
PM3: Power Modeling and Power Management for
Processing-in-Memory

Chao Zhang, Tong Meng, Guangyu Sun
Center for Energy-efficient Computing and Applications, Peking University, Beijing, 100871, China

{zhang.chao, mengtong, gsun}@pku.edu.cn

ABSTRACT
Processing-in-Memory (PIM) has been proposed as a solution
to accelerate data-intensive applications, such as real-time
Big Data processing and neural networks. The acceleration of
data processing using a PIM relies on its high internal mem-
ory bandwidth, which always comes with the cost of high
power consumption. Consequently, it is important to have a
comprehensive quantitative study of the power modeling and
power management for such PIM architectures.

In this work, we first model the relationship between the
power consumption and the internal bandwidth of PIM. This
model not only provides a guidance for PIM designs but also
demonstrates the potential of power management via band-
width throttling. Based on bandwidth throttling, we propose
three techniques, Power-Aware Subtask Throttling (PAST),
Processing Unit Boost (PUB), and Power Sprinting (PS), to
improve the energy efficiency and performance.

In order to demonstrate the universality of the proposed
methods, we applied them to two kinds of popular PIM de-
signs. Evaluations show that the performance of PIM can be
further improved if the power consumption is carefully con-
trolled. Targeting at the same performance, the peak power
consumption of HMC-based PIM can be reduced from 20W
to 15W. The proposed power management schemes improve
the speedup of prior RRAM-based PIM from 69× to 273×,
after pushing the power usage from about 1W to 10W safely.
The model also shows that emerging RRAM is more suitable
for large processing-in-memory designs, due to its low power
cost to store the data.

1. INTRODUCTION
Emerging data-centric applications, such as real-time ana-

lytics, graph computations, and neural network algorithms,
have a demanding requirement for high speed/bandwidth data
retrieval. However, traditional von Neumann computing ar-
chitecture has its intrinsic limitation on data access due to
the latency inherent in hierarchical memory and interconnect
architecture [33, 43]. This challenge motivates the practice
to offload part of the data-intensive computation into mem-
ory, to fully utilize the bandwidth provided by the memory
arrays [13, 19, 25, 34, 46, 55].

The method of offloading computation into memory dates
back to 1970’s [25,55,66]. However, those practices were not
successfully applied due to two reasons. First, it is difficult
to integrate computation logic with DRAM due to incompat-
ible fabrication processes. Second, the lack of data-centric
killer applications also prevented a wide adoption of such
techniques. Recently, the first problem has been overcome

This work is supported by NSFC No.61572045.

by the state-of-the-art memory stacking techniques [7, 57].
With the bloom of data-centric applications, the idea of of-
floading computation to memory is reviving with a new name:
processing-in-memory (PIM). Recently, PIM designs have
been widely studied to accelerate data intensive applica-
tions [3, 4, 13, 20, 34, 59, 77, 78]. Computation tasks (e.g.
Word Count, Range Find etc.) of PIM are normally simple
but involve huge amounts or even all of the data in memory.
Consequently, a PIM task can be split and offloaded into
multiple memory-side processing units (e.g. HMC vaults and
RRAM crossbar arrays) and accomplished locally in parallel.

It can utilize the bank-level or even cell-level bandwidth
more efficiently so that data processing is accelerated sig-
nificantly. The increased bandwidth utilization comes with
the cost of the increased power consumption. Prior research
has pointed out the concerns about high power consumption
in PIM designs [18, 38, 40, 42, 64]. For example, Eckert et
al. [18] has shown that cooling systems used by memory
should be redesigned to dissipate increased power consump-
tion. It induces extra cost of heat sink and design complexity.

However, the relationship between power consumption
and data processing throughput in PIM is not yet sufficiently
investigated. Without the guidance of a proper power model,
a PIM architecture may be designed with mismatch between
the internal memory bandwidth and power supply.

Figure 1: The mismatches between power requirement
and supply in PIM

In fact, the power consumption at the ideal peak through-
put in previous PIM designs [3, 59] may exceed its power
supply. For example, our analysis shows that the HMC-based
PIM in previous work [3] can consume up to 26W power,
which is more than 2X of the released number (12W) in the
real HMC chip [57]. And its power density can be as large as
177mW/mm2, which is beyond the DRAM thermal tolerance
capability with passive heat sink [18]. It means that a PIM
working at its peak performance has potential power supply
failure and memory reliability problems. This is illustrated
with point (a) in Figure 1. Point (b) in Figure 1 demon-
strates another common case in current PIM design, when
data processing and corresponding memory accesses are not
intensive. Obviously, the power supply is not fully utilized
in this case. The problems in these two cases become more
severe when the power supply of memory is dynamically

558

2018 IEEE International Symposium on High Performance Computer Architecture

2378-203X/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCA.2018.00054

adapted by modern power management techniques [64].
Considering power issues in these two cases, two chal-

lenges should be addressed so that the PIM designs can be
practically feasible. First, a model of the relationship be-
tween power consumption and data processing throughput
is necessary to help the early stage design of a PIM power
system. Second, proper power management techniques are
needed to achieve better power utilization in a PIM design.
Both of them are addressed in this work, the contributions of
which are summarized as follows:

• We model the relationship between bandwidth and
power consumption, to facilitate early stage PIM power
system designs.

• We propose the Power-Aware Subtask Throttling (PAST)
technique to reduce PIM power requirement.

• We propose the Processing-Unit Boost (PUB) technique
based on a greedy algorithm, to improve the perfor-
mance of processing units.

• Furthermore, we propose the Power Sprinting (PS) tech-
nique to improve the energy efficiency when the power
supply is dynamically adapted.

• In order to show the universality of the proposed tech-
niques, we evaluate both HMC-based and RRAM-based
PIM designs for their targeted applications.

• Our BP model and evaluations demonstrate that NVMs
and 3D DRAM have their own advantages in different
bandwidth usage cases to be selected as PIM memories.

The paper is organized as follows. Section 2 introduces
the background for following discussion. We model the rela-
tionship between data processing throughput and power con-
sumption in Section 3. The power management techniques
are proposed in Section 4. Our evaluation and sensitivity anal-
ysis are included in Section 5. Related work and conclusions
are presented at the end.

2. PRELIMINARIES
Thanks to the recent revolutionary progress in memory

technologies, processing-in-memory has revived. However,
existing power management techniques are mainly focus-
ing on conventional processors and main memories, which
cannot be straightforwardly applied to the memory used in
processing-in-memory designs. This section gives a brief
introduction to these related topics.

2.1 3D Stacked Memory and Logic
Combing DRAM dies together with standard CMOS dies

via 3D stacking and through silicon via (TSV) has become a
current trend in the memory industry. Representative exam-
ples include hybrid memory cube (HMC) [14] and high band-
width memory (HBM) [31]. These representatives are capa-
ble of combining up to eight DRAM dies with one logic layer
to construct a cube of stacked memory and logic. The logic
die is implemented in standard CMOS technology, which is
different from the SDRAM optimized dies. TSVs are used to
connect and transmit data through these layers. These tech-
niques enable higher memory bandwidth and more flexible
design of control logic, compared with conventional DDRx

DRAM. Thus, they become perfect platforms for processing-
in-memory designs.

HMC is designed to provide data links mainly for CPUs.
It uses high-speed links as connections. Serial links and high
speed SerDes circuits are used to transmit data to and from
the HMC cube. The HMC has been used by the Fujitsu
SPARC64 XIfx processor [74]. Specified by the HMC 1.0
specification [14], each HMC cube can contain 4-8 DRAM
dies, and 1 logic layer. A cube is connected by 4-8 high speed
links, which has 16 lanes to form a full-duplex differential
serial link. Each lane can provide up to 10Gb/s data rate,
which enables up to 320GB/s bandwidth (send + receive)
for each cube. A typical cube package with 4 links has
896 BGA pins and a 960 mm2 package footprint (227mm2

die footprint). According to the data released [57], a 4-link
HMC cube consumes 11W power under full utilization of its
128GB/s IO bandwidth.

The HBM connects to the CPU or GPU via the silicon
interposer. Several stacks of HBM are plugged onto the inter-
poser besides the CPU or GPU, and the assembled module
connects to the circuit board [7]. The first chip utilizing HBM
is AMD Fiji which was released in June 2015, powering the
AMD Radeon R9 Fury X [65]. According to its specification,
HBM1.0 stacks 4 DRAM dies with two 128-bit channels
per die on a base logic die. Each channel supports 1Gb ca-
pacity, features 8 banks and can operate at 1Gb/s data rate,
enabling 1GB capacity and 128GB/s IO bandwidth of one
HBM stack. The access energy of a stack is 6-7pJ/bit, and
the power consumption for 128GB/s is 3.7W [69].

