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Register Clustering
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Circuit clustering is usually done through discrete optimizations to enable circuit size reduction or design-
specific cluster formation. In this article, we are interested in the register-clustering technique for clock-power
reduction by leveraging new opportunities introduced by multibit flip-flop (MBFF). Currently, INTEGRA is
the only existing postplacement MBFF clustering optimizer with a subquadratic time complexity. How-
ever, it severely degrades the wirelength, especially for realistic designs, which may nullify the benefits of
MBFF clustering. In contrast, we formulate an analytical clustering score with a nonlinear programming
framework, in which the wirelength objective can be seamlessly integrated and the solver has empirical
subquadratic time complexity. With the MBFF library, the application of our analytical clustering method
achieves comparable clock power to the state-of-the-art techniques, but further reduces the wirelength by
about 25%. Even without the MBFF library, we can still achieve 30% clock wirelength reduction. In addition,
the proposed method can potentially be integrated into an in-placement MBFF clustering solver and be
applied to other problems that require formulating clustering scores in their objective functions.
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1. INTRODUCTION

Circuit clustering is a useful technique in electronic design automation. Clustering
problems can be classified into two categories. One is for circuit size reduction; a
short survey can be found in Yan et al. [2011]. The other is for design-specific cluster
formation, such as voltage island grouping [Wu et al. 2007] and register clustering
[Cheon et al. 2005; Hou et al. 2009].
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In this article, we are interested in the register-clustering problem. The basic idea
is to place a group of registers close to each other so that the capacitance of the clock
network could be largely reduced, thus the clock switching power could be optimized.
There are some previous works performing register clustering during the placement
stage. Roughly speaking, Cheon et al. [2005] and Hou et al. [2009] first decided the leaf
cluster with a heuristic method (e.g., Quick Clock Tree Synthesis or registers belong to
a single vector). Then, they would place registers of the same leaf cluster close to each
other either by setting a huge weight of pseudonet or through group bounds control.
Usually, this process might be done several times to incrementally adjust the formation
of a leaf cluster. Ward et al. [2013] propose a novel latch placement methodology to
minimize local clock-tree capacitance.

As technology development improves the driving strength of inverters inside regis-
ters, it is now possible to share common inverters in several flip-flops (FFs), resulting
in the multibit flip-flop (MBFF). The MBFF clustering problem is to effectively and
efficiently merge several single-bit flip-flops (SBFFs) into an MBFF. Compared with
traditional register-clustering techniques, the emerging MBFF technique leads to bet-
ter power reduction. MBFF reduces the clock load by having a single clock input pin,
reducing the corresponding wire load. In addition, shared clock inverters within an
MBFF further reduce power consumption compared with SBFFs.

Existing works explore MBFF clustering in three design stages: preplacement stage
[Cadence 2005; Kretchmer and Logic 2001], in-placement stage [Tsai et al. 2013; Hsu
et al. 2013], and postplacement stage. Because more physical information is available
after placement, postplacement MBFF clustering has attracted a lot of attention [Yan
and Chen 2010; Lin et al. 2011; Wang et al. 2012; Jiang et al. 2011]. Among all these
works, INTEGRA [Jiang et al. 2011] delivers the best performance in both power
reduction and runtime consumption, and is the only one with subquadratic complexity.
However, almost all previous works pay little attention to the signal wirelength, either
regarding it as a secondary objective [Yan and Chen 2010; Lin et al. 2011; Wang et al.
2012] or ignoring it altogether [Jiang et al. 2011]. We show later that, for a series
of realistic benchmarks, INTEGRA’s clustering severely degrades signal wirelength,
which may nullify the power benefit of MBFFs.

In this article, we propose an analytical model for the register-clustering problem at
the postplacement stage. The overall idea is to generate as many register clusters as
possible to maximize power reduction while trying to avoid severe signal wirelength
degradation. Specifically, we first propose an exact formulation of the number of clus-
ters based on the Dirac delta function and with another objective in signal wirelength,
then smooth it by the Gaussian function. The optimization problem is solved with a
well-designed Nonlinear Programming (NLP) solver based on the Nesterov method.
In addition, we apply some acceleration techniques, such as customized fast Gauss
transformation and a further discrete refinement to make the result practical. Com-
pared with state-of-the-art work, we deliver high-quality register-clustering results
with shorter signal wirelength in empirical subquadratic time.

Our clustering flow can be regarded as a postplacement power optimization tech-
nique, which can be applied in two scenarios: the emerging postplacement MBFF clus-
tering problem and a general register-clustering problem without an MBFF library. We
make the following contributions:

(1) We propose an analytical optimization method, which performs register clustering
both effectively and efficiently in subquadratic runtime.

(2) Given an MBFF library, our method shows comparable power reduction to the
state-of-the-art INTEGRA work. However, we further reduce signal wirelength by
about 25%.
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(3) Even without an MBFF library, our method can also reduce a clock tree’s wirelength
by about 30%. Compared with traditional register-clustering works, our method is
much simpler and can guarantee no damage to timing performance.

