
computing tasks from generic processors of the system to the
processing elements inside SSDs. Boboila et al first proposed
Active Flash to accelerate high performance computing (HPC)
by leveraging a single active SSD device [5]. Later in Tiwari’s
work, an analytical model is presented to find out the solution
of using multiple Active Flash devices for high-end computing
machine under both performance and power constraints [13]. Cho
et al proposed a design called intelligent SSDs (iSSDs) to enable
execution of limited applications functions of Hadoop System [14]
on SSDs using an extra streaming processor [6]. Abbani et al
presented a reconfiguration model of using active SSD platform
for data intensive workloads [3]. In the rest of this work, we call
all these types of SSD designs, which provide computing capability
with their internal hardware, as Active SSDs to simplify discussion.

The benefits of using Active SSDs come from three folds. First,
since data are processed locally on SSDs, the energy consumption
of moving data between SSDs and generic processors can be

This work was supported by the National Natural Science Foundation
of China (No. 61202072) and National High-tech R&D Program of China
(No. 2013AA013201). Corresponding author: Guangyu Sun.

saved. Second, the processing elements in SSDs can achieve better
computation energy-efficiency because they are normally based on
low power designs [2]. Third, the I/O contention can be alleviated
by leveraging internal high bandwidth inside SSD. However, these
approaches are inefficient for systems running web-scale data
analysis. They have limitations from both hardware design and task
selection, which are discussed as follows.

First, most processing elements in these Active SSDs are based
on embedded processors (e.g. ARM cores). The computation tasks
are executed either on the embedded processors [5], [13] directly
or on the extra hardware controlled by them [6]. For the former
case, besides the ISA limitation, the tasks executed on these low-
performance processors need to be carefully selected to avoid
significant system performance degradation. For the later case,
extra hardware (e.g. stream processors) is required. Both design
complexity and cost of SSDs can be increased.

Second, the processing elements on Active SSDs are not opti
mized for tasks. The overhead of running tasks on Active SSDs is
not fully considered. For example, some HPC algorithms running
on Active SSD contain tens of even hundreds of instructions [13].
These codes have to be copied to local memory of Active SSD
before being executed. In addition, the problem of interference
among normal data processing and task execution on Active SSDs is
not addressed. For example, the local computation on Active SSDs
can interfere with some routine functions, like garbage collection
and wear leveling. The interference can result in unpredictable delay
of response time.

Third, the design scheme based on timing modeling in prior
approaches cannot work with Active SSDs for web-scale data
analysis. In our design, data processing bandwidth rather than
computation latency is more critical because of the unique features
of tasks.

Fourth, there is no clear discussion on how to adapt the whole
system to support the Active SSD, especially in OS and application
level. Apparently, an API must be provided to programmer, and the
compiler and OS need to understand the commands so that these
request can be sent to Active SSD.

In order to overcome these limitations, we propose an Active
SSD design enhanced with processing elements in FPGA-based
SSD controller. Both the processing hardware and tasks selection
are optimized for applications of web-scale data analysis. The
contribution of this work is concluded as follows.

We leverage the computing capability of FPGA in modern SSD
•

to achieve significant high energy-efficiency for computation
in Active SSD.
We select proper computation tasks, which are dominating in

•
web-scale data analysis, for our Active SSD.
We proposed a simple but effective design strategy based on

•
feature of tasks, considering different constraints. Active SSD
can be easily reconfigured according to computation pattern.
We demonstrate that, in our Active SSD, the interference

•

978-1-4799-1235-3/13/$31.00 ©2013 IEEE 286 Symposium on Low Power Electronics and Design

between normal data access and computation on Active SSD
is avoided without extra design overhead.

• A prototype of our Active SSD is implemented on processing
nodes in a real data center.

• A comprehensive evaluation is presented in difference levels of
scenarios. Experimental results show significant improvement
of energy-efficiency.

The rest of this paper is organized as follows. Section II provides
a brief introduction to the background of web-scale analysis and
SSDs equipped FPGA based controllers. We present detailed design
of our Active SSD in Section III, which includes both hardware
architecture and corresponding system support. The experimental
setup and evaluation results are presented in Section IV, followed
by a conclusion.