Delivering a large amount of power to a such a highly
compact structure is challenging: On one hand, since more
chips are folded together, the number of power pins is limited
by a smaller footprint, compared with DDRx SDRAM chips.
The limitation to the power supply becomes increasingly
severe if more chips are stacked. Since the power pins have
already dominated the total number of pins, increasing the
number of power pins will significantly increase the cost of
the cube [64]. On the other hand, stacking multiple dies
causes thermal challenge. Since the thermal tolerance of
the SDRAM is much lower than CMOS, the temperature
roof is lower than that of processors, which leads to more
harsh thermal control. Eckert et al. [18] have shown that if
a passive heat sink is used, the maximum power of an HMC
cube should be as low as 10W; otherwise, the DRAM has to
be refreshed in double rate and the error rate may increase.

There are also other forms of stacked memory. In order to
simplify our discussion, we take the HMC as a representative
of stacked memory in following sections.

2.2 Processing-in-Memory
Nowadays, processing-in-memory (PIM) acceleration solu-

tions have been proposed for neural networks [13, 62], graph
processing [3], Big Data processing [59], real-time analyt-
ics [28], sparse matrix multiplication [78], and in-memory
databases [47]. Instead of unnecessarily moving all data
into the processors, PIM improves the performance by better
utilizing the memory internal bandwidth. The memory band-
width information are summarized in Table 1. The internal
bandwidth refers to the bank level bandwidth which can be
leveraged by these PIM designs. The CPU-MEM interface

559

Table 1: The memory configurations used by recent processing-in-memory proposals
Design Name Size Memory Type Configuration CPU-MEM BW Internal BW Used Internal BW

Tesseract [3] 128GB HMC dragonfly [39], 16 HMC cubes, 8 4Gb-DRAM/cube 640.0GB/s 8.0TB/s 3.7TB/s
NDC [59] 256GB HMC daisy-chain, 64 HMC cubes, 8 4Gb-DRAM/cube 320.0GB/s 8.0TB/s 3.4TB/s

PRIME [13] 16GB RRAM 533MHz IO bus, 8 chips/rank, 8 banks/chip 8.5GB/s 275.2GB/s No show

bandwidth refers to the memory bus bandwidth used by the
host processors.

Early PIM research [25] in the 90’s integrated lightweight
processors into the memory die, as illustrated in Figure 2(c).
The idea was straightforward and effective, but it was crit-
icized due to the fact that logic and DRAM process tech-
nologies are not compatible. Building processing elements
in DRAM die results in significant area overhead, which is
unlikely to be adopted by the cost-sensitive memory indus-
try. However, with the development of technology and the
increase in bandwidth demand from emerging applications,
the PIM architecture is being studied again, and there are
two approaches to address the previous logic-memory inte-
gration problem. These two approaches rely on the 3D die
stacking technology and the emerging NVM technology, re-
spectively. The 3D-based PIM [3, 13, 62] takes advantage of
the already existing architecture of decoupled memory and
logic die (stacked with TSV) in HBM and HMC [63]. It
designs processing elements in the logic-optimized dies and
the memory in the memory-optimized dies, and combines
them together via TSV, as illustrated in Figure 2(b). Besides
3D stacking, emerging NVM [71] provides an alternative for
the capacity scaling. Emerging NVM technologies also pro-
vide another approaches to support PIM. The NVM-based
PIM relies on the memory cell themselves to carry out the
computing tasks. The NVM cell has some special features
such as resistive cell and multi-level cell. Those features can
be leveraged for logic operations, such as dot-product [13],
bitwise operations [46] and TCAM [27], whose architectures
are illustrated in Figure 2(a).

For either 3D-based PIM or NVM-based PIM, it has been
pointed out that the performance improvement of PIM relies
on the high internal bandwidth usage. However, the increased
memory bandwidth inevitably leads to more power consump-
tion, which must be managed properly.

Figure 2: Typical PIM designs (a) Customized sense am-
plifiers and arrays are used for computation; (b) A die
of cores is stacked with DRAM dies in the HMC-based
PIM; (c) Integrating cores with DRAM in the same chip

2.3 Power Management Techniques
Tomanage power consumption of modern processors (CPU,

GPU), dynamic voltage and frequency scaling (DVFS) and
similar techniques have been used widely [24, 29, 51]. The

basic idea is to reduce clock frequency or supply voltage of
active cores if a power shortage is predicted to happen. Power
consumption can be minimized at the cost of performance
degradation [41, 48, 49, 67]. These strategies can also help
to achieve the maximal performance under a fixed power
budget.

Besides controlling the power of cores, on-chip memory
power can be managed by the activity control, via partially or
completely turning off on-chip memories. To keep memory
working at low power modes, Gated-VDD [58] and Drowsy
Cache [21] were proposed. Other methods turn off useless
cache ways, sets, or their sub groups [5, 9, 12, 35, 53, 68].
Cache replacement strategy can also be optimized to reduce
power consumption contributed by on-chip caches [2, 23, 36,
37, 76].

However, there is few work discussing the memory power
management of PIM, especially within the 3D-stacking mem-
ory scenario.

3. BP: BANDWIDTH PER POWER MODEL
The purpose of this model is to simplify the analysis for

power-proportional performance, which is crucial for the
scalability of processing in memory applications. The model
estimates the PIM power consumption under various band-
width, capacity and memory types. The term “Bandwidth per
Power (BP)” is used to reflect the close-to-linear relationship
between bandwidth and power consumption. In this section,
we present the model derivation and parameters estimation
for different memories. Further analysis of the BP model is
shown in section 5.4.

3.1 Model Derivation
The bandwidth per power (BP) is calculated by B/P. The

bandwidth usage of the memory is represented by B, and the
denominator P represents the total power of the PIM compo-
nent, including dynamic power (DP) and leakage power (LP).
Without losing generality, a PIM system is considered as a
set of processing units which is a pair of a core (computing
logic) and a portion of memory. To facilitate the derivation,
the symbols used are explained in Table 2.

Table 2: Parameters used in BP model
Symbol Definition Unit

BP Bandwidth per Power (or watt) Gb/s/W
DE Dynamic energy per bit J/b
C Chip capacity b
B Used bandwidth of the chip Gb/s
P Total power of the chip W
Pl Leakage power per bit W/b
Pc Leakage power of core and memory controller W
er Dynamic energy used by routing for a bit J/b
es Dynamic energy to switch a bit J/b
ec Dynamic energy for computing per bit J/b
rw The ratio of write access within the bandwidth -

The BP model is deducted in Equation (1). The bandwidth
is measured by how many bits are read or written within

560

Figure 3: Validating the BP model with collected data points and the predicted dynamic power (DP) and leakage
power(LP) by the BP model. (a)-(d) represent the data of PCM, STT-RAM, RRAM, and 3D DRAM, respectively.

a period of time. Since the core can collocate with a por-
tion of memory in many PIM designs, the bandwidth used
by the core can be higher than the package I/O bandwidth,
but smaller than the aggregated cell-level bandwidth. The
aggregated cell-level bandwidth is the theoretical maximum
bandwidth, where all cells are accessed continuously in par-
allel. The power includes dynamic and leakage power of
both memory arrays and cores. The leakage power includes
the leakage power consumed to hold the data, including the
power to refresh cells, the power to keep decoders and com-
puting logic active, and the power leaked through parasitic
paths. The dynamic power refers to the power used to con-
duct computation on fetched data and to access (read and
write) the data, including cell activating, word-line driving,
and sense amplifying etc.

BP =
B

DP+LP
=

1√
Cer + rwes + ec +

1
B (CPl +Pc)

(1)

The dynamic energy used by the PIM normalized to one

bit is estimated in Equation (1) by
√

Cer + rwes + ec. The
write ratio (rw) is 0 (or 1) if all accesses are read (or write).
It is generally between 0 and 1. The

√
Cer term represents

the energy used along the routing path to target cell, and
thus is related to the capacity. The es is used to conduct
resistance switch or state change in several memories, and
thus is irrelevant to the capacity. The energy used to compute
is represented by ec.