(4) The proposed method can potentially be integrated in an in-placement MBFF clus-
tering solver, and be applied to other problems that require formulating clustering
scores in their objective functions.

The rest of this article is organized as follows. Section 2 formulates our problem of
postplacement register clustering. Section 3 introduces our optimization flow, including
analytical clustering model and discrete refinement. In Section 4, we describe how
to use our register-clustering method for the postplacement MBFF merging problem
and evaluate our approach with experimental data and comparisons. In Section 5, we
apply this method to the general register-clustering problem. Section 6 contains our
conclusions.

2. PROBLEM FORMULATION

Given the following input, we perform register clustering at the postplacement stage
under the capacity constraint, density constraint, and timing constraint.

(1) Placement locations of FFs and other cells
(2) Timing slack between a pin and its connected FF
(3) The capacity of the register cluster

Capacity constraint limits the size of a cluster. Suppose that we have an MBFF
library of 1b, 2b, and 4b FF, the capacity constraint is set to 4 since there is no larger
MBFF to use.

To avoid routing congestion, we consider density constraint when finding locations
for register clusters. The basic idea is to divide the placement region into bins. For each
bin, the overlapped area between cells and the bin should be controlled by a threshold.

A timing constraint is proposed to prevent postplacement register clustering from
violating clock performance achieved after placement. Given timing slacks between
pins and the connected FFs, we can calculate the equivalent metal wirelength with the
Elmore delay model [Chen and Yan 2010]. Thus, we can find the timing-violation-free
distance (TVFD) between FF and driving (output) or driven (input) pins. Note that,
if there are multiple output pins, we calculate TVFD based on the smallest timing
slack. Taking TVFDs into account, for each FF, we can find a feasible region to move
without a timing violation, which we label as the timing-violation-free region (TVFR) in
Figure 1. Consequently, clustering a few SBFFs with overlapped TVFRs can guarantee
no damage to timing performance.

The objective is to merge as many clusters as possible to maximize power reduction
while avoiding severe wirelength damage.

As shown in Figure 2, we integrate the postplacement register clustering into tradi-
tional synthesis flow. After logic synthesis and placement, we get a netlist with SBFF,
then cluster several SBFFs together. When given an MBFF library, we will replace such
SBFFs’ cluster with MBFF. If there is no MBFF library, we will place those SBFFs close
to each other, preroute the clock pin for them, and build an artificial register cluster,
which we will explain in Section 5. After register clustering, we perform clock-tree
synthesis and routing.

3. ANALYTICAL MODEL AND THE OPTIMIZATION FLOW

3.1. The Basic Idea

In this article, we formulate the postplacement register-clustering problem as an opti-
mization problem. The objective function optimizes a weighted sum of the number of
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Fig. 1. Concept of TVFD and TVFR.

Fig. 2. Postplacement register-clustering flow.

FF clusters and signal wirelength. As shown in Figure 3, our flow consists of two steps:
analytical optimization and discrete optimization. In the analytical optimization, we
carefully define a continuous and differentiable objective function and exploit an ef-
fective NLP solver [Lu et al. 2014] to make our method practical. After the analytical
optimization, we can get a rough clustering. Then, we invoke the discrete optimization
to discretize and further improve the clustering solution. We will explain more details
in the following sections.

3.2. Analytical Optimization Step

3.2.1. Definition of Clustering Score. Our objective function trades off the signal wire-
length fl(x, y) and cluster number fc(x, y) with parameter α, where x = (x1, . . . , xN)T

and y = (y1, . . . , yN)T represent coordinates for N FFs. Because of the timing constraint,
FFs’ locations are bounded by their feasible regions.

minimize α · fl(x, y) − fc(x, y)
subject to t(x, y) ≤ T

(1)
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Fig. 3. Optimization flow.

Supposing that M-bit clusters are the most energy-efficient, we want to maximize
the number of M-bit clusters. Intuitively, when two FFs have the same locations, they
belong to the same cluster. Mathematically, we use the Delta function to evaluate the
relationship between two FFs.

As shown in Equation (2), when the two variables are equal, the value of Delta
function is one. Otherwise, it is zero. In Equation (3), for two FFs with coordinates
of (a, b) and (xj, yj), respectively, if their Euclidean distance equals to zero, these two
FFs belong to same group, and the Delta function becomes one. For each FF, we can
approximate the size of the group it belongs to by checking the accumulative Delta
value with other FFs. For example, if N(a, b) equals to 4, we can see that the FF is
placed at the same location as three other FFs. They form a 4b cluster together.

