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ABSTRACT

One of the necessary requirements for the placement process
is that it should be capable of generating routable solutions.
This paper describes a simple but effective method lead-
ing to the reduction of the routing congestion and the final
routed wirelength for large-scale mixed-size designs. In or-
der to reduce routing congestion and improve routability, we
propose blocking narrow regions on the chip. We also pro-
pose dummy-cell insertion inside regions characterized by
reduced fixed-macro density. Our placer consists of three
major components: (i) narrow channel reduction by per-
forming neighbor-based fixed-macro inflation; (ii) dummy-
cell insertion inside large regions with reduced fixed-macro
density; and (iii) pre-placement inflation by detecting tan-
gled logic structures in the netlist and minimizing the max-
imum pin density. We evaluated the quality of our placer
using the newly released DAC 2012 routability-driven place-
ment contest designs and we compared our results to the
top four teams that participated in the placement contest.
The experimental results reveal that our placer improves the
routability of the DAC 2012 placement contest designs and
effectively reduces the routing congestion.

1. INTRODUCTION
One of the most crucial objectives of modern-day VLSI

placement is the minimization of the final routed wirelength
on the chip. Satisfying this objective has a detrimental ef-
fect on the performance of a placer and greatly affects fac-
tors such as congestion, delay, and timing. Despite being an
important objective, the routed wirelength is usually only
taken into account during the post-placement steps by em-
ploying techniques for local congestion minimization. How-
ever, techniques that are based on local congestion informa-
tion have a relatively small impact on the quality of the final
placement.
A number of approaches have been proposed for reduc-

ing routing congestion in placement. The approach in [14]
discusses the use of integer linear programming to improve
local routing congestion. In [15], the congestion estimation
model is based on a stochastic algorithm that computes the
horizontal and vertical track usage. The approach in APlace
2.0 [9, 10] describes a congestion estimation method [11] that
is based on integrating congestion information into an ob-
jective function. The routability-driven placement approach

[13] solves a sequence of unconstrained optimization prob-
lems, incorporating the wire density as a weighted penalty
into an objective function. The authors in [17] examine the
correlation between the Steiner tree and the routed wire-
length in placement, and propose the ROOSTER algorithm
in order to reduce the routed wirelength. The authors of
RUDY [20] introduce a model that estimates the wire dis-
tribution on the chip by taking into consideration the wire
density of each net. The approach proposed in CRISP [18]
employs fast global routing to determine congested regions.
The approach in [7] optimizes routability using pin density,
routing overflow, and macro porosity consideration. The ap-
proach proposed in simPLR [12] applies look-ahead routing
in a flat placement framework to reduce congestion. The au-
thors of Ripple [5] use cell inflation and net-based movement
for routability-driven placement.

The International Symposium on Physical Design (ISPD)
2011 contest [21] was organized to enhance research in VLSI
and enable advances in routability-driven placement. The
contest also introduced a benchmark suite of industrial ASIC
designs that contain placement and routing blockages, vary-
ing metal width and spacing, non-rectangular fixed objects,
and fixed ′Not in Image′ objects. These objects have pins
on metal layers on top of the ones used within cells for inter-
nal pins and routing. The Design Automation Conference
(DAC) 2012 routability-driven placement contest [22] was a
continuation of the ISPD 2011 contest [21] and introduced a
benchmark suite of modern industrial ASICs, containing in-
formation for both placement and routing. The DAC 2012
contest [22] also introduced a routability metric that de-
scribes congestion more accurately than the ISPD 2011 con-
test metric, as well as two academic global routers for the
evaluation of the results. In contrary to the global router
[19], that was used to evaluate the routability of the ISPD
2011 contest [21] circuits, the routers NCTUgr and BFG-R
of the DAC 2012 contest [22] have improved performance
while being machine-independent.