The leakage power is represented by CPl +Pc. The leakage
power of memory is related to the capacity, which is repre-
sented by CPl . The Pc represents the leakage power of the
core and controllers of memory.

The model can be simplified when the B or C is relative
large or small. If B is relative small, the BP is mainly deter-
mined by CPl +Pc. If B is small and C is large, the BP is
mainly determined by Pl . If the B is relative large, the power

of a memory is roughly (
√

Cer + rwes + ec)B, which is linear
to the bandwidth.

The maximum bandwidth that can be achieved is deter-
mined by the position of the computation logic within the

memory. If the memory is organized in a bank-array-cell
hierarchy, the maximum available bandwidth reduces from
the cell level to the package I/O level. For example, the
theoretical maximum cell level read bandwidth of a 512MB
RRAM chip is 27.26PB/s, but it only provides 1.18GB/s read
bandwidth at the package I/O.

3.2 Parameter Estimation for the BP Model
In order to estimate the parameters in BP model, we regress

the parameters using collected data. The parameters used
for different memories are estimated in Table 3. Although
there is a little variation between the intrinsic value and the
regressed value of these parameters, the model still provides
a meaningful explanations for the parameters.

The Pc and ec are related to the implementation of comput-
ing logic, and thus independent with memory types. Previ-
ous HMC-based PIM designs [3, 59] estimated the power as
80mW/core. According to their bandwidth usage, we assume
the Pc as 2×10−2W and the ec as 5.3×10−11J/b. Note that
the number can be fine tuned after more detailed power data
provided by practical PIM designs.

Table 3: BP model parameters for different memories
Memory Type PCM STT-RAM RRAM 3D DRAM

er(J/b) 8.15×10−17 2.10×10−16 1.17×10−16 5.90×10−17

es(J/b) 1.13×10−10 5.27×10−13 7.52×10−13 2.03×10−14

Pl (W/b) 3.80×10−12 2.79×10−12 1.20×10−11 3.94×10−11

The data are collected from previous validated simulation
tools and literatures. The power used by memory is validated
by its dynamic energy and leakage power. We verify their
relationship under different settings of capacity and band-
width usage. The data of spin torque transfer random access
memory (STT-RAM), phase change memory (PCM), and re-
sistance random access memory (RRAM) are collected from
NVsim, and the data of 3D stacked dynamic random memory
(3D DRAM) are collected from cacti-3DD. NVsim is cali-
brated with published literatures [54] [70] [72], and scaled
into the 32nm processing node for comparison. The data
points collected from the tools and predicted value for differ-

561

ent memories are shown in Figure 3. The average prediction
error of power per bandwidth is 6% for RRAM, 9% for 3D
DRAM, 19% for STT-RAM, and 39% for PCM. The error
comes from the function bias and the inaccuracy of memory
simulators, which are limited by the available data to build
the model.

4. PIM POWER MANAGEMENT
Three collaborative techniques are proposed to manage the

power of PIM designs. The goal is to make full use of the
provided power, while specified power constraints are met. To
this end, we propose PAST and PUB: PAST ensures that the
power constraint is never violated, by throttling the bandwidth
usage; PUB, on the other hand, boosts the performance when
current data level parallelism is not enough to make the power
supply fully utilized. Besides these two methods with a fixed
power cap, we also propose a third technique called PS to
dynamically adjust the power cap, which further improves
the energy efficiency.

4.1 PAST: Power Aware Subtask Throttling
PAST is a method proposed to solve the problem that the

power requirement of a PIM task may exceed the power
supply constraint.

The PAST architecture is shown in Figure 4. It can work
with all types of PIMs in Figure 2. The subsection 4.1.1
introduces the PAST from the aspect of entire memory system.
The subsection 4.1.2 and 4.1.3 explain the design details of
the PASTmechanism. The implementation issues are covered
in subsection 4.1.4. In section 4.1.5, we further extend this
architecture to reuse the resource of prior HMC-based PIMs
(Figure 2(b)), to reduce overhead.

4.1.1 Two-Level Power Arbitration
The purpose of two-level power arbitration is to reduce

the control intensity of a centralized controller while pro-
viding flexible power control for different memory chips or
banks. Figure 4(a) shows the two-level power arbitration
system. Connected by networks, each memory chip contains
a private PAST component (zoomed in Figure 4(b)). These
chips are augmented by a shared secondary level arbitrator
(L2). Within each chip, an L1 power arbitrator controls its
own memory banks using PAST. The system can be further
extended using more levels.

The two-level arbitration system works similar to a two-
level cache system. The L2 arbitrator holds the total power
budget of the memory (the sum of all L1’s budget). The
L1 only holds the power value for its own chip. The power
budget of an L1 can be increased (decreased) by acquiring
(releasing) a portion of power from the L2. Note that the L1
power budget should not violate the thermal design power
(TDP) designed for that memory chip, thus only a limit por-
tion of power can be reallocated to the L1. The PAST com-
ponent in each chip first consults its local arbitrator (L1) for
power. If the power is enough, the arbitrator replies the pro-
cessing units (PUs) to start its execution. Otherwise, the L1
arbitrator then consults the L2 arbitrator. The granularity of
power budget exchange between the L1 and L2 is configured
carefully to reduce both the excessive supply of power budget
and the high frequency of power budget exchange.

4.1.2 PAST within a Memory Chip
Figure 4 (b) shows the design and interaction in the PAST

component within a chip. It takes a request from the network
connection, divides the task into multiple subtasks, stores
them in the subtask queue, and responds to the request sender.
We define a task as a successive period of computation con-
ducted in the memory-side PUs, which is initiated by host
and responds to the host. A task consists of several subtasks.
A subtask is conducted by only one memory-side PU. The
PU is a pair of memory array and processing unit represent-
ing a simple core or some mathematical computing logic,
represented by a “memory bank” in Figure 4(b). If the entire
memory has n PUs, there are at most n subtasks executing at
the same time.

Before an execution phase of any memory bank, the sub-
task queue acquires the power permission from the L1 power
arbitrator using an ACQUIRE (�) signal, with the amount
of required power (P). The queue ISSUEs a subtask to a
memory bank, and the bank can also NEW a subtask at the
tail of the queue. If there is enough power to execute a new
subtask, a START (�) signal is sent to the bank and starts
its execution. Otherwise, the calculation in the bank will be
paused. Then the arbitrator puts the request into a queue. The
bank is not activated until the power budget is enough. After
the entire task is accomplished by the bank, a RELEASE (�)
signal is sent to the arbitrator to release the power allocated
for that bank.

4.1.3 Reorder Subtask Queue
If all the subtasks are independent, such as in the case

of TCAM [27], the only limitation to initiate a subtask is
the power. An FIFO queue is used to hold all subtasks and
decide whether enough power is available to issue a subtask.
Each entry of the queue holds the commands of the subtask,
which contains the target PU index and the estimated power
consumption of that unit to execute it. The FIFO queue is
implemented as the white blocks in Figure 4(c). If a subtask
from the head of the queue is issued, a portion of power is
allocated for it until it finishes. If the remaining power is not
sufficient for the subtask at the head of the queue, the queue
is stalled until the remaining power is enough. If any new
subtasks are initiated by the running subtasks, they are added
to the tail of the queue. The PIM task ends when the queue is
empty and receives finish signals from all issued subtasks.

To support more general scenarios where subtasks are
dependent on each other, such as the case in PRIME [13], a
reorder subtask queue is proposed. The reorder queue is an
extension to the previous FIFO queue solution, as shown in
Figure 4(c) (gray blocks are extended). It extends the FIFO
by adding more head and tail pointers and adding more fields
to each entry, to note all multiple ongoing subtasks.

Each entry of the queue then has 5 fields: index (ID), sub-
task command (Command), dependency mask (Mask), power
specification (Power), and status (S). An index is attached to
each entry. A subtask command contains chunked function
calls to the corresponding PU (or memory banks). The power
specification is the expected power it needs to conduct the
computation and data access within that PU. The status in-
dicates whether this subtask is pending (PD), issued (IS), or
completed (CP). Once a subtask enters the queue, its initial

562

Figure 4: An overview of the Power Aware Subtask Throttling (PAST). (a) A 2-level power arbitration hierarchy; (b)
Interaction within a chip; (c) Reorder subtask queue; (d) Implementation of a power arbitrator.

status is pending. It can only be issued when two conditions
are both satisfied: (1) All its existing dependent entries have
been completed. (2) The power requirement can be satisfied.
Once the queue receives a finish signal from the correspond-
ing PU, the status is changed to completed. The head entry
with completed status will be retired and the space is freed
for incoming subtasks. Same as the basic FIFO implementa-
tion, an extra counter is used to count the number of ongoing
subtasks. If all heads are full with pending or issued subtasks,
the queue stalls to ensure fairness.