δ(ω, z) =
{

1 (ω = z)
0 (ω �= z) (2)

N(a, b) =
N∑

j=1

δ(‖ (a, b) − (xj, yj) ‖, 0) (3)

Given the target size M bit, we want to generate as many M-bit clusters as possible. In
other words, we hope to maximize the number of registers that belong to M-bit clusters.
As shown in Equation (4), minimizing the − fc(x, y) term of the objective function
encourages maximizing the number of FFs in M-bit clusters. In the next section, we
will demonstrate that our clustering function ( fc(x, y)) is capable of generating an
attractive force when FFs lie in a small-size (less than M-bit) cluster and vice versa.
Consequently, we can maximize the number of M-bit clusters.

min − fc(x, y) = − max fc(x, y) = − max
N∑

i=1

δ(N(xi, yi), M) (4)
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The Delta function is nondifferentiable. In practice, we smooth it with the Gaussian
function. As Equation (5) shows, the Gaussian function quickly converges to zero when
the difference of ω and z increases to infinity. Parameters ε and d2 are used to control
the degenerate speed. ε is limited between 0 to 1. Thus, we could obtain the property
shown in Equation (6). Considering Equation (3), when the distance between two FFs
equals to zero, the Gaussian function gets the same value as the Delta function. When
their distance is larger than d, the Gaussian function will be less than ε. Consequently,
the smaller d and ε are, the more quickly Gaussian function degenerates. We will
discuss the effect of parameter d in Appendix C.

Thus, the value of the Gaussian function between two FFs far apart can be neglected.
We apply this property to accelerate calculating our objective function.

The signal wirelength fl(x, y) is measured by the total half-perimeter wirelength
(HPWL) between locations of FFs and their driving (output) and driven (input) pins.
Since HPWL is nondifferentiable, we use the weighted-average approximation in Hsu
et al. [2011].

With the smoothing technique, our constraint optimization problem can be solved by
NLP solvers. In Appendix A, we will systematically illustrate our efficient and effective
NLP solver.

δ(ω, z) ≈ D(ω, z) = exp((ω − z)2 ln ε/d2) (5)

{
D(ω, z) = 1 when w = z
D(ω, z) < ε when | ω − z |> d (6)

3.2.2. Insights of the Clustering Function. In our formulation, we assume that M-bit clus-
ters are the most energy-efficient and we want to maximize the number of M-bit
clusters. The following theoretical analysis proves that our formulation has a great
property of generating both attractive forces and repelling forces based on different
cluster formations. Clusters with more than M FFs are pushed apart so that some
extra FFs can move farther away and enable the formation of multiple M-bit clusters.

PROPERTY 1. FFi contributes a term fc,i = δ(N(xi, yi), M) to the clustering score fc.
When FFi lies in an undersized (N(xi, yi) < M) cluster, maximizing this term results in
attractive forces for the neighboring FFs of FFi. When FFi lies in an oversized (N(xi, yi) >
M) cluster, maximizing this term results in repelling forces for the neighboring FFs of
FFi.

PROOF. The force direction of FF j resulting from fc,i towards can be detected by
checking the sign of Equation (7). Here, we consider only the x-direction without loss
of generality. {

FFi attracts FF j when (xi − xj) · ∂ fc,i
∂xj

> 0

FFi repels FF j when (xi − xj) · ∂ fc,i
∂xj

< 0
(7)

When smoothing with the Gaussian function, the calculation of the partial derivative
is shown in Equations (8), (9), and (10).

∂ fc,i

∂xj
= ∂ fc,i

∂N(xi, yi)
· ∂N(xi, yi)

∂xj
(8)

∂ fc,i

∂N(xi, yi)
= 2λ(N(xi, yi) − M) exp((N(xi, yi) − M)2λ) (9)
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Fig. 4. Analysis of force direction, magnitude, and convexity of clustering function.

∂N(xi, yi)
∂xj

= 2λ exp(λ((xi − xj)2 + (yi − yj)2))(xj − xi) (10)

Note that λ equals to ln ε/d2 and ε ranges from 0 to 1. Thus, the force direction is
related only to Ni, which is shown in Equation (11):{

(xi − xj) · ∂ fc,i
∂xj

> 0 when N(xi, yi) < M

(xi − xj) · ∂ fc,i
∂xj

< 0 when N(xi, yi) > M
(11)

In Figure 4, we illustrate the force direction and strength from FFi toward other FFs
and the convexity of the clustering function. As is shown in Figure 4(a), when FFi is
adjacent to less than M − 1 FFs, FFi will attract more FFs to form a cluster of size
M; when there are more than M − 1 neighbors, FFi will repel the extra FFs. Thus, it
guarantees the maximization of M-bit clusters’ number. Since the fc,i part contains Exp
function, which degenerates quickly, FFi will only affect other FFs within a distance of
r in Figure 4(a).

Here, we take a specific case as an example to illustrate the force strength from FFi,
where FFi locates at (0, 0) point, ε is set to 0.5, and d is set to 100. In Figure 4(b), where
the x-axis represents the change of xj of another FF and y-axis indicates the value of
∂ fc,i/∂(xj), we can see that FFi only affects other FFs in the neighborhood. We consider
this feature to accelerate the gradient calculation with fast Gauss transformation (FGT)
in Appendix B.