II. PRELIMINARIES

In this section, we first present a brief introduction to web-scale
data analysis and FPGA based SSD controller. Then, we provide
the definition of some terminologies that are used in this work.

A. Web-scale Data Analysis

Web-scale data analysis is important for modern internet services.
The analysis is usually employed to extract some information or
features from huge volume of data, such as queries and logs. A
typical example is to find out the top 10 search queries in a period.
These applications have the following common features:

• The data scale is huge (e.g. hundreds of PetaByte), and
bandwidth requirement is high.

• Many computation tasks are simple and can be efficiently
executed on FPGA design.

• The type of tasks are diverse among applications, but one or
two types can dominate in a single application.

• Computation intensity is very high so that systems seldom
enter the idle mode.

B. FPGA based SSD controller

In consumer-level storage products, SSDs usually adopt the
traditional host-to-disk interface, such as SATA, for compatibility
reasons. The embedded ARM processor in the SSD controller is
powerful enough to deal with the maximum throughput of the
interface [12]. However, in the environments that require high
bandwidth, such as in systems of web scale data analysis, the overall
bandwidth of the traditional host-to-disk interface is a bottleneck.
The high-end SSDs for enterprise servers [1] in the market leverage
the PCI-E interface with gigabytes of bandwidth. PCI-E SSDs
provide lower latency path and offer higher throughput compared
to SATA SSDs. In addition, the adapter form factor of PCI-E
SSDs allots more space for NAND flash and associated controllers,
maximizing both SSD performance and available capacity [1], [12].
Current PCI-E SSD solutions are primarily based on FPGA [11].
In addition, the reconfiguration capability of FPGA is important to
adopt Active SSDs for applications with diverse computation tasks.

C. Terminology Definition

In order to simplify discussion, we define following terminologies
in this work. More examples of kernel and task can be found in
Table I.

• Host: The computer node equipped with Active SSDs.
• Computation Engine: The whole design entity used for data

processing on Active SSD.
• Kernel: Refer to basic functions can be run on FPGA imple-

mentation, such as sum(), max(), etc.

Fig. 1. Illustration of the system structure.

• Task: Refer to the unit of load that can be executed on either
host or Active SSD. A task is composed of several kernels.

• PE: Refer to processing element on Active SSD, which is a
functional component that can execute a complete task.

III. ACTIVE SSD DESIGN

In this section, we first introduce system level workflow with
Active SSD. Then, we present the detailed design and discuss some
related design issues.

A. System Level Overview

Figure 1 illustrates the overall structure of a system that supports
Active SSD. In this figure, the modification to both user space and
kernel space, which includes user API, I/O command parser, system
request queues, etc., are illustrated. The details of these modification
and the flow of issuing tasks on Active SSDs are introduced as
follows.

Threads 1−N represent applications of web-scale data analysis
running simultaneously on the host. Each of these threads can issue
requests of either normal data read/write or computation tasks on
host and Active SSDs. In order to explicitly issue tasks to Active
SSDs, we provide a user-friendly computation API similar as those
for normal data accesses. The format of API is shown below. Note
that these APIs are tailored for SSDs in data center of Baidu.

Compute_Op(uint64 src_addr0, uint64 len0,
uint64 src_addr1, uint64 len1,
uint64 dst_addr0, uint64 dst_len0,
uint64 dst_addr1, uint64 dst_len1,
uint32 cmd, datatype para0,
[para1], ...)

The different parts in the function is explained as follows,

1) Source Address (src addr): the starting address of source data
on Active SSD.

2) Data Length (len): the length of data for computation on
Active SSD.

3) Task (cmd): the type of task for processing.
4) Destination Address (dst addr): the output address on Active

SSD.

5) Parameter (para): this region is used to pass parameters to
computation engine, such as datatype, which can be one of
following, int, float, double, etc.