By targeting congestion during global placement we are
able to minimize the routing congestion and the final routed
wirelength. The remainder of the paper is structured as fol-
lows: Section 2 describes our placement flow, while Section
3 introduces the contest metric. Section 4 discusses our pro-
posed technique of neighbor-based fixed-macro inflation to
block narrow channels. Section 5 introduces the technique of
dummy-cell insertion inside regions of reduced fixed-macro
density. Section 6 describes the application of pre-placement
inflation in our placer. Section 7 reports our experimental
results. Section 8 concludes the paper.
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2. PLACEMENT FLOW
We follow an analytical [7, 2, 16] placement approach. To

estimate the routing congestion, we first decompose multi-
pin nets into two-pin nets by FLUTE [3, 4]. Then, we
divide the chip into global tiles and compute the conges-
tion of each tile by taking into account the routing demand
and the routing supply (separately for horizontal and ver-
tical directions). As in [5], let T ileWidth be the width
(T ileHeight the height) of the tile, and WidthBB be the
width (HeightBB the height) of the bounding box of the
two-pin net. Also, let Ovlp be the overlapping area between
the tile and the bounding box of the net and WireH be
the horizontal (WireV the vertical) wire area of the net.
Finally, let BlockageH be the product of the ratio of hor-
izontal (BlockageV the vertical) tracks which are occupied
by each routing blockage and the overlapping area between
the blockage and the tile. For the horizontal direction:

SupplyH = (T ileWidth)(T ileHeight)−BlockageH,

DemandH =
(Ovlp)(WireH)

(WidthBB)(HeightBB)
,

CongestionH =
SupplyH −DemandH

SupplyH
.

For the vertical direction:

SupplyV = (T ileWidth)(T ileHeight)−BlockageV,

DemandV =
(Ovlp)(WireV )

(WidthBB)(HeightBB)
,

CongestionV =
SupplyV −DemandV

SupplyV
.

We perform cell inflation to alleviate congested tiles. The
inflation pattern is similar to the one described in [5]. In or-
der to further reduce congestion, we propose blocking narrow
channels on the chip by inflating fixed-macros that create
such channels. We also propose inserting dummy-cells lo-
cally on the placement area, inside regions of reduced fixed-
macro density. These two methods are applied during the
last level of the placement framework. To our knowledge,
there are no published papers that apply narrow channel re-
duction and dummy-cell local insertion to routability-driven
placement. Furthermore, we perform pre-placement infla-
tion at each level of the placement framework. In contrast to
the in-placement inflation used in [1, 6], our pre-placement
inflation takes place before placing the components at each
level, and is not iteratively applied during that particular
level.
Let (x,y) be the vector of cell coordinates andHPWL(x,y)

be the total half-perimeter wirelength on the placement area.
We enable cell spreading by applying a uniform placement
grid on top of the placement area. We define Db(x,y) to be
the cell density inside placement bin b, and Mb to be the
average cell density. The placement formulation is:

minHPWL(x,y)

s.t.

Db(x,y) = Mb, ∀ placement bin b.

3. ROUTABILITY METRIC
The metric of DAC 2012 routability-driven placement con-

test [22] accounts for both routability and runtime. Let
ACE be the average congestion of g-cell edges based on
the histogram of g-edge congestion as described in [22, 23].
Then, ACE(x) computes the average congestion of the top
x% congested g-cell edges. For the contest, the set of ACE
values was computed using x ∈ 0.5, 1, 2, 5. In order to sim-
plify calculations, the contest routers NCTUgr and BFG-R
report the set of ACE values. Based on the ACE metric,
we calculate the peak-weighted congestion as:

PWC =
ACE(x)

4
, x ∈ 0.5, 1, 2, 5. (1)

Using (1), the routing congestion is:

RC = max (100, PWC). (2)

Let PF be the penalty factor that scales the HPWL to
account for routing congestion. In the DAC 2012 place-
ment contest PF=0.03 so that for every 1% excess rout-
ing congestion, there is a 3% wirelength penalty. Also, let
RuntimeFactor be the runtime factor that penalizes plac-
ers based on their runtime. Using (2), the contest metric is
defined as the scaled wirelength of the placement solution
as follows:

ContestMetric =

HPWL(1 + PF (RC − 100))(1 +RuntimeFactor).
(3)

4. NARROW CHANNEL REDUCTION BY

APPLYING NEIGHBOR-BASED FIXED-

MACRO INFLATION
A common factor of congestion in modern industrial de-

signs is the existence of fixed macros on the placement area.
These macros are responsible for creating narrow channels
as illustrated in Figure 1. The existence of narrow channels
on the placement area contributes to the routing congestion
on the chip. This is due to the fact that cells placed in a
narrow regions have difficulty in escaping during placement,
thus leading to an increase of the routing congestion in their
neighborhood.