From the previous analysis, the fl term of the objective function can pull FFs toward
their “optimal locations” in terms of signal wirelength, while the fc term of the objective
function can effectively cluster FFs in the neighborhood into as many M-bit groups
as possible. Thus, our objective function achieves high-quality results in both signal
wirelength and clustering ratio.

In fact, our clustering function is not convex. Suppose that, in the following circum-
stance, for FFi, its neighboring FFs are FFa and FFb, and they are aligned horizontally.
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The value of the fc,i term changes with different locations of FFi, which is illustrated
in Figure 4(c). Although it is not convex, we will show its effectiveness in Section 4.

3.3. Discrete Optimization Step

In analytical optimization, we perform register clustering from a global scope, which
considers both clock power and signal wirelength. Then, we apply discrete optimization
in Algorithm 1 to complete the conversion from a continuous solution to the final
discrete solution.

The discrete optimization flow looks like a two-pass, best-choice clustering [Alpert
et al. 2005]. In the first pass (Lines 6–11), we extract partial clusters by bottom-up
clustering based on the proximity relation after the analytical solution. In this step,
the size of clusters cannot exceed cluster capacity (i.e., M-bit in our formulation).

Then, we perform further refinement to improve the ratio of M-bit clusters in the
second pass (in Lines 12–20). In this step, we temporally form clusters that exceed the
cluster capacity and kick out the extra FFs immediately based on the heuristic score.
Note that we check the timing constraint during cluster formation to guarantee that
FFs in the same cluster have overlapped feasible regions.

ALGORITHM 1: Discrete Optimization
Input: 1) The initial FFs’ locations based on analytical solution
2) The feasible region for each FF
Output: MBFF clustering result
// Preprocessing

1 Construct Bin-Structure for nearest neighbor searching;
2 Search nearest neighbors on Bin-Structure and Insert tuples into Priority Queue;
// Clustering & Refinement

3 Pass = 1;
4 while Pass <= 2 do
5 Pop top tuple(FFi, FFj, d) from PQ;
6 if Pass == 1 then
7 if |Group(FFi)

⋃
Group(FFj)| < M then

8 if satisfy timing constraint then
9 Merge Group(FFi) and Group(FF j);

10 end
11 end
12 else
13 if |Group(FFi)

⋃
Group(FFj)| < M then

14 if satisfy timing constraint then
15 Merge Group(FFi) and Group(FF j);
16 end
17 else
18 Merge Group(FFi) and Group(FF j) and kick out excess FFs;
19 end
20 end
21 if PQ.empty && Pass==1 then
22 Remove the M-bit groups and insert the tuples for nearest neighbors for the

remaining FFs;
23 end
24 Pass + +;
25 end

Lines 1 and 2 extract the proximity relation based on the analytical solution. We
calculate distances between FF pairs. For the purpose of maintaining a proximity
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Fig. 5. Discrete optimization.

relation, the FF pair with small distance will be manipulated with high priority during
the subsequent cluster formation. To identify the globally nearest FF pair, we insert
tuple(FFi, FF j, d) into a priority queue (PQ) with the distance d between FFi and FF j
as the sort key. As we have explained in the analytical step, to avoid signal wirelength
damage, we only cluster FFs in the neighborhood. Thus, it is not necessary to calculate
the distance between every two FFs. In our implementation, we divide the whole region
into bins and only compute the distance between FF pairs in the adjacent bins. Thus,
calculating the distance of the promising FF pairs can be done in O(N) time.

Lines 6 to 11 contain the clustering step (first pass). After the preprocessing stage,
we pick up the top tuple(FFi, FF j, d) from the PQ. If merging the groups that FFi and
FF j belong to does not violate the capacity constraint and timing constraint, we commit
the merge. Supposing that the cluster capacity is set to be 4 and the top two tuples are
(A, B, d1) and (A, C, d2) (as in Figure 5(a)), after checking the capacity constraint, we
will first merge A and B into a group of two. Then, the group of AB and the group of CD
will be clustered into a 4b group. However, the group of HI and group of EFG cannot be
merged because of capacity constraint. Figure 5(b) shows the group information after
the clustering step.

Lines 12 to 20 contain the refinement step (second pass). In this step, we allow the
clustering of two groups to exceed M-bit temporarily, then remove the excess FFs with
a heuristic score. Given a cluster formation, the heuristic score can estimate the HPWL
of the connecting signal nets based on the connecting pins’ locations. We enumerate
the possible removal combinations and choose one cluster formation with the smallest
estimated HPWL. In Figure 5(c), we pick up the top tuple, (I, E, d3), from PQ. Since
merging the two groups results in a group size of 5, we remove one FF with the largest
signal wirelength. Figure 5(d) shows the final FFs groups’ formation.