With the help of this API, functions called for computation on
Active SSDs are translated into I/O commands (e.g. ioctl) and sent
to a Parser, as shown in the figure. The Parser is responsible for
decoding these I/O commands into low level requests of Active SS-
Ds. Then, these requests are inserted into corresponding queues for
further kernel level scheduling by a request scheduler in operating
system. Note that there are various scheduling methods employed
in modern systems and specific optimization can be applied to co-
ordinate different requests [4], [8]. The discussion is out of scope
of this work, since we focus on the design of Active SSD. After
these requests are scheduled for processing, they will be sent to
Request Handler in the device driver of Active SSD, as illustrated
in Figure 1. Then, the driver will process these requests to Active
SSD by writing corresponding registers in the Active SSD.

The lowest region of Figure 1 is the abstract of our Active SSD
design, which is composed of two main parts. The first one is
the storage part based on many NAND flash chips. The second
part includes SSD controller and computation engine implemented
with FPGA. The SSD controller is responsible for basic functions,
such as normal data processing, FTL, error correction, etc. The
computation engine handles execution of tasks on Active SSD. Note
that these computation engines can be reconfigured on demand to
work with different applications. The details about reconfiguration
will be discussed in Subsection III-C.

B. Active SSD Architecture

The architecture of our Active SSD is demonstrated in Figure 2.
The working flows of normal data access and local computation on
Active SSD are described separately as follows.

Normal Data Access Flow. The normal data access process
is the same as that of traditional SSD. We take the data storage
process as an example. When data in main memory is ready to be
written back, the request is initialized by DMA controller (3© in
Figure 2). The data fetched by DMA controller are sent on data
bus connected to DRAM buffer (4© and 5© in Figure 2). DRAM
buffer is employed to improve access throughput. Data from DRAM
buffer are checked with error correction component (e.g. BCH 6© in
Figure 2) then input into FTL (7© in Figure 2). The physical block
address to be written is generated by FTL. Finally, data are sent to
the corresponding channels and updated in NAND flash chips. For
a read request, the process is a reversed one of a write request.

Local Computation Flow. In order to simplify design of data-
path, the data fed to FPGA for local computation on Active SSD
are all from NAND flash chips. Consequently, if some data for
computation are in main memory, the host processor need to issue
a write request to write them back to SSD before being processed.
This scenario is really rare for web-scale data analysis. Data in
these applications is usually organized as a batch (e.g. large data
block) and is written back to SSD after being processed by host
processors. As shown in Figure 2, the computation engine is also
connected to FTL to fetch data from NAND flash chips. The data
fetching is similar to a read operation. Data fetched go through FTL
and BCH before being allocated in DRAM buffer. Then, data are
sent from DRAM to computation engine instead of DMA controller.

One important design issue is the interference between local com-
putation and other functions of Active SSD. For example, Active
SSD is also responsible for the normal data access requests from
host processors. Note that we focus on interference on processing
logic instead of flash chip/channel competition. More important,

Fig. 2. Active SSD Architecture.

the local computation should not interrupt some routine functions,
such as garbage collection and wear-leveling, to avoid severe
performance degradation. Fortunately, our FPGA-based Active SSD
solve these problems without introducing extra design effort.

First, when computation task is offloaded to Active SSD, the
computation engine leverages the high data bandwidth inside SSD
to save the load of moving data between storage and host proces-
sors. To this end, the local computation can help reduce pressure
on host I/O. On the other side, computation engine needs all data
to be allocated on NAND flash before being processed. As we
mentioned, the extra I/O requests caused by such operation are
trivial because the operations are really rare. Second, different from
prior Active SSD approaches based on embedded ARM processor,
computation engine in our design is isolated from routine logic
functions of normal SSDs. As shown in Figure 2, computation
engine can only access data on NAND flash chips through FTL
component. From the perspective of FTL, there are no difference
for requests from computation engine or DMA (e.g. host processor).
Thus, when routine functions are running, it can block requests from
both sources so that these functions are not interrupted. Note that,
if one computation request has already been issued before them,
these routine functions need to wait for completion of the task
before being processed.

Computation Engine. The structure of a computation engine
is illustrated in Figure 3. It is composed of a task scheduler and
several computation processing elements (PE). The task scheduler
is responsible for scheduling tasks to corresponding PEs. The
scheduling policy is a first-come-first-serve policy. Such a simple
scheduling works efficiently with Active SSD design because only
one type of task is scheduled for most of cases. In order to achieve
high throughput of computation engine, local computation tasks can
be scheduled in parallel to fully utilize the computation kernels.
Note that the data hazard is handled by host processor instead
of scheduler in computation engine. It means that computation
requests running at the same time on Active SSD have no data
dependency.