We propose blocking narrow channels on the chip in order
to reduce routing congestion. Our method is implemented
by inflating fixed macros based on their distance to neighbor-
ing fixed macros. Our neighbor-based fixed-macro inflation
for blocking narrow channels is further described as follows:
For each one of the fixed macros, we define a set of right-
side neighbors that consists of all fixed macros located on
the right side of this particular macro, and whose distance
from the macro is smaller than a right-threshold value.

Similarly, we define a set of left-side neighbors of the
macro, with distance smaller than a left-threshold value, a
set of top-side neighbors of the macro, with distance smaller
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Figure 1: Illustration of narrow channels. Close-
up into a region of the floorplan layout of the DAC
2012 routability-driven placement contest design su-
perblue3, obtained from [22]. Light-red shaded
boxes correspond to rectangular fixed macros, while
gray-shaded boxes correspond to non-rectangular
fixed macros.

than a top-threshold value, and a set of bottom-side neigh-
bors of the macro, with distance smaller than a bottom-
threshold value. The four threshold values, that determine
the closest neighbors on each side of the macro, may not
necessarily be equal. We also define four rates of inflation
for the macro, each rate associated to the degree of infla-
tion we apply to the macro towards the respective side. For
example, to completely block a narrow channel on the right
side of the macro, we set the right-side rate of inflation of
the macro equal to 100%.

5. DUMMY-CELL INSERTION INSIDE RE-

GIONS OF REDUCED FIXED-MACRO DEN-

SITY
The existence of narrow channels on the placement area is

not the only factor to take into account in order to improve
routability. Another factor is the existence of large empty
regions on the design. As illustrated in Figure 2, when a de-
sign has the majority of its macros located at the periphery,
then the empty part of the placement area may become con-
gested during the placement of cells. To avoid this type of
congestion, we identify large empty regions on the chip and
insert dummy cells inside them. To identify such regions, we
apply a coarse grid on the placement area and determine bins
with reduced fixed-macro density. Then, we insert dummy
cells inside the bin with the smallest fixed-macro density
value. More specifically, after applying a coarse grid on top
of the placement area, we calculate the overlap of each fixed
macro with the bins of the grid. Then, we identify the bin
that has the smallest amount of overlap with fixed macros.
Finally, we insert dummy cells in this particular bin.

6. PRE-PLACEMENT INFLATION
To identify regions characterized by routing congestion,

we usually employ techniques that are based on pin den-
sity, net density, and/or fast routing. Then, we inflate cells
located inside congested regions. In order to reduce conges-

Figure 2: Illustration of second case of conges-
tion. The floorplan layout of DAC 2012 routability-
driven placement contest design superblue16 (ob-
tained from [22]) has the majority of its fixed macros
located at the periphery. The empty center of the
placement area creates routing congestion, since a
large number of cells are placed inside this region.

tion, we perform pre-placement inflation at each level of the
placement framework.

6.1 GTL-Based Inflation
We adopt the Group of Tangled Logic (GTL) metric that

was introduced in [8] to detect tangled logic structures in a
netlist. Let T (C) be the net cut of cell cluster C, |C| be the
number of cells in C, AC be the average pin count of cells
in C, AG be the average pin count of all cells, and p be the
Rent exponent. The GTL score of C is defined as follows:

GTL(C) =
T (C)

AG|C|
p

AC
AG

.