4. APPLICATIONS: POSTPLACEMENT MBFF CLUSTERING

4.1. Previous Works and Limitations

Previous works manipulate postplacement MBFF clustering with discrete methods. To
satisfy the timing constraint, they build an intersection graph [Yan and Chen 2010;
Lin et al. 2011; Wang et al. 2012] or interval graph [Jiang et al. 2011] and search the
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Fig. 6. The histogram of TVFD/AFFD for benchmark (a) C1 and (b) realistic design Vga.

MBFF candidates on these graphs. Among all previous works, INTEGRA shows the
best performance in terms of power reduction and runtime complexity. It is the only
one with subquadratic time complexity.

However, we find that the efficient runtime of INTEGRA partially benefits from the
simple strategy of choosing MBFF candidates without considering the impact on signal
wirelength in their objective. C1-C6 [Lin et al. 2011] benchmarks suite is widely used
in evaluating MBFF clustering performance. Although the wirelength degradation on
C1-C6 is acceptable (around 3%), we analyze in the following section that a series of
realistic designs are quite different from C1-C6. INTEGRA’s method will cause huge
wirelength damage for these realistic designs.

To illustrate the difference, we define the average FF distance (AFFD) as√
ChipArea/#FF. It is obvious that the average distance between every pair of near-

est FFs is approximately AFFD, assuming all the FFs are evenly placed. Then,
TVFD/AFFD is calculated for every FF to estimate roughly how many FFs can be
covered within the range of TVFD.

As is shown in Figure 6(a), the histogram of TVFD/AFFD for the benchmark C1
indicates that the range of TVFD is limited. The majority of FFs can reach only three
other FFs, on average, within the range of TVFD.

Interestingly, all other benchmarks, C2 to C6, follow the same distributions as C1,
even though the number of FFs is different. Moreover, if we look at the number of FFs
and the placement region of these benchmarks, they scale in the same ratio. These
facts indicate that the benchmarks C1 to C6 can represent only a single kind of circuit.
They are not sufficient to evaluate the performance of MBFF-clustering algorithms.

Similarly, we pick a realistic design, vga, from the IWLS benchmark suite, and syn-
thesize it by Synopsys DC and Cadence SOC Encounter with a tight timing constraint.
Specifically, the worst negative slack (WNS) reported after placement is 0.108 ns with
a clock cycle time of 3.5ns and 2.5ns for the two clock domains. Figure 6(b) reveals the
TVFD/AFFD distribution.

Comparing Figures 6(a) and 6(b), we can quickly find that TVFD in realistic designs
is two orders of magnitude larger than TVFD in C1 to C6. Realistic designs have
much greater freedom of choosing clustering candidates. However, INTEGRA does
not consider signal wirelength in their objective. Thus, INTEGRA damages the signal
wirelength a lot for realistic designs. For example, the degradation of wirelength for
ethernet is up to 20 times of the original wirelength.

4.2. Evaluation

We implement our two-step method of postplacement register clustering in C++, and
evaluate it on an Intel Xeon machine with 16 logical threads. The MBFF library that
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Table I. The Power and Area of Our MBFF Library

Normalized Normalized
Bit number power per bit area per bit

1 1.00 1.00
2 0.86 0.96
4 0.78 0.71

Table II. Realistic Design Property

Circuit #FF WNS (ns)

tv80 359 0.015
wbconmax 770 0.038

paring 1338 0.094
dma 1816 0.109
ac97 2191 0.078

ethernet 10443 0.046

Table III. Comparisons Between INTEGRA and Our Method on C1 to C6

INTEGRA Ours
Circuit PWR WLR RT-all (s) PWR WLR RT-NLP(s) RT-all (s)

C1 82.80 96 0.01 83.50 77.40 0.42 0.42
C2 80.90 102 0.01 82.30 76.40 0.96 0.96
C3 80.80 104 0.01 82.30 74.90 3.11 3.14
C4 81.00 104 0.02 82.40 75.60 10.45 10.59
C5 80.70 105 0.05 82.10 76.40 15.98 16.66
C6 80.70 105 1.11 82.30 82.00 197.91 217.41

Avg. 1.00 1.33 1.00 1.02 1.00 244.88 251.83

we used is provided by the Faraday Company based on the UMC 55nm process. As
shown in Table I, 4b FF is most efficient in terms of both power and area per bit. We
evaluate our method on widely used C1 to C6 [Lin et al. 2011] benchmarks and realistic
designs from the IWLS-2005 suite [Albrecht 2005]. As shown in Table II, we pick up six
benchmarks from the IWLS-2005 suite and synthesize with Synopsys DC and Cadence
SOC Encounter with the UMC 55nm process. The WNS can be seen from Table II.

4.2.1. Results on the Widely Used C1 to C6. We compare our results with the state-of-the-
art method INTEGRA in Table III. “PWR,” “WLR,” “#iter-NLP,” “RT-NLP,” and “RT-all”
represent power reduction, wirelength reduction, iterations in NLP, the runtime of
NLP, and total runtime, respectively. Table III shows that our method achieves almost
the same power reduction, and further reduces the wirelength by about 33% compared
with INTEGRA. The only drawback is runtime. However, the runtime is practical for
realistic circuits; we show that its time complexity is subquadratic in Appendix D.