Apparently, the computation throughput is related to both appli-
cation and design of PEs in computation engine. As we mentioned,
the types of PE may be diverse for different applications. Thus,
the goal is to design the optimized number of PE for each type of
task with the consideration of different constraints, such as FPGA
resource constraint, data bandwidth constraint, etc. We discuss our
strategy of PE design and how to reconfigure them for different
applications in the next subsection.

Fig. 3. Structure of a Computation Engine.

C. Computation Engine Design

In this subsection, we first list several common computation
kernels that can be implemented efficiently on Active SSDs. Then,
we propose a strategy of designing PEs using these kernels. At last,
we discuss how to reconfigure them for different applications.

Since we focus on web-scale data analysis, the design of com-
putation kernels inside the computation engine should be adapted
based on two basic rules. First, the implementation of these kernels
on FPGA must be feasible. Second, the FPGA implementation
of these kernels can achieve significant higher energy-efficiency
compared to execution on host processors. The purpose of these
rules is to make sure that offloading these tasks on Active SSD can
have an significant impact on energy efficiency of computation in
the system.

With a comprehensive analysis of various applications, we pro-
pose several commonly used computation kernels and can be
implemented on FPGA directly with direct logic synthesis, which
are listed as follows.

• sum() This is a basic kernel for addition and counting.
• memcmp() This is a kernel used for text comparison, which is

widely used in some workloads, such as WordCount. When
implemented on FPGA, it can compare multiple bytes in
parallel to speed up the performance.

• max(), min() These two kernels are used to find maximum and
minimum values in a set of data.

• merge() This kernel is used to merge two sets of data into one
set and is commonly used in workloads, such as MergeSort.

In the real design, multiple computation kernels compose a PE
for execution of different tasks. For example, the PE for task
WordCount is composed of several memcmp kernels and one sum
kernel. In order to simplify the design, all processing elements are
designed as combinational logic. It means that data go through from
input to output as a streaming without any iteration. This rule limits
the tasks that can be supported by Active SSDs. Fortunately, this
is not a problem for our targeting applications because most tasks
in web-scale data analysis can be executed on PE of combinational
logic design. For example, the abstract logic design of WordCount
is illustrated in Figure 4. In this example, the PE can compare
N queries at the same time with N memcmp kernels. Each kernel
contains eighteen M-bit comparators which support different length
of queries. The counter shown in Figure 4 is based on kernel sum.

Having these PEs, we propose a simple but effective design
strategy for computation engine design. The design goal is to
achieve maximum computation throughput under constraints of
both FPGA resources and SSD internal I/O bandwidth. Our design
strategy is based on three simplifications, considering the features
of targeting applications.

Fig. 4. Illustration of PE design for WordCount.

1) There are always enough computation tasks for both Active
SSDs and host processors. This simplification is reasonable
for application of web-scale data analysis, especially for those
that generate huge data volume.

2) There is only one type of processing element active for com-
putation at the same time. This simplification is also based on
the character of applications. For example, in programming
model like “map-reduce”, the computation task allocated to
one node normally contains a single type of task, such as
WordCount, MergeSort, etc.

3) The average bandwidth requirement of host processors is kept
in a stable level. This one is related to the first simplification.
Since there are always enough commutation tasks for host
processors, the data requirement bandwidth (Bhost) can be
assumed as the case that the processors running at the peak
performance. Although Bhost can vary during execution, in
Section IV, our experimental results show that this simplifi-
cation works well with our Active SSD design.

With these simplifications, the design goal is just to maximize
the total computation throughput, as shown in Equation (1) to
Equation (3). The details are explained as follows.

Assume that there are N types of PE designed for N types of
tasks. Each element Mi in the set <M0,M1,M2, . . . ,MN > represents
the total number of PE instances implemented for ith type of PE.
The total throughput of executing task i can be calculated as Mi×Ti,
where Ti denotes the raw throughput of ith type of PE. We further
assume that the percentage that the ith task occupies in the total
computation on Active SSD is introduced as Pi. Thus, based on our
simplifications, the total throughput Ttotal can be calculated as in
Equation (1).