The dependency mask is the OR’ed result of all its depen-
dent entries’ indexes. The dependent entry can be retrieved if
the index of that entry equals the OR’ed result of the entry in-
dex and the dependency mask. This simple mechanism helps
to reduce area overhead. The false detection of dependency
can be mitigated using more bits for the index.

4.1.4 Hardware Implementations
Both L1 and L2 power arbitrators are implemented by

a simple integer ALU, a register, and several MUXes in
hardware. The diagram is shown in Figure 4(d). A counter
is used to record the available power currently controlled by
this power arbitrator. The value in the counter is subtracted
by the given power value. If the result is positive, a START
can be sent, and the power value in the counter is updated.

If the subtask queue is too short, the number of ongoing
subtasks will be limited, but the overhead increases with the
length of the queue. Thus, the length of the queue should be
properly selected. Based on our evaluation, a 16-vault HMC
cube needs a 32-entry queue, with 2 bytes for each entry to
store power value and PU index. It has two 5-bit pointers
for the head and tail. For the reorder queue, we double the
number of entries and add extra 12 bits per entry (5 bits for
the index, 5 bits for the mask, and 2 bits for the status).

The minimum latency to issue a subtask is the latency of
the power arbitrator. However, if too much power is drained
in a short period, the supply voltage suffers from a transit
voltage drop, which may cause power failure. We avoid this
by limiting the switch slope within 7.8mW/us as previous
work [60].

We estimate the hardware cost via FPGA implementation.
Using Vivado HLS v2015.4, we synthesized the FIFO, the
reorder queue, and the power arbitrator on ZC702 FPGA
board. They only occupy 80 LUT, 40 FF and 1 BRAM,
which processes less then 0.5% of the chip. Both the power
arbitrator and the queue achieve a short latency smaller than

0.5ns. We take 1ns as a conservative estimation of the power
arbitration system latency.

4.1.5 Extending PAST for HMC-based PIM

Figure 5: (a) An HMC cube with a power arbitrator,
(b) Communication between power arbitrator and a PU
used by Tesseract [3]

The basic PAST architecture in Figure 4 can be applied to
different PIM design, such as PRIME [13], Pinatubo [46] and
TCAM [27]. It can be applied without modifying the existing
PIM designs. However, the PAST can also be tailored to
leverage existing resources in HMC-based PIM designs, with
reduced design overhead. Based on PIM designs [3, 4, 59] us-
ing lightweight cores as computing logic, the message queues
existing in these cores can be taken to form a distributed re-
order queue mentioned in the prior subsection.

The overview and interaction in this situation are shown in
Figure 5. An HMC cube containing multiple PUs is shown
in Figure 5(a), and the details of the PU are shown in (b).
The crossbar network within the HMC cube is augmented
by a power arbitrator. The subtasks are generated either by
these PIM cores or by the host side controllers, residing in the
message queues in the core. Different from the centralized
reorder queue in subsection 4, the message queue in each PU
only holds the subtasks allocated for the collocated PU. The
generated inter-PU subtasks will be forwarded to targeted
PUs’ message queues, instead of stored in a centralized re-
order queue. When the core is ready to execute a segment
of PIM instructions inside the queue, it sends the ACQUIRE
signal to the power arbitrator. A START response then starts
the execution of the core. After a subtask is finished, the
RELEASE signal is sent to the arbitrator.

In order to ensure the fairness among subtasks, the power
arbitrator needs to record the failed power acquisition. Once
the power arbitrator decides not to send a START to a PU,
the index of the unit will be recorded to the tail of a pending

563

subtask queue. Once a new ACQUIRE comes, the arbitrator
first checks the head of the queue and decides whether to
send a START to its corresponding unit. The item will be
removed from the queue if a START is sent, otherwise the
queue stalls, waiting for improved available power.

Compared with the situation in Figure 1, the power emer-
gency is eliminated after PAST is applied, as shown in Fig-
ure 6.

Figure 6: The relationship between power requirement
and supply after PAST

4.2 PUB: Processing Unit Boost
Although the PAST has solved the power emergency prob-

lem, the problem of underutilized power supply is not well
handled. The power is under utilized because no enough
PUs can work together, limited by the dependency among
subtasks. Based on PAST, processing unit boost (PUB) is de-
signed to boost the performance of these subtasks in critical
paths, via dynamically adjusting the power mode of PUs.

Our baseline PUs contain two power modes1: active mode
and boost mode. The PUB can be taken as a kind of dynamic
voltage and frequency scaling (DVFS) design, leveraging the
characteristics of PIM designs.

4.2.1 Simple PUB
The goal of PUB is to assign the power modes for the PUs

within PIM. Thus the key of the design is the scheduling
algorithm. We start with a simple algorithm for PUB, which
helps to understand the algorithm and also provides a simple
way to implement it.

The simple algorithm issues only one subtask at a time: If
the index of a PU is not in the queue, which means it will
not be used, the unit will be put into the active mode. Once
a queue entry is added, the power mode of the related PU
will be upgraded. Then the power arbitrator evaluates the
current remaining power with the required power. Scanning
from the highest power mode to the lowest mode, if the free
power is larger than the power for this mode, the PU is started
with this power mode. If the PU cannot be started, the power
arbitrator slowdowns current running PU from high power
modes to lower modes. If the PU is still unable to start, the
queue halts for enough free power.

However, this single-issue algorithm may cause frequent
mode transition, which is inefficient. This problem will be
addressed by the advanced PUB in next subsection.

4.2.2 Advanced PUB
The advanced PUB is a greedy algorithm for power arbitra-

tor, based on the direct acyclic graph (DAG) of the subtasks.
The algorithm works as a three-state finite state machine
(FSM): READY, UPDATE, and CHECK. The initialization

1Without loss of generality, we take two modes as an example. More modes can be
easily adopted and further improve the power efficiency.

algorithm (Algorithm 1) puts the FSM into the READY state.
If any subtask finishes, the UPDATE state is triggered and
Algorithm 3 is executed to update the graph and the counter
for current available power, and returns back to the READY
state. If any update happens, the state is transferred to the
CHECK state, and the Algorithm 2 is executed to determine
the power modes of subtasks that will be issued. Note that if a
subtask finishes within the CHECK state, the state transition
to UPDATE will be triggered after the state changes back to
the READY state.

Algorithm 1 Initiate the graph and free nodes
Require: Premain, Pmax and Nodes f ree.

1: for node ∈ Nodes do
2: if node.outEdges == 0 then
3: Nodes f ree.add(node)
4: end if
5: end for
6: Premain ← Pmax
7: get Edges from the Nodes

Algorithm 2 Adjust power modes for PUs
Require: Premain, Edges, Nodes f ree and PModes.
1: Sort Nodes f ree by its inEdge count from large to small

2: PowerStates← vector with length of Nodes f ree

3: Puse ← 0
4: for l ∈ PModes do
5: for node ∈ Nodes f ree do
6: if node.PowerAt(l)−node.PowerAt(l−1)< Premain−Puse then
7: PowerStates[node] upgrade by one step
8: Puse+= node.PowerAt(l)−node.PowerAt(l−1)
9: else
10: Premain−= Puse
11: return PowerStates
12: end if
13: end for
14: end for
15: Premain−= Puse
16: return PowerStates

Algorithm 3 Update the graph after each subtask
Require: Nodeend , Premain and Nodes f ree.

1: for node ∈ Nodeend .inEdges do
2: node.outEdge.remove(Nodeend)
3: if node.outEdges == 0 then
4: Nodes f ree.add(node)
5: end if
6: end for
7: Premain+= Nodeend .Power
8: delete Nodeend

A simplified example is given in Figure 7. The PIM task
is divided into 7 subtasks (A-G) which form a DAG. Arrows
represent the dependency: C points to A means A should
be finished before C. Two power modes can be assigned to
each subtask, including active and boost, indexed by (0, 1
in PModes). The voltage of a PU in boost mode is 1.5× of
the active mode voltage. The power consumption of boost
is roughly 2× of the active, and the latency is reduced. We
estimate the latency in active mode is roughly 1.5× of the
boost mode. In this example, the power cap (Pmax) is 3. The
time unit of each subtask is T. We normalize the PU power
of active mode as 1.