4.2.2. Results on the Realistic Designs. We use Synopsys DC and Cadence Encounter
SOC to synthesize realistic designs with tight timing constraint. Properties of these
benchmarks can be found in Table II, in which “#FF” represents the number of FFs in
the circuit and “WNS” denotes worst negative timing slack after placement. Then, the
FFs and slacks information will feed in INTEGRA to do MBFF clustering.

From the “WLR” in Table IV, we find that INTEGRA damages the wirelength about
932%, on average. According to our previous analysis, the damage of signal wirelength
is mainly due to the large timing-feasible region. To fix this defect, we shrink the TVFD
with a bound factor to limit the movement of FFs for INTEGRA, which we call Bound-
INTEGRA. Figure 7 compares the impacts of different bound factors to power ratio and
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Table IV. Comparisons Between INTEGRA and Our Method on Realistic Designs

INTEGRA Bound-INTEGRA Ours

Circuit PWR WLR RT(s) PWR WLR RT(s) PWR WLR
RT-
NLP

RT-
all(s)

ac97 78.02 673.28 0.09 78.02 120.00 0.02 78.02 95.71 4.74 4.88
dma 78.03 798.29 0.06 78.04 124.71 0.05 78.02 96.00 5.39 5.43
ethernet 78.00 2038.71 1.61 78.00 216.51 0.63 78.00 87.92 20.81 24.51
pairing 78.00 931.45 0.05 78.00 132.17 0.03 78.00 109.00 6.51 6.61
tv80 78.11 350.46 0.01 78.11 109.20 0.01 78.10 95.71 0.93 0.94
wbconmax 78.02 540.81 0.02 78.26 128.00 0.03 78.02 105.00 2.29 2.30
Avg. 1.00 9.32 1.00 1.00 1.43 0.76 0.99 1.00 82.19 83.52

Fig. 7. Effect of different bound factors to power ratio and WL ratio.

WL ratio. We choose the one that can achievethe best WL ratio when guaranteeing the
best power reduction in our implementation. For example, in Figure 7, the best bound
factor is 0.05.

As shown in Table IV, Bound-INTEGRA can achieve much better signal wirelength.
Even compared with Bound-INTEGRA, we can still obtain 43% wirelength improve-
ment, on average. In addition, our power reduction is comparable with INTEGRA.
Although our runtime is longer than INTEGRA’s, it is acceptable in practice.

5. APPLICATIONS: POSTPLACEMENT REGISTER CLUSTERING WITHOUT MBFF LIBRARY

5.1. Artificial Multibit Register Cluster

If there is no MBFF library, we can still use our method to optimize clock power at the
postplacement stage and guarantee no timing violation. We can place several SBFFs
together, route their clock pin in advance, and support one external pin for conventional
clock-tree synthesis. Although we cannot benefit from capacitance reduction of the clock
pin as MBFF library, we can still simplify the clock network and reduce the clock wire.
As shown in Figure 8, by rotating and placing registers close to each other, we can build
2b and 4b clusters. The external clock pin that we support is labeled with “CK_out.” We
call this register group the “artificial multibit register cluster.” In the following section,
we will evaluate the impact on clock trees with the artificial multibit register cluster.

5.2. Evaluation

With our optimization method, we replace several SBFFs with artificial multibit reg-
ister clusters and evaluate the clustering result on benchmark suite IWLS 2005. We
synthesize the benchmarks using the Synopsys DC and Cadence SOC encounters. Refer
to Figure 2 for the whole clustering flow. In our evaluation, we support the 1b cluster,
2b cluster, and 4b cluster.
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Fig. 8. Artificial multibit register cluster (a) 1-bit, (b) 2-bit, and (c) 4-bit.

Table V. Performance of Postplacement Register Clustering

Clk skew Clk WL

Clk
switch

pow

Net
switch

pow Total pow
Circuit Method # Sinks (ps) (um) (mW) (mW) (mW)

ordinary 1876 28.20 8758.73 2.13 2.97 11.26
ac97 clustering 498 24.90 5709.18 1.17 2.10 10.62

impr(%) 73 12 35 45 29 6
ordinary 1867 32.30 8367.98 0.11 0.22 0.80

dma clustering 507 15.00 5633.93 0.06 0.17 0.74
impr(%) 73 54 33 47 24 8
ordinary 10016 70.50 46731.54 3.98 6.01 19.34

ethernet clustering 2888 86.40 33371.25 2.35 3.90 17.11
impr(%) 71 −23 29 41 35 12
ordinary 1338 27.10 6496.97 0.52 1.13 3.84

pairing clustering 336 18.80 4077.24 0.26 0.87 3.52
impr(%) 75 31 37 49 23 8
ordinary 359 22.00 1682.20 0.18 0.70 1.60

tv80 clustering 91 4.10 1116.93 0.11 0.54 1.33
impr(%) 75 81 34 37 22 17
ordinary 770 17.40 3739.13 0.20 2.48 6.20

wbconmax clustering 289 31.40 2600.11 0.14 2.75 7.04
impr(%) 62 −80 30 30 −11 −14