Ttotal =
N

∑
i=1

Pi ×Mi ×Ti (1)

There are several potential constraints that can limit computation
engine design. The first one is resource constraint on FPGA. Note
that in the real design, we normally use the spare resource of a
traditional SSD controller. As shown in Equation (2), the first part
on the left side of the equation represents the total resource used
by all PE logic, where Ri denotes the resource for ith type PE.
Rper counts the necessary resource for peripheral circuitry such
as connection, scheduler, and input/output circuit to DRAM and

TABLE I
LIST OF TASKS

Task Name Kernel Task Description
WordCount Memcmp() Given a word (e.g. IP or URL), count

the total word number appears in data.
MaxValue Memcmp() From a list of < k,v > pairs, find out

Max() the maximum v for the same k.
Key is already sorted.

SumValue Memcmp() From a list of < k,v > pairs, calculate
Sum() the sum of v for the same k.

Key is already sorted.
MergeSort Merge() Merge sort algorithm

PCI-E. RFPGA is total available resource that constrains the total
processing power of an Active SSD. Later in Section IV, we will
show that the resource constraint is not a critical limitation.

N

∑
i=1

Mi ×Ri +Rper < RFPGA (2)

The second limitation comes from the data bandwidth that can
be provided by DRAM on Active SSD. Assume that the peak
bandwidth of DRAM is BDRAM , which is the constraint data
bandwidth consumed by both host and computation engine on
Active SSD. Let Bi denote bandwidth required by ith type of PE,
the second constraint is shown in the following equation. Note that
the host bandwidth is assumed as a stable value based on our third
simplification. According to our second simplification, there is only
one type of PE active at the same time. Thus, peak bandwidth
required by PE is calculated as max(Mi ×Bi). Later in Section IV,
we will demonstrate that the second constraint has an impact on
the design of Active SSD.

max(Mi ×Bi)+Bhost < BDRAM (3)

When different applications are running on the same system, the
pattern of computation requests can vary a lot from each other.
The most attractive feature of FPGA is that it can be reconfigured
to optimize computation engine for different applications. Prior
research has mentioned the reconfiguration of Active SSDs [3]. Our
design also support reconfiguration, which also follows the design
strategy based on equation (1)(2)(3). It should be mentioned that
the process of reconfiguration only consumes several minutes and
can be operated during period of light load. Thus, compared to the
total data processing time, its impact on total system performance
can be neglected.

IV. EVALUATION

In this section, we will first introduce our experimental setup
and our design prototype. Then, the experimental results are listed
and compared.

A. Experimental Setup

Our experiments are evaluated on nodes (a.k.a. host machines),
in the real data center system from Baidu. Note Baidu is the largest
search engine company in China that provides various internet
services. The targeting applications are running on a platform
similar to Hadoop [14]. The workload allocated to the evaluation
node is based on request traces captured in the real system. In the
workload, we extract the following tasks that can be executed on
our Active SSD, as listed in Table I. For the workload we use
for experiments, the first three tasks occupy about 35% of the
total computation tasks, and the last task (MergeSort) consumes
about another 10% of the total tasks. Thus, these tasks that can
be executed on Active SSD contribute more about half to the total

execution. It means that the energy-efficiency improvement of these
tasks has an important impact on that of the whole system.

The host processors are two Intel E5620 [7] 2.4GHz including
4 cores on two slots of the motherboard. The processor supports
SSE instruction set, which can be used to speed up computation
kernel such as memcmp(). The size of main memory is 32GB. The
host is equipped with eleven 2TB HDDs with the SATA interface.
The operating system running on host is Linux with a customized
kernel, which is modified to support computation on Active SSD. In
addition, the PCI-E driver is also customized for Active SSD. The
host machine can be connected to a fully customized SSD design,
working as a prototype of our Active SSD. The details of Active
SSD prototype is introduced in the next subsection.

B. Prototype Design

Fig. 5. Prototype of Active SSD.