The algorithm is executed as follows: It finds 2 free nodes
(no predecessor) initially. The node with more decedents (B)
is upgraded (from active to boost) in the PowerStates. Since
the power cap is 3, A can only be upgraded to active. Thus,
A and B are issued with PowerStates set as [active, boost].

564

After B finishes, the Premain is updated to 2, and another 2
nodes (D and E) are set free. No free power lefts, after the
PowerStates of these two nodes are set to active. Thus, they
are issued as [active, active]. After the execution of D and
E, only one node F is free. Thus the PowerStates is set to
[boost] and F is issued. When C finishes, no free node can
be found, thus it waits to the end of F. Then the G is issued
with the highest PModes: boost. the whole PIM execution
finishes after G is done.

Figure 7: An example of advanced PUB. (a) The DAG of
the subtasks (gray nodes are in the critical path), (b) The
power consumption during the execution

4.2.3 Power Modes and Controller Cost
The PU to boost can be either memory arrays or cores.

However, the exact speedups after boosting power for core
and memory are different, according to different memory
types and the implementations of the computation logic. The
latency of the logic cores can be controlled by scaling the
frequency. For the DRAM, the memory latency can be ad-
justed by the frequency of data bus; but for the RRAM, the
latency can also be adjusted by slightly changing the sup-
ply voltage to the memory cells. Prior work [73] has shown
the trade-off between the supply voltage and the response
latency with RRAM. An RRAM cell’s switch time has an
inversely exponentially relationship with the voltage applied
on the cell [26, 44, 75]. It has been demonstrated that, for a
HfOx-based ReRAM, a 0.4V reduction in RESET voltage
may increase RESET latency by 10× [26].

The voltage and frequency configurations of boost power
modes are based on their amplification to the lowest mode.

The voltage is
√

NVlow, when the mode power is targeting at
N times of the lowest power mode, where Vlow is the voltage
of the lowest power mode. If the PU of a PIM is a core, the

frequency of the core is set to
√

NFlow. If the PU is a memory
array, the increase of voltage leads to a reduction of memory
response cycles. Further evaluation of the latency and power
consumption is conducted in section 5.

The Algorithm 2 and 3 are implemented in the PIM side
via hardware. Using Vivado HLS v2015.4, we synthesized
the control logic on ZC702 FPGA board. The resource cost
only includes 208 LUT, 194 FF and 1 BRAM, which is trivial
design overhead, possessing less than 1% of the resources
in this small chip. Running at 100MHz frequency, the com-
putation latency is much smaller than the time involved in
memory access. Thus the area, latency, and power overhead
can be safely ignored.

Compared with the situation using PAST in Figure 6, the
power usage is improved by PUB, as shown in Figure 8.

4.3 Power Sprinting
Although the internal memory bandwidth and power sup-

Figure 8: The relationship between power requirement
and supply after PAST and PUB

ply are matched by PAST and PUB, there is still a conflict
between the fixed power supply and the changing power re-
quirement to achieve an optimal energy efficiency. In order
to achieve better energy efficiency while supporting flexible
memory power allocations [64], power sprinting is proposed.

The basic idea of power sprinting (PS) is to provide over-
loaded power for a short period of time, and return back to
under-loaded power status to recover. Note that only the
power cap (Pmax) is changed via providing more current,
previous PAST and PUB designs can collaborate with PS
smoothly. Leveraging the PAST and PUB designs, PS en-
larges the power cap in the power arbitrator within the sprint-
ing period. When the sprinting period ends, the power ar-
bitrator sends an extra PAUSE command to the queue and
ongoing PUs, and reduces power consumption to its previous
power cap.

The process can be categorized into 3 major stages: normal,
sprint, and recover, as shown in Figure 9. The tN , tS, tR are
used to represent the time for the majority stages. The mini-
mum recover time (tR) is the maximum of time to recharge
the extra power source for sprinting and the time to dissipate
extra heat. After the recover stage, the memory returns to the
normal stage, where it is ready for the next sprint. Compared
with the situation in Figure 8, the power requirement is better
fulfilled by the limited power supply.

Figure 9: The relationship between power requirement
and supply, labeled by the major stages in memory
sprinting

The key factor that limits the capability of power sprinting
is the thermal capacitance of the package. Previous work [10,
30, 60, 61] uses bulk metal or phase change material to store
heat, and uses super capacitors to store energy. The heat is
stored by these material and finally dissipated by the heat
sink. For a 4Gb HMC, we attach a piece of metal inside the
package and a standalone super capacitor beside the package.
A piece of 1mm-thick copper (3.45J/cm3K) is spread for

227mm2, and a 1F super capacitor is used. The recharge
latency is set same to the heat dissipation time. We assume
the efficiencies of both boost and recover are 90%. For an
extra 4W sprinting power with 1s sprint duration (tS) and 10s
recover duration (tR), the increased temperature within the
boost period is 5.1◦C, and 0.49W power has to be allocated
to recharge the super capacitor at the recover stage.

565

5. EVALUATION
We evaluate the performance and power of proposed tech-

niques based on prior PIM designs via architecture-level
simulation. The speedup against non-PIM systems is used
as a metric of performance. Various memories are analyzed
under the BP model to show their fitness for PIM designs.

5.1 Evaluation Methodology
We build our evaluation system on SMCSim [8]. Power

consumption of caches is evaluated by McPat [45]. HMC
power is collected from Micron SDRAM power calcula-
tor [50] and CACTI-3DD [11], scaled with released HMC
data [57]. The platform is extended to support multiple pro-
cessing units in memory side, such as one core per vault in
an HMC cube. The data collected from the simulation is
used to calculate the performance, bandwidth, and power
consumption.

Three systems are evaluated, including a baseline system
with HMC and two PIM designs using HMC and RRAM.
Since our three techniques are independent with specific PIM
designs, both HMC-based and RRAM-based PIMs can lever-
age the benefits. The baseline system uses 16 OoO cores
and 32 x 4GB HMC-based memory. The HMC-based PIM
design is adopted from previous work [3, 59], which has the
same host CPU and HMCmemory configurations but extends
each HMC cube by 16 simple cores. The RRAM-based PIM
design uses the same configuration as PRIME [13]. More
highlighted architecture configurations and timing/power pa-
rameters are shown in Table 4. The rows of “Memory” and
“HMC Cores” are used for HMC-based systems, and the
“RRAM” row is used for RRAM based PIM system. The
baseline system only uses the “Memory” row without HMC
cores attached.

Various benchmarks are used for the comprehensive evalu-
ations. We use similar benchmarks in previous work [3, 8, 13,
59]. To evaluate HMC-based PIM designs, we choose bench-
marks from Big Data analysis and graph computing domains,
including matrix addition (MA), tree search (TS), array walk
(AW), average teenage follower (TF), page rank (PR), and
bellman-ford (BF). To evaluate RRAM-based designs, we
select both general applications and neural network designs.
The general benchmarks selected from Axbench [1] include
3D gaming “jmeint”(JM), image compression “jpeg” (JP),
and image edge detection “sobel” (SO). And the neural net-
work benchmarks include a CNN design and an MLP design
for MNIST dataset, and VGG-D known for ImageNet. The
codes are manually modified, split into driver and kernel parts.
Once an application is launched, the driver on host side calls
the kernels running on the PIM side. The NN benchmarks are
executed only for inference. Their dot-production operations
and related load and store are executed on the PIM side.

5.2 PIM Designs Analysis
We first evaluate the speedup and energy of existing PIM

systems, where the energy refers to the portion used by mem-
ory, not including the host processor. The results are shown
in Figure 10. Compared with the baseline system, the HMC-
based PIM reduces energy by about 62% and delivers 5.9×
speedup. The RRAM-based PIM reduces energy by 2200×
and delivers about 70× speedup. This agrees with prior stud-

Table 4: System configurations
Component Configuration

Host CPU 4 CMPs, 4 out-of-order cores/socket, 4GHz, 4-issue, 128-ROB,
32 KB private I/D cache, 2MB shared L2 per socket

Memory 32 cubes, 8 4Gb DRAM layers, 16 vault/cube, 4 links/cube
DDR3-1600 10-10-10, 11pJ/b, 2.6W standby/cube, 1W/link

HMC Cores 16 1-issue in-order cores/cube, 1GHz, 32KB L1/core
(60mW dynamic + 20mW static)/core

RRAM 16GB, 8 ranks, 8 4Gb-die/rank, 256×256 cells/array
DDR3-1066, 7-7-7, R:0.293pJ/b, W:0.865pJ/b, L:92.9mW/die

ies: Large energy reduction and speedup can be achieved by
PIM designs.