The GTL score curve of C is illustrated in Figure 3 and
corresponds to the growth of C. During the growth of a
cluster from a seed cell, the score of the cluster is modi-
fied by iteratively adding highly connected neighbors. The
curve contains a distinct trough if a tangled logic structure
appears during the growth. The position of the trough indi-
cates when the cluster growth has reached the most tangled
logic structure. TheGTL-based technique for cluster growth
imposes a significant runtime overhead to the algorithm. In
order to find tangled logic structures, the algorithm selects
a large number of seed cells and carries out the growth pro-
cess multiple times. As reported in [8], the runtime for a
circuit with 800K vertices may take up to 141 minutes, even
if eight parallel threads are used. This particular circuit size
only corresponds to the median among the benchmarks of
the ISPD 2011 contest [21].

To solve the problem of increasing runtimes we incorpo-
rate the cluster growth method to the multilevel placement
engine. A bottom-up clustering of cells is initially performed
and all cells are treated as objects. The best pair of ob-
jects is identified and clustered into a new object and the
process continues iteratively until the netlist becomes suffi-
ciently coarse. We integrate GTL scoring into the clustering
process with a small runtime overhead and each object is as-
sociated to a GTL score curve. When a pair of objects is
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Figure 3: An example of the GTL-score curve [8].

clustered into a new object, the GTL score of the new object
is calculated. Compared to the cluster growth method in [8]
our method results in a runtime overhead of 40 seconds for
a circuit of approximately 800K vertices, a speedup of over
260X.
In [8], all cells inside the detected tangled logic structure

are inflated by a factor of four. This type of naive infla-
tion may violate the available whitespace constraint. Also,
it may be incapable of reflecting differences among the de-
tected tangled logic structures. Let TroughWidth(C) cor-
respond to the trough width of the GTL score curve of C.
In our work, the allocation of the whitespace among the
detected tangled logic structures is proportional to their re-
spective weights as follows:

Weight(C) = TroughWidth(C)
|C|2

Area(C)
.

If the GTL score curve of C has a larger trough width,
then it has a more distinct trough and C is a more tangled
logic structure. The weight of the C is based on the obser-
vation that clusters with a large number of cells and smaller
area are more likely to be congested and should be inflated.

6.2 Pin Density-Based Inflation
Pin density-based inflation minimizes the maximum pin

density. It is based on the fact that inflated cells reserve
routing resources proportional to the number of pins they
contain. This approach employs a simple model for local
nets that consume routing resources.
The algorithm processes the cells in the order of decreas-

ing pin density, then determines how many of these cells can
be inflated within the given whitespace budget, so that all
inflated cells have the same pin density dmax. Let pi be the
number of pins of cell i, Ai(A

′
i) be the original (inflated) area

of cell i, and W be the whitespace allocated for cell infla-
tion. The inflated area {A′

i} is the variable in the following
optimization problem:

minmax
i

{pi/A
′
i}

s.t.

Ai ≤ A′
i, ∀i,∑

i

(A′
i −Ai) = W.

(4)

Although the problem formulation in (4) is nonlinear, it
can be proved that Algorithm 1 solves this problem opti-
mally by iteratively assigning whitespace to cells of increased
pin density, until there is no whitespace left.

Algorithm 1 Pin Density-Based Inflation.

Input: Pin number {pi} and original area {Ai} of cells,
available amount of whitespace W for cell inflation.

Output: Inflated areas {A′
i} of cells.

Step 1: Sort cells in descending order by making use of
their pin density s.t. pi/Ai ≥ pi+1/Ai+1, ∀i.
Step 2: Find the largest index k s.t. Ik ≤ W ≤ Ik+1,

where Ik = Ak(
k∑

i=1

pi)/pk − (
k∑

i=1

Ai).

Step 3: Compute the maximum pin density after infla-

tion dmax = (
k∑

i=1

pi)/(W +
k∑

i=1

Ai).

Step 4: Compute the inflated area A′
i ={

pi/dmax (i ≤ k)

Ai (k < i)
.

Theorem 1. []The solution given by Algorithm 1 is the
optimal solution of the nonlinear programming problem (4).