The prototype of our Active SSD is shown in Figure 5. There
are four Spartan-6 150T FPGAs [15] on the board. Note that the
four low-end FPGAs are selected for the consideration of design
cost. Each FPGA has a 4-channel DDR3 with the size of 2GB,
which can provide 4× 1.6 GB/s bandwidth. Since there are four
FPGAs, the peak total DRAM buffer bandwidth (BDRAM of the
Active SSD is 4× 4× 1.6 GB/s = 25.6GB/s. The internal NAND
flash chips can provide 2.6GB/s and 1.25GB/s bandwidth for read
and write operations, respectively. The total capacity of NAND flash
is 700GB. The bandwidth of PCI-E to host is 2GB/s.

The SSD controller is customized to provide proper FTL for
Baidu systems. For the design without computation engine, about
60% of total LUT is used. It means the rest 40% LUT is free
resource that can be used for computation engine design.

C. Experimental Results

We evaluate our Active SSD in three different cases: (1) single
node case, (2) distributed system case, and (3) data-center level
case. In the first case, the Active SSD is connected to a single pro-
cessing node and the performance and power results are collected
through measurement. In the second case, the experimental results
are based on injected traces captured from distributed system. For
the last one, the benefits of using our Active SSD are estimated by
scaling to a real data center environment.

The results for single node evaluation are listed in Table II. For
Active SSD design, we first list theoretical peak bandwidth of each
PE without any constraints. In the third column, we present the
number of PEs implemented in the Active SSD. We can find that
the total resource consumed is less than 6% of FPGA resource. It
means that the design overhead is trivial. The PE design follows
our design strategy in Subsection III-C. The number of each type
of PE is decided by the constraint of DRAM bandwidth. From the
fifth column, we can find that each type of PE can achieve almost
the maximum bandwidth of DRAM buffer. The performance results
for each task are also listed in the table. The results show that the
power consumption for each type of PE is less than 1 Watt.

TABLE II
EXPERIMENTAL RESULTS ON A SINGLE HOST

Active SSD Host Only
Task Name Peak Throughput per PE Number of PE Total Throughput Power Core Throughput Node Throughput Power

(no constraints) FPGA resource (DRAM constraint) (Watt)
WordCount 32GB/s 1, < 1% ≈ 24GB/s < 1 W ≈ 4GB/s ≈ 24GB/s 160W / 8 core
MaxValue 32GB/s 1, < 1% ≈ 24GB/s < 1 W ≈ 1.9GB/s ≈ 15GB/s 160W / 8 core
SumValue 32GB/s 1, < 1% ≈ 24GB/s < 1 W ≈ 1.7GB/s ≈ 13GB/s 160W / 8 core
MergeSort 9.6GB/s 4, < 3% ≈ 24GB/s < 1 W ≈ 1.5GB/s ≈ 12GB/s 160W / 8 core

For comparison, the results of running tasks on host only node are
also included in Table II. In the sixth column, the peak computation
throughput on a single core is listed for each task. It is easy to
find that our PE can achieve much higher performance than host
processor. In addition, we also show the total processing throughput
that can be provided by all cores on the host. From the last column,
it is easy to tell that our PE can improve the energy efficiency by
hundreds of times for the single case.

For the evaluation of distributed system case, we need to clarify
the total percentage of tasks that can be executed on Active SSD,
as shown in Table III. The experiments are based on the trace of
100T B, and we assume there is 100 Active SSDs and enough host
machines so that all data are processed within same execution time
for host only configuration and host plus Active SSD configuration.
The energy consumption is compared in Figure 6. Note that the
energy consumption consumed on network is also estimated for
a reasonable evaluation. The results show that, after using Active
SSDs, the energy consumption for each workload is significantly
reduced. It is easy to find that the improvement is related to the total
percentage of task in the workload. For example, the improvement
for task MergeSort is the lowest because its percentage is also
the lowest, as shown in Table III. On average, the total power
consumption is reduced by about 63%.