Figure 10: The energy of the memory subsystem and the
speedup of applications for various applications

The benefits actually rely on the significantly improved
bandwidth. Figure 11 shows the bandwidth used by the PIM
design and the baseline CMP based system. The bandwidth
has been improved by 2 orders on average, from 0.57GB/s to
178GB/s.

Figure 11: The bandwidth usage for the HMC-based
PIM system and the baseline system

We analyze the average power of PIM kernels for further
insight. The power only includes the PIM-side power for
memory access and processing cores. We breakdown the
power for HMC and RRAM arrays respectively, as shown in
Figure 12. The “DRAM static” refers to the refresh power
and leakage power of the 8 DRAM dies within a cube. The
“HMC links’ power” is consumed to keep HMC high speed
links active. Since the links have to be used for data trans-
mission among cubes, they can not be arbitrarily powered
off to save power. The “PIM cores” refers to the power con-
sumed by cores or computing logic resident in the HMC
cube or RRAM array, including their interface, buffers, and
ALU pipelines. The memory dynamic power includes the
activation, precharge, reading, writing, and data transmission
power caused by the memory access. As shown by the re-
sults, the power of some benchmark (MA) can reach 22W,
which is about 2× of the power expectation of an HMC cube.

566

The memory dynamic, memory static, HMC links and PIM
cores consume 50.1%, 17.1%, 26.3%, and 6.6% of the HMC
power budget. The overall RRAM power is as low as 0.8W.
This is caused by the ultra low memory power usage. On
average, RRAM-based PIM consumes about 58% power on
the logic and the reset on memory operations. Thus, without
carefully handling of power, the PIM design is impractical or
inefficient.

Figure 12: Breakdown of the power usage in an HMC
cube or RRAM for different applications

5.3 Evaluation of the PAST, PUB and PS
This section analyzes the performance and power consump-

tion using the proposed techniques. The first two subsections
evaluate the standalone effects of PAST and PUB. The fol-
lowing two sections evaluate the combined effect of these
three techniques. The last one analyzes the sensitivity of
input parameters.

5.3.1 Evaluation of Standalone PAST
The purpose of PAST is to constrain the PIM power con-

sumption, but the performance may also be hurt. As shown
in Figure 13, the speedup of HMC-based PIM designs is re-
duced after applying PAST. The most significant performance
slowdown of HMC-based PIM comes from MA, which uses
very large bandwidth. The average slowdown is 93%. The
most significant slowdown of RRAM-based PIM comes from
MLP. The average slowdown is 1%. The power cap is set to
11W for the HMC and 0.9W for the RRAM. And the result
reflects a conversion from the performance to the power.

Figure 13: The slowdown against PIM baseline designs
after using PAST

5.3.2 Evaluation of Standalone PUB
The power and speedup of PIM designs after using the

processing unit boost (PUB) are shown in Figure 14. We
compare the power of a memory chip with 3 various imple-
mentations of the boost mode in PUB: The X in “PUB-X”
represents the ratio of power usage between the boost mode
and active mode. For example, PUB-2 means that the power
of a unit in boost mode is 2× of the active mode. The label
“None” stands for the original PIM designs. The speedup
refers to the time ratio between these modes and normal

power mode without boosting. Since the speedup of boost-
ing RRAM PIM leverages more on the accelerated memory
programming, the performance improvement in RRAM ap-
plications is more significant. The average speedup of using
PUB with 2× boost mode is 1.82×.

Figure 14: The speedup after using PUB with different
power configuration of the boost mode

5.3.3 Evaluation of combined PAST and PUB
Combining PAST and PUB, the power-proportional per-

formance is achieved. Figure 15 shows the speedup after ap-
plying combined PAST and PUB onto the two PIM designs,
using several different power caps. For the HMC-based PIM,
when the power cap is set to 10W, the average speedup cannot
reach the 5.88× indicated by the original PIM design. Only
when the cap is set at 15W, the speedup can be almost simi-
lar to the original design. For the RRAM-based PIM, if the
cap is set at 2W, the speedup is improved from 69× to 84×.
When the power cap reaches 10W, the speedup could be up
to 273×. Enabled by the PAST and PUB, the performance of
existing PIM designs can be improved without violating fine
controlled power limitations.

Figure 15: The speedup of PIM designs using PAST and
PUB together

5.3.4 Put It All Together
Combining the PAST, PUB, and PS together provides a

more energy efficient system. The results are shown in Fig-
ure 16. An extra 4W or 8W power aid from sprinting is
provided to the HMC PIM designs using PAST + PUB. The
“None” represents the system speedup targeting at the original
PIM system, which has no power supply capability guaran-
tee. The following bars represent the speedup achieved with
different configurations of the power management: For ex-
ample, “10+PS4” represents a 10W basic power cap with an
additional 4W power sprinting capability. The results show
that although the performance may be hurt when the power
cap is low, the performance improvement can be retrieved
after applying power sprinting. On average, 10W with 8W PS
can achieve 4.09× speedup (higher than the original 3.78×
speedup). The performance can be further improved to 5.81×
with a 20W power cap and 8W sprinting power. In summary,
the performance can be further improved for existing PIM
designs if our power management techniques are properly
configured.

567

Figure 16: The normalized speedup achieved by 4W and
8W power sprinting for typical power cap set as 10W,
15W and 20W for each HMC cube

5.4 Memory Selection based on BP model
Given power limitation and throughput requirement, select-

ing appropriate memory configurations is a critical stage in
PIM system design. As revealed by the BP model, the power
consumption is a function of bandwidth and capacity. This
section compares the power-capacity and power-bandwidth
relationship for different memories using the BP model, try-
ing to easy the memory selection for different PIM tasks.

Figure 17: The power consumption of a 4GB memory to
support various bandwidth

We applied the BP model to PCM, STT-RAM, RRAM
and 3D-stacked DRAM. All memories use single-die 4GB
memory chip under 32nm processing node, and the band-
width refers to the read bandwidth. The results are plotted in
Figure 17. Due to the large leakage power, DRAM shows an
almost constant bias against other memories, when the band-
width is smaller than 512MB/s. However, this trend changes
when the bandwidth increases. Due to the larger read/write
energy per bit of emerging NVMs, their power cost exceeds
the power of DRAM as the bandwidth increases. Crossing
with DRAM, the crosspoint for PCM, STT-RAM and RRAM
is 1GB/s, 8GB/s, and 16GB/s, respectively. This means
with higher than 16GB/s bandwidth requirement, 3D DRAM
shows the best bandwidth scalability: The power increase
rate is slower than others, due to its smaller er. Meanwhile,
the NVMs show benefits in smaller-than-8GB/s bandwidth
usage region. In a word, to optimize the power consumption,
DRAM is preferred when the bandwidth is high, while NVMs
are preferred when the bandwidth is low.

6. RELATED WORK
The PIM power management is different from conventional

memory power management techniques. Prior work mainly
relies on the temporal and spatial locality of the access se-
quence [15, 16, 17, 52, 56]. The power of memory is reduced
via cutting the leakage power, by concentrating accesses in a
few banks or time intervals [52]. Diniz et al. [17] reduced the

memory power, assuming untouched memory devices can be
turned to low power modes, via greedy algorithms. Based on
host-side memory usage information, the frequency scaling
is also used to save dynamic power. Deng et al. [16] applied
DVFS on memory controller, suggesting a power reduction
if the memory utilization is low. David et al. [15] proved
that applying DVFS into main memory is feasible. Reducing
DRAM bus frequency contributes to 10% of power reduction,
when the bandwidth usage is low.

It is not straightforward to apply these techniques to the
PIM designs. The increased bandwidth significantly enlarges
the portion of the dynamic power frommemory, which offsets
the benefits of the effort to reduce the leakage power of
memory. The activity of different memory arrays is controlled
by the massive memory-side processing units, so the host-side
controller will have difficulty predicting this activity. The
complex write mechanism used by non-volatile memories
increases the memory power management complexity. These
changes leave the PIM power management techniques seldom
explored.