Proof. The pin density dmax is the maximum pin den-
sity after inflation, because

W < Ik+1 ⇔ W < Ak+1

k+1∑
i=1

pi

pk+1

−

k∑
i=1

Ai

⇔ W +

k∑
i=1

Ai < Ak+1

k∑
i=1

pi

pk+1

⇔

W +
k∑

i=1

Ai

k∑
i=1

pi

<
Ak+1

pk+1

⇔
1

dmax

<
Ak+1

pk+1

⇔
pk+1

Ak+1

< dmax.

Thus, {
pi/A

′
i = dmax (i ≤ k),

pi/A
′
i < pk/A

′
k = dmax (k < i).

Assume dmax is not the optimal pin density. Then, there
is a solution A′′

i s.t. pi/A
′′
i < dmax, ∀i. However, in such

case, the second constraint of (4) is violated, since:∣∣∣∣∣
n∑

i=1

(A′′
i −Ai)

∣∣∣∣∣ =
k∑

i=1

A′′
i +

n∑
i=k+1

A′′
i −

n∑
i=1

Ai

>

k∑
i=1

pi
dmax

+

n∑
i=k+1

A′′
i −

n∑
i=1

Ai

= (W +

k∑
i=1

Ai) +

n∑
i=k+1

A′′
i −

n∑
i=1

Ai

= W +

n∑
i=k+1

(A′′
i −Ai) ≥ W.

By contradiction, the solution given by Algorithm 1 is an
optimal solution of (4).
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Intuitively, all inflated cells will have the same pin density
in an optimal solution; otherwise, if an inflated cell does not
achieve maximum pin density, it will be inflated less. The
effect of pre-placement inflation is discussed in Section 7.
Pre-placement inflation improves the total number of over-
flows compared to a naive inflation with the same amount
of whitespace allocated.

7. EXPERIMENTAL RESULTS
The placers were evaluted on the DAC 2012 routability-

driven contest benchmarks, using the contest router NC-
TUgr [22]. Table 1 reports the scaled wirelength of the con-
test top four teams Ripple, NTUplace4, mPL12, and sim-
PLR. For each placer, the scaled wirelength is calculated as
HPWL(1+PF (RC−100)), where PF=0.03. The HPWL
is obtained from the output of the global router. Table 2 re-
ports the placement runtimes of the contest top four teams
Ripple, NTUplace4, mpl12, and simPLR. For each placer,
the runtime is in seconds. For the contest placers, the re-
sults were obtained on the contest organizers’ 64-bit Intel
Xeon CPU X7560 at 2.27GHz (placer binaries were not made
available to us). Our placer was evaluated on a machine with
the Intel Core i7 Processor at 2.67GHz with 8GB main mem-
ory and the average runtime of our placer was estimated by
applying a scaling factor.
Our placer minimizes the routing congestion and improves

routability. In terms of scaled wirelength, we obtain im-
proved results compared to the winner of the DAC 2012
routability-driven placement contest [22]. In terms of place-
ment runtime, our placer is requires smaller placement run-
times than the analytical placers of the contest. However,
no direct comparison can be made due to the fact that the
contest binaries were not available to use, therefore we used
a different machine for our placer.

8. CONCLUSION
Our proposed placer incorporates narrow channel reduc-

tion, dummy-cell insertion inside regions of reduced fixed-
macro density, and pre-placement inflation in order to re-
duce routing congestion and improve the routability of large-
scale mixed-size designs. The quality of our placement tool
on industrial circuits is evaluated using the global routers of
the DAC 2012 placement contest [22] and our results com-
pare favorably to the top four teams that participated in the
contest.

9. ACKNOWLEDGMENT
This research was supported in part by the NSF Comput-

ing Research Association (Prime Award Number 1136996).

10. REFERENCES

[1] U. Brenner and A. Rohe. An Effective
Congestion-driven Placement Framework. In Proc.
ACM/SIGDA International Symposium on Physical
Design, pages 6–11, San Diego, California, Jan. 2002.