TABLE III
PERCENTAGE OF TASKS ON ACTIVE SSD FOR EXPERIMENTS ON

DISTRIBUTED SYSTEM

Task Name WordCount MaxValue SumValue MergeSort
Percent ≈ 85% ≈ 70% ≈ 67% ≈ 35%

0

0.2

0.4

0.6

0.8

1

1.2

WordCount MaxValue SumValue MergeSort

Host-only Host + Active SSD

Fig. 6. Energy comparison for distributed mode.

In the last case, we estimate the energy-efficiency improvement
based on real workload in Baidu’s data center. In the data center,
there are about 15,000 tasks processed everyday. The length of data
ranges from a few KByte to several T Byte. Assume that 10PByte
total data are processed with map-reduce model in a day, and there
are 2K nodes working. The first three tasks in Table I contribute
about 35% to total tasks, and the last one occupies about 10% of
the total. As a consequence, we can save about 30% total energy

consumption after changing the traditional SSD to Active SSD on
each node.

V. CONCLUSION

Active SSD design can help improve computation energy-
efficiency of data centers. For web-scale data analysis, the unique
features of applications make FPGA based computation engine
have more advantages than embedded processor based ones. In
addition, the design strategy for FPGA based design is more limited
by data bandwidth. More important, the FPGA based design can
isolate local computation on SSD from other functions in SSD.
Our prototype demonstrates significant improvement of energy-
efficiency for the whole system.

REFERENCES

[1] Fusion-io: A New Standard for Enterprise-class Reliability,
2011. http://www.fusionio.com/white-papers/
fusion-io-a-new-standard-for-enterprise-class-
reliability/

[2] Samsung PM830 datasheet, 2011. http://tinyurl.com/
co9zyq7

[3] N. Abbani, A. Ali, D. Al Otoom, M. Jomaa, M. Sharafeddine,
H. Artail, H. Akkary, M. Saghir, M. Awad, and H. Hajj. A distributed
reconfigurable active ssd platform for data intensive applications. In
High Performance Computing and Communications (HPCC), 2011
IEEE 13th International Conference on, pages 25–34, 2011.

[4] J. Axboe. Linux Block IO C Present and Future. In Proceedings of
the Ottawa Linux Symposium, pages 51–61, 2004.

[5] S. Boboila, Y. Kim, S. Vazhkudai, P. Desnoyers, and G. Shipman.
Active Flash: Out-of-core Data Analytics on Flash Storage. In Mass
Storage Systems and Technologies (MSST), pages 1–12, 2012.

[6] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger. Active disk
meets flash: A case for intelligent ssds. In Technical Report CMU-
PDL-11-115, 2011.

[7] Intel. Intel Xeon Processor E5620. http://ark.intel.com/
products/47925/Intel-Xeon-Processor-E5620-12M-
Cache-2_40-GHz-5_86-GTs-Intel-QPI

[8] S. Iyer and P. Druschel. Anticipatory Scheduling: A Disk Scheduling
Framework to Overcome Deceptive Idleness in Synchronous I/O. In
Proceedings of the Eighteenth ACM Symposium on Operating Systems
Principles, SOSP ’01, pages 117–130, 2001.

[9] Y. Joo, J. Ryu, S. Park, and K. G. Shin. FAST: Quick Application
Launch on Solid-State Drives. In Proceedings of FAST’11, pages 259–
272, 2011.

[10] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting Storage for
Smartphones. Trans. Storage, 8(4):14:1–14:25, Dec. 2012.

[11] S. Kung. Native PCIe SSD Controllers, 2012. http:
//www.marvell.com/storage/system-solutions/
native-pcie-ssd-controller/assets/Marvell-
Native-PCIe-SSD-Controllers-WP.pdf

[12] C. Mellor. OCZ samples twin-core ARM SSD controller,
2011. http://www.theregister.co.uk/2011/07/25/
ocz_indilinx_everest/

[13] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers,
and Y. Solihin. Active Flash: Towards Energy-Efficient, In-Situ Data
Analytics on Extreme-Scale Machines. In Proceedings of FAST’13,
pages 119–132, 2013.

[14] Hadoop Homepage. http://hadoop.apache.org
[15] Xilinx. Spartan-6 Family Overview, 2011. http://www.xilinx.

com/support/documentation/data_sheets/ds160.pdf