Prior work also explored the methods to leverage the tem-
porary mismatch between the heat dissipation and the power
consumption. Current CMPs have employed power boost-
ing, such as the turbo techniques proposed by Intel and
AMD [6,32]. Heat sinks are designed to achieve thermal fea-
sible DRAM stacking based PIM designs [3,22,38,40,42,59].
Computational sprinting (CS) [60] was proposed to provide
instantaneous computing power by exceeding thermal budget
temporarily. Previous evaluation shows a 16W extra power
can be tolerated during one second, using a phase change
material [60]. However, the CS designed for computing faces
challenges when applied in PIM: The activation and the de-
activation of the CS require the operating system to migrate
halt threads to newly activated cores, and merge them back
to a single core when the computation exceeds the sprint ca-
pability. This is infeasible in PIM. Since the computation of
the PIM task is bounded with its data in memory, mitigating
the task around the memory will lead to extra data copy tasks,
which recursively leads to more power overheads.

As far as we know, this is the first work to provide a com-
prehensive power management solution for current processing-
in-memory designs.

7. CONCLUSIONS
To facilitate early stage PIM power system designs, we

study the relationship between bandwidth and power con-
sumption in processing-in-memory designs. The bandwidth-
power model is validated using data of PCM, STT-RAM,
RRAM and 3D DRAM. The model demonstrates the trade-
off between power and bandwidth in memory. Based on this
model, we propose a set of power management solutions for
PIM, including PAST, PUB, and PS. These solutions help to
reduce the power failure and improve the energy efficiency
of PIM. Our evaluation shows that performance can be fur-
ther improved without significantly modifying existing PIM
designs. From the perspective of power, the NVMs are more
suitable for PIM designs in the case of large memory capacity
and low bandwidth usage. The 3D stacked DRAM is more
suitable for PIM designs in the case of small dataset and high
bandwidth usage.

568

8. REFERENCES

[1] P. L.-K. H. E. A. Yazdanbakhsh, D. Mahajan, “Axbench: A
multi-platform benchmark suite for approximate computing,” IEEE
Design and Test, special issue on Computing in the Dark Silicon Era,
2016.

[2] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle, “Iatac: a smart
predictor to turn-off l2 cache lines,” ACM Trans. Archit. Code Optim.,
vol. 2, no. 1, pp. 55–77, Mar. 2005.

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, K. Choi, J. Ahn, S. Hong, S. Yoo,
O. Mutlu, and K. Choi, “A scalable processing-in-memory accelerator
for parallel graph processing,” vol. 43, no. 3, pp. 105–117, jun 2015.

[4] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions: A
Low-Overhead, Locality-Aware Processing-in-Memory Architecture,”
in ISCA, 2015, pp. 336–348.

[5] D. H. Albonesi, “Selective cache ways: on-demand cache resource
allocation,” MICRO32 Proceedings of the 32nd Annual ACMIEEE
International Symposium on Microarchitecture, vol. 2, pp. 248–259,
1999.

[6] AMD, “Amd turbo core technology,” 2011.

[7] ——, “High bandwidth memory, reinventing memory technology,”
2015.

[8] E. A. B, D. Rossi, I. Loi, and L. Benini, “Architecture of computing
systems – arcs 2016,” Architecture of Computing Systems – ARCS
2016, vol. 9637, pp. 19–31, 2016.

[9] A. Basu, D. R. Hower, M. D. Hill, and M. M. Swift, “Freshcache:
Statically and dynamically exploiting dataless ways,” 2013 IEEE 31st
International Conference on Computer Design, ICCD 2013, pp.
286–293, 2013.

[10] L. Cao, J. P. Krusius, M. a. Korhonen, and T. S. Fisher, “Transient
thermal management of portable electronics using heat storage and
dynamic power dissipation control,” 114 Ieee Transactions on
Components, Packaging, and Manufacturing Technology-Part a,
vol. 21, no. 1, pp. 113–123, 1998.

[11] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and
N. P. Jouppi, “Cacti-3dd: Architecture-level modeling for 3d
die-stacked dram main memory,” Proceedings of the Design,
Automation and Test in Europe, pp. 33–38, 2012.

[12] H.-Y. Cheng, M. Poremba, N. Shahidi, I. Stalev, M. J. Irwin,
M. Kandemir, J. Sampson, and Y. Xie, “Eecache: Exploiting design
choices in energy-efficient last-level caches for chip multiprocessors,”
in Proceedings of the 2014 International Symposium on Low Power
Electronics and Design, ser. ISLPED ’14. New York, NY, USA:
ACM, 2014, pp. 303–306.

[13] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” pp. 27–39, June 2016.

[14] T. H. M. C. Consortium, “Hybrid memory cube specification 1.0,” pp.
1–122, 2013.

[15] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency scaling,”
Proceedings of the 8th ACM International Conference on Autonomic
Computing, pp. 31–40, 2011.

[16] Q. Deng, L. Ramos, R. Bianchini, D. Meisner, and T. Wenisch,
“Active low-power modes for main memory with memscale,” IEEE
Micro, vol. 32, no. 3, pp. 60–69, 2012.

[17] B. Diniz, D. Guedes, W. Meira, and R. Bianchini, “Limiting the power
consumption of main memory,” ACM SIGARCH Computer
Architecture News, vol. 35, p. 290, 2007.

[18] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of
die-stacked processing in memory,” Proceedings of the 2nd Workshop
Near-Data Processing, 2014.

[19] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational ram :
A memory - simd hybrid and its application to dsp,” 1992.

[20] Z. Fang, L. Zhang, J. B. Carter, S. A. Mckee, A. Ibrahim, M. A.
Parker, X. Jiang, Z. Fang, M. A. Parker, L. Zhang, J. B. Carter, S. A.
Mckee, and X. Jiang, “Active memory controller,” J Supercomput,
vol. 62, pp. 510–549, 2012.

[21] K. Flautner, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches:
simple techniques for reducing leakage power,” in Proceedings 29th

Annual International Symposium on Computer Architecture. IEEE
Comput. Soc, 2002, pp. 148–157.

[22] M. Gao and C. Kozyrakis, “HRL: Efficient and flexible reconfigurable
logic for near-data processing,” HPCA, vol. 2016-April, pp. 126–137,
2016.

[23] J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and insertion
algorithms for exclusive last-level caches,” in Proceedings of the 38th
annual international symposium on Computer architecture, ser. ISCA
’11. New York, NY, USA: ACM, 2011, pp. 81–92.

[24] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,
“Effects of dynamic voltage and frequency scaling on a k20 gpu,” pp.
826–833, 2013.

[25] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the
terasys massively parallel PIM array,” Computer, vol. 28, no. 4, pp.
23–31, 1995.

[26] B. Govoreanu, G. S. Kar, Y. Y. Chen, V. Paraschiv, S. Kubicek,
A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart,
O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois,
H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak,
“10×10nm2 hf/hfo x crossbar resistive ram with excellent
performance, reliability and low-energy operation,” Technical Digest -
International Electron Devices Meeting, IEDM, pp. 729–732, 2011.

[27] Q. Guo and X. Guo, “A Resistive TCAM Accelerator for
Data-Intensive Computing Categories and Subject Descriptors,” Micro
2011, pp. 339–350, 2011.

[28] Z. Guz, M. Awasthi, V. Balakrishnan, M. Ghosh, A. Shayesteh, T. Suri,
and S. Semiconductor, “Real-Time Analytics as the Killer Application
for Processing-In-Memory,” Near Data Processing (WoNDP), pp.
10–12, 2014.

[29] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell
processor,” Proceedings - 2015 IEEE 29th International Parallel and
Distributed Processing Symposium Workshops, IPDPSW 2015, pp.
896–904, 2015.

[30] M. Hodes, R. D. Weinstein, S. J. Pence, J. M. Piccini, L. Manzione,
and C. Chen, “Transient thermal management of a handset using phase
change material (pcm),” Journal of Electronic Packaging, vol. 124,
no. 4, pp. 419–426, dec 2002.

[31] M. S. Insight, “High-bandwidth memory (hbm) reinventing memory
technology industry standards on-die gpus,” vol. 5, p. 8350, 2015.

[32] Intel, “Intel turbo boost technology 2.0,” 2011.

[33] ——, “Intel core i7-6785r processor,” 2016.

[34] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “FlexRAM: Toward an advanced Intelligent Memory
system,” in 2012 IEEE 30th International Conference on Computer
Design (ICCD). IEEE, sep 2012, pp. 192–201.

[35] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay,” in Proceedings
of the 28th annual international symposium on Computer architecture
- ISCA ’01, vol. 29, no. 2. New York, New York, USA: ACM Press,
jun 2001, pp. 240–251.