[2] T. F. Chan, J. Cong, M. Romesis, J. R. Shinnerl,
K. Sze, and M. Xie. mPL6: A Robust Multilevel
Mixed-size Placement Engine. In Proc. ACM/SIGDA
International Symposium on Physical Design, pages
227–229, San Francisco, California, Apr. 2005.

[3] C. Chu. FLUTE: Fast Look-up Table-based
Wirelength Estimation Technique. In Proc.
IEEE/ACM International Conference on
Computer-Aided Design, pages 696–701, San Jose,
California, Nov. 2004.

[4] C. Chu and Y.-C. Wong. FLUTE: Fast Look-up
Table-based Rectilinear Steiner Minimal Tree
Algorithm for VLSI Design. volume 27, pages 70–83,
Jan. 2008.

[5] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F.
Young. Ripple: An Effective Routability-Driven Placer
by Iterative Cell Movement. In Proc. IEEE/ACM
International Conference on Computer-Aided Design,
pages 74–79, San Jose, California, Nov. 2011.

[6] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu, and
W. H. Kao. A New Congestion-driven Placement
Algorithm based on Cell Inflation. In Proc. Asia and
South Pacific Design Automation Conference, pages
605–608, Yokohama, Japan, Jan. 2001.

[7] M.-K. Hsu, S. Chou, T.-H. Lin, and Y.-W. Chang.
Routability-Driven Analytical Placement for
Mixed-Size Circuit Designs. In Proc. IEEE/ACM
International Conference on Computer-Aided Design,
pages 80–84, San Jose, California, Nov. 2011.

[8] T. Jindal, C. J. Alpert, J. Hu, Z. Li, G.-J. Nam, and
C. B. Winn. Detecting Tangled Logic Structures in
VLSI Netlists. In Proc. IEEE/ACM Design
Automation Conference, pages 603–608, Anaheim,
California, 2010.

[9] A. B. Kahng and Q. Wang. Implementation and
Extensibility of an Analytic Placer. In Proc.
ACM/SIGDA International Symposium on Physical
Design, pages 18–25, Phoenix, Arizona, Apr. 2004.

[10] A. B. Kahng and Q. Wang. Implementation and
Extensibility of an Analytic Placer. Proc. IEEE/ACM
International Conference on Computer-Aided Design,
24(5):734–747, May 2005.

[11] A. B. Kahng and X. Xu. Accurate Pseudo-constructive
Wirelength and Congestion Estimation. In Proc. ACM
International Workshop on System-Level Interconnect
Prediction, pages 61–68, 2003.

[12] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov. A
SimPLR Method for Routability-Driven Placement. In
Proc. IEEE/ACM International Conference on
Computer-Aided Design, pages 67–73, San Jose,
California, Nov. 2011.

[13] C. Li and C.-K. Koh. Recursive Function Smoothing
of Half-perimeter Wirelength for Analytical
Placement. In Proc. International Symposium on
Quality Electronic Design, pages 829–834, San Jose,
California, Mar. 2007.

[14] Z. Li, W. Wu, and X. Hong. Congestion-driven
Incremental Placement Algorithm for Standard-cell
Layout. In Proc. IEEE/ACM Asia and South Pacific
Design Automation Conference, pages 723–728,
Kitakyushu, Japan, Jan. 2003.

[15] J. Lou, T. S. Krishnamoorthy, and H. S. Sheng.
Estimating Routing Congestion using Probabilistic
Analysis. In Proc. ACM/SIGDA International
Symposium on Physical Design, pages 26–33, Phoenix,
Arizona, Apr. 2004.

[16] G.-J. Nam and J. Cong. Modern Circuit Placement:

5C-2

445



Table 1: Experimental Results on the contest placers Ripple, NTUplace4, mPL12, and simPLR. The results
for the contest placers were obtained on the contest organizers’ 64-bit Intel Xeon CPU X7560 at 2.27GHz.
The results of our placer were obtained on an Intel Core i7 Processor at 2.67GHz with 8GB main memory.