Avg. impr(%) 72 13 33 42 20 6

As shown in Table V, we compare our clustering method with the ordinary method,
in which no register clustering is executed. “# Sinks,”,“Clk skew,”,“Clk WL,”,“Clk switch
pow,”, “Net switch pow,” and “Total pow” represent the sinks of the clock tree, trigger
edge skew, the clock tree’s routing wirelength, the switching power of the clock tree, the
switching power of all the nets, and the total power, respectively. We use the default
average switching activity, which is 0.2 for Cadence, to obtain switching power.

As we have explained previously, we first connect registers inside the cluster before
clock-tree synthesis and support one external clock pin. Consequently, the clock sinks
shown are significantly reduced. Since the maximum cluster size is 4b, theoretical
sinks reduction can be up to 75%. Due to the decrease of clock sinks, clock-tree
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synthesis becomes simple. Clock wirelength is also optimized. As Table V shows, the
clock wirelength reduction is around 30%. In terms of clock skew, it is not surprising
to find that, in most conditions, skews of clustering flow are better than ordinary flow
owing to the simplicity of the clock network. For some cases, however, clock skews
become worse. One possible explanation is that Cadence SOC might stop optimizing
when the clock skew value is acceptable. We have found in the user manual that the
default maximum skew is 300ps.

We also check the power performance of clustering flow. As shown in Table V, the
switching power of a clock network can be optimized by around 40% because of capaci-
tance reduction brought about by the decrease of clock wirelength. For most cases, net
switching power and total power can also be reduced. An exception case is wbconmax.
From Table IV, we can see that, for wbconmax, the signal wirelength after register
clustering with our flow is degraded by about 5% (“WLR” for wbconmax is 105, which
indicates the ratio of clustering wirelength over ordinary wirelength without cluster-
ing). Thus, the increase of net switching power probably results from the increase of
signal wirelength.

6. CONCLUSION

In this article, we propose an analytical model for register clustering. The overall idea
is first to propose a function that computes the number of clusters. The definition of this
function relates to the nondifferentiable Dirac delta function. To make it compatible
with the nonlinear program method, we smooth it using the Gaussian function. We
can compute the naı̈ve quadratic-time evaluation of the Gauss summation using the
Figtree library for fast Gauss transformation. However, this general implementation
still does not meet the requirement of extensive evaluations in an NLP solver. Thus, we
implement a customized fast Gauss transformation using a multithreading technique.
The final runtime of this approach is practical, and the overall runtime is empirically
subquadratic.

We use our postplacement register-clustering method as a power optimization tech-
nique and apply it to two scenarios: (1) register clustering with an MBFF library,
and (2) traditional register clustering without an MBFF library. Compared with other
postplacement MBFF clustering methods, our method achieves comparable power re-
duction, but further reduces the wirelength by 25%. Even without an MBFF library,
we can still reduce the clock tree’s wirelength by about 30%.

The proposed method can potentially be integrated into an in-placement MBFF clus-
tering solver, and be applied to other problems that require formulating the clustering
scores in their objective functions.

APPENDIX

A. NONLINEAR PROGRAMMING SOLVER

As shown in Section 3.2, we formulate an analytical objective function in the con-
strained nonlinear programming model. Instead of using the penalty methods, we
apply a projected gradient method [Rosen 1960] to handle the timing constraints.

In this work, we use Nesterov’s method [Lu et al. 2014] to choose the step size to
minimize the objective function efficiently. In contrast to the traditional line-search
method, which is quite time-consuming, Nesterov’s method leverages the Lipschitz
constant to estimate the step size. As Nesterov [1983] shows, αk = L−1 satisfies the
step-length requirement, where αk is the step size and L is the Lipschitz constant.
Similar to Lu et al. [2014], we approximate the Lipschitz constant instead of precisely
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Fig. 9. Explanation of fast Gauss transformation (FGT).

ALGORITHM 2: Projected Nesterov Method
Input: αk, μk, vk, vk−1,∇ f (vk),∇ f (vk−1)
Output: μk+1, vk+1, αk+1

1 αk = BackTrack(vk, vk−1, ∇ f (vk),∇ f (vk−1));
2 μk+1 = vk − αk∇ f (vk);

3 αk+1 = (1 +
√

4α2
k + 1/2);

4 vk+1 = μk+1 + (αk−1)(μk+1 − μk)/αk+1;
5 vk+1 = Project(vk+1);

calculating it. As shown in Algorithm 2, we use the backtrack method to further refine
the step size at Line 1.