[36] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block
prediction for last-level caches,” in Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’43. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 175–186.

[37] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Trans. Comput., vol. 57, no. 4, pp.
433–447, Apr. 2008.

[38] M. J. Khurshid and M. Lipasti, “Data compression for thermal
mitigation in the hybrid memory cube,” 2013 IEEE 31st International
Conference on Computer Design, ICCD 2013, pp. 185–192, 2013.

[39] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric system
interconnect design with Hybrid Memory Cubes,” Parallel
Architectures and Compilation Techniques - Conference Proceedings,
PACT, pp. 145–155, 2013.

[40] H. Kim, H. Kim, S. Yalamanchili, and A. F. Rodrigues,
“Understanding Energy Aspects of Processing-near-Memory for HPC
Workloads,” Proceedings of the 2015 International Symposium on
Memory Systems - MEMSYS ’15, pp. 276–282, 2015.

[41] W. Kim, M. S. Gupta, G. Y. Wei, and D. Brooks, “System level

569

analysis of fast, per-core dvfs using on-chip switching regulators,”
Proceedings - International Symposium on High-Performance
Computer Architecture, pp. 123–134, 2008.

[42] Y. Kim, “Analysis of thermal behavior for 3d integration of dram,” pp.
5–6, 2014.

[43] V. Krishnaswamy, J. Brooks, G. Konstadinidis, C. McAllister,
H. Pham, S. Turullols, J. L. Shin, Y. YangGong, and H. Zhang,
“Fine-grained adaptive power management of the sparc m7 processor,”
in International Solid-State Circuits Conference (ISSCC) Digest of
Technical Papers, 2015, pp. 74–76.

[44] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang,
W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin,
W. S. Chen, F. T. Chen, C. H. Lien, and M. J. Tsai, “Evidence and
solution of over-reset problem for hfox based resistive memory with
sub-ns switching speed and high endurance,” Technical Digest -
International Electron Devices Meeting, IEDM, pp. 7–10, 2010.

[45] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in
Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM
International Symposium on. IEEE, 2009, pp. 469–480.

[46] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
Processing-in-Memory Architecture for Bulk Bitwise Operations in
Emerging Non-volatile Memories,” in Proceedings of the 53rd Annual
Design Automation Conference on - DAC ’16, 2016, pp. 1–6.

[47] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: designing SoC accelerators for
memcached,” in ISCA’13, 2013, p. 36.

[48] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage
reduction technique for digital systems,” in 37th IEEE International
Conference on Solid-State Circuits. IEEE, 1990, pp. 238–239.

[49] M. Martonosi and D. Clark, “Voltage and frequency control with
adaptive reaction time in multiple-clock-domain processors,” in HPCA.
IEEE, 2005, pp. 178–189.

[50] Micron, “Ddr3 sdram system-power calculator,” July 2011.

[51] A. Mishra and N. Khare, “Analysis of dvfs techniques for improving
the gpu energy efficiency,” Open Journal of Energy Efficiency, vol. 04,
no. 04, pp. 77–86, 2015.

[52] S. Mittal, “A survey of architectural techniques for dram power
management,” International Journal of High Performance Systems
Architecture, vol. 4, no. 2, pp. 110–119, 2012.

[53] S. Mittal, Z. Zhang, and J. S. Vetter, “Flexiway: A cache energy
saving technique using fine-grained cache reconfiguration,” 2013
IEEE 31st International Conference on Computer Design, ICCD 2013,
pp. 100–107, 2013.

[54] H. Noguchi, K. Ikegami, K. Kushida, K. Abe, S. Itai, S. Takaya,
N. Shimomura, J. Ito, A. Kawasumi, H. Hara, and S. Fujita, “A
3.3ns-access-time 71.2uw/mhz 1mb embedded stt-mram using
physically eliminated read-disturb scheme and normally-off memory
architecture,” ISSCC, vol. 58, pp. 136–137, 2015.

[55] M. Oskin, F. T. Chong, T. Sherwood, M. Oskin, F. T. Chong, and
T. Sherwood, “Active Pages: A Computation Model for Intelligent
Memory,” ACM SIGARCH Computer Architecture News, vol. 26,
no. 3, pp. 192–203, 1998.

[56] H. Park, S. Yoo, and S. Lee, “Power management of hybrid
dram/pram-based main memory,” in 2011 48th ACM/EDAC/IEEE
Design Automation Conference (DAC). San Diego, California: ACM,
jun 2011, pp. 59–64.

[57] J. T. Pawlowski, “Hybrid memory cube (hmc),” Hotchips, pp. 1–24,
2011.

[58] M. Powell, S.-H. Y. S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar, “Gated-vdd: a circuit technique to reduce leakage in
deep-submicron cache memories,” ISLPED, pp. 90–95, 2000.

[59] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,

A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the impact
of 3D-stacked memory+logic devices on MapReduce workloads,” in
ISPASS 2014 - IEEE International Symposium on Performance
Analysis of Systems and Software, 2014, pp. 190–200.

[60] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe,
T. F. Wenisch, and M. M. K. Martin, “Computational sprinting,”
HPCA, pp. 1–12, 2012.

[61] G. Setoh, F. L. Tan, and S. C. Fok, “Experimental studies on the use of
a phase change material for cooling mobile phones,” International
Communications in Heat and Mass Transfer, vol. 37, no. 9, pp.
1403–1410, nov 2010.

[62] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars,” in ISCA, 2016, pp. 14–26.

[63] P. Siegl and R. Buchty, “Data-Centric Computing Frontiers : A Survey
On Processing-In-Memory,” Memsys, vol. 1000, 2016.

[64] D. Skarlatos, R. Thomas, A. Agrawal, S. Qin, R. Pilawa-Podgurski,
U. R. Karpuzcu, R. Teodorescu, N. S. Kim, and J. Torrellas, “Snatch:
Opportunistically Reassigning Power Allocation between Processor
and Memory in 3D Stacks,” MICRO, 2016.

[65] R. Smith, “The amd radeon r9 fury x review,” 2015.

[66] H. S. Stone, “A logic-in-memory computer,” IEEE Trans. Comput.,
vol. 19, no. 1, pp. 73–78, Jan. 1970.

[67] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang,
“Ppep: Online performance, power, and energy prediction framework
and dvfs space exploration,” 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 445–457, 2014.

[68] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and
B. Franke, “Cooperative partitioning: Energy-efficient cache
partitioning for high-performance cmps,” Proceedings - International
Symposium on High-Performance Computer Architecture, pp.
311–322, 2012.

[69] K. Tran and J. Ahn, “Hbm : Memory solution for high performance
processors,” Memcon, no. October, 2014.

[70] C. Villa, D. Mills, G. Barkley, H. Giduturi, S. Schippers, and
D. Vimercati, “A 45nm 1gb 1.8v phase-change memory,” pp. 270–271,
Feb 2010.

[71] Y. Xie, Ed., Emerging Memory Technologies. New York, NY:
Springer New York, 2014. [Online]. Available:
http://link.springer.com/10.1007/978-1-4419-9551-3

[72] C. Xu, D. Niu, N. Muralimanohar, and R. Balasubramonian,
“Overcoming the challenges of crossbar resistive memory
architectures,” pp. 476–488, 2015.

[73] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang,
S. Yu, and Y. Xie, “Overcoming the challenges of crossbar resistive
memory architectures,” HPCA, pp. 476–488, 2015.

[74] T. Yoshida, N. Generation, T. Computing, and F. Limited, “Fujitsu ’ s
next generation processor for hpc,” in HotChips, 2014.

[75] S. Yu and H. S. P. Wong, “A phenomenological model for the reset
mechanism of metal oxide rram,” IEEE Electron Device Letters,
vol. 31, no. 12, pp. 1455–1457, 2010.

[76] C. Zhang, G. Sun, P. Li, and T. Wang, “Sbac: a statistics based cache
bypassing method for asymmetric-access caches,” ISLPED, pp.
345–350, 2014.

[77] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “TOP-PIM,” in Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing -
HPDC ’14. New York, New York, USA: ACM Press, 2014, pp.
85–98.

[78] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti,
“Accelerating sparse matrix-matrix multiplication with 3D-stacked
logic-in-memory hardware,” in 2013 IEEE High Performance Extreme

Computing Conference, HPEC 2013, 2013, pp. 1–6.

570