Contest Ripple Contest NTUplace4 Contest mPL12 Contest simPLR Our Placer
Circuit Scaled WL (xE8) Scaled WL (xE8) Scaled WL (xE8) Scaled WL (xE8) Scaled WL (xE8)
sb19 1.70 1.53 2.46 1.66 1.51
sb14 2.31 2.26 2.67 2.48 2.45
sb16 2.74 2.80 3.01 3.47 2.74
sb9 2.97 2.55 3.22 2.75 2.50
sb3 4.27 3.62 4.66 3.90 3.60
sb11 3.58 3.42 4.52 3.98 3.40
sb6 3.56 3.42 3.95 3.53 3.40
sb2 7.39 6.24 1.33 8.24 6.14
sb12 3.42 3.12 5.40 3.63 3.04
sb7 4.45 3.99 5.24 1.73 3.95
avg. 1.09 1.00 1.41 1.46 0.99

Table 2: Experimental Results on the contest placers Ripple, NTUplace4, mPL12, and simPLR. The results
for the contest placers were obtained on the contest organizers’ 64-bit Intel Xeon CPU X7560 at 2.27GHz.
The results of our placer were obtained on an Intel Core i7 Processor at 2.67GHz with 8GB main memory
and the average runtime of our placer was estimated by applying a scaling factor.

Contest Ripple Contest NTUplace4 Contest mPL12 Contest simPLR Our Placer
Circuit RunTime (s) RunTime (s) RunTime (s) RunTime (s) RunTime (s)
sb19 2309 8450 11087 981 9911
sb14 2806 9341 10006 1247 7539
sb16 2737 8573 13670 1128 9435
sb9 4307 13129 14910 1821 12736
sb3 5432 14144 19294 2283 12924
sb11 3745 15263 18284 2342 14723
sb6 4944 11179 20508 2484 17121
sb2 6686 17466 23900 3125 18741
sb12 7635 34831 26107 3459 19245
sb7 11285 25983 22233 3025 17243
avg. 2.37 7.24 8.67 1.00 8.07

Best Practices and Results. Springer-Verlag, New
York, 2007.

[17] J. A. Roy and I. L. Markov. Seeing the Forest and the
Trees: Steiner Wirelength Optimization in Placement.
Proc. IEEE/ACM International Conference on
Computer-Aided Design, 26(4):632–644, Apr. 2007.

[18] J. A. Roy, N. Viswanathan, G.-J. Nam, C. J. Alpert,
and I. L. Markov. CRISP: Congestion Reduction by
Iterated Spreading during Placement. In Proc.
IEEE/ACM International Conference on
Computer-Aided Design, pages 357–362, San Jose,
California, Nov. 2009.

[19] H. Shojaei, A. Davoodi, and J. Linderoth. Congestion
Analysis for Global Routing via Integer Programming.
Proc. IEEE/ACM International Conference on
Computer-Aided Design, pages 256–262, Nov. 2011.

[20] P. Spindler and F. M. Johannes. Fast and Accurate
Routing Demand Estimation for Efficient
Routability-driven Placement. In Proc. Design
Automation and Test in Europe Conference, pages
1–6, Nice, France, Apr. 2007.

[21] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J.

Nam, and J. A. Roy. The ISPD 2011
Routability-Driven Placement Contest and
Benchmark Suite. In Proc. ACM/SIGDA
International Symposium on Physical Design, pages
141–146, Santa Barbara, California, Mar. 2011.

[22] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, and
Y. Wei. The DAC 2012 Routability-Driven Placement
Contest and Benchmark Suite. In Proc. IEEE/ACM
Design Automation Conference, pages 774–782, San
Francisco, California, June 2012.

[23] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. J. Alpert,
L. Reddy, A. D. Huber, G. E. Tellez, D. Keller, and
S. S. Sapatnekar. GLARE: Global and Local Wiring
Aware Routability Evaluation. In Proc. IEEE/ACM
Design Automation Conference, pages 768–773, San
Francisco, California, 2012.

5C-2

446



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
    /JPN <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