The solution after one step of Nesterov’s method, at Line 4, may violate the timing
constraint. Therefore, we apply a projection step in Line 5 to find the closest solution
in the feasible space to replace the intermediate infeasible solution. Since the feasible
solution space with respect to the timing constraint is a convex space, the projection is
straightforward to implement. The feasible region of a flip-flop is a circle with Manhat-
tan distance, and it becomes a rectangle after rotating the coordinates by 45 degrees.
Thus, the projection can be done by rotating the coordinates by 45 degrees first, and
then project the location of a timing-infeasible flip-flop into its rotated rectangular
timing-feasible region.

B. CUSTOMIZED FAST GAUSS TRANSFORMATION

The computation of Equation (4), in the objective function, is expensive. A direct com-
putation requires O(N2) complexity for all the N flip-flops. We use the fast Gauss
transformation (FGT) [Odlyzko and Schönhage 1988] method to reduce the computa-
tion complexity to O(N).

Figure 9 demonstrates the basic idea of the FGT. Supposing that FFi is located in a
square with side length

√
H, which equals to

√
−d2/ ln(ε) in our problem, as demon-

strated in Odlyzko and Schönhage [1988], the evaluation of exponential function with
FFs within side length of 4

√
H is satisfied with four digits of accuracy. Consequently,

instead of acquiring the precise value, we approximate gradient calculation by evalu-
ating the objective function only with FFs in the neighborhood.

However, even using the state-of-the-art FGT library Figtree [Morariu et al. 2009],
the runtime is still too slow due to the overhead of maintaining the essential data
structure KD-Tree, which is more suitable for high-dimensional data. Thus, we
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Table VI. Comparison of Figtree and Our Customized FGT

NLP solver with NLP solver with
#FF Figtree for FGT(s) customized FGT(s) SpeedUp

120 1.25 0.72 1.74
480 5.80 0.52 11.15
1920 31.43 1.59 19.76
5880 143.33 4.20 34.13
12000 413.45 7.92 52.20
192000 7817.23 207.68 34.64
Avg. - - 25.60

implemented a customized multithreaded FGT solver with an efficient bin structure
instead of the KD-Tree structure for our two-dimensional data.

In our bin structure, the whole chip is partitioned into a mesh of bins. For each bin,
we record a list of FFs belonging to it. By querying adjacent bins, we can quickly obtain
FFs in the neighborhood. In addition, this access pattern can be easily paralleled with
OpenMP. Although side length will grow as the parameter d increases, which may
involve more cells during gradient calculation, in our implementation, we control the
value of parameter d to avoid the extreme condition and significant damage to signal
wirelength. Refer to Appendix C for the details of parameter tuning.

Based on this bin structure, statistics in Table VI show that time complexity is
linear, and the practical runtime is fast. In addition, compared with Figtree-based
implementation, our bin-structure-based implementation can achieve 25.6X speedup,
on average, for different amounts of FFs in benchmark C1 to C6.

C. PARAMETER TUNING

The value of α (in Equation (1)) is set to balance the quantities of the fl part and fc
part. In fact, the magnitudes of fl and fc are positively related to Chipwidth and the
total number of FFs (N), respectively. Thus, α is set as Equation (12).

α = N
Chipwidth

(12)

The value of ε and d (in Equation (5)) are critical for performance. If d is too small, FFs
do not have enough force to affect others. However, if d is too big, each FF can influence
too many FFs. Finally, FFs will reach their “balanced” states under the effects of many
forces. We want to set a proper value for d to only affect a few FFs in the neighborhood.
We observe the best performance when we set d as the average distance between every
second-nearest FF pairs. Note that to maintain subquadratic runtime complexity, for
each FF, we obtain only the second-nearest FF pair in the neighborhood. If an FF does
not have the second-nearest FF, we do not consider that FF during the calculation of
parameter d. In our implementation, ε is set to 0.5, meaning that the clustering score
between two FFs is less than 0.5 when their distance exceeds d.

D. TIME COMPLEXITY ANALYSIS

Our method consists of two steps: the analytical optimization step and the discrete
optimization step.

Analytical optimization requires evaluating the derivative of the objective function.
The derivative evaluation of wirelength part is O(N). Although initial register distribu-
tion affects runtime performance, for the roughly uniform distribution, the derivative
evaluation of the clustering score is O(N) with the customized FGT accelerating tech-
nique in Appendix B. Though it is difficult to analyze how many iterations it takes for
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the NLP solver, experience shows that the quadratic placement problem has a time
complexity of O(N1.18) [Spindler et al. 2008]. In addition, the state-of-the-art quadratic
placer simPL [Kim et al. 2012] and nonlinear placer ePlace [Lu et al. 2014] show a
comparable runtime performance. We believe that our placement-like NLP problem
has subquadratic complexity.

For discrete optimization, the most time-consuming part is the pairwise distance
calculation at Lines 2 and 22 in Algorithm 1. We partition the placement region into
bins; the searching process will only be performed in the neighborhood and delivers
O(N) time.

Experimental results in Table II and Table III show a subquadratic performance.
Therefore, our method shows empirical subquadratic time complexity.
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