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Abstract—Achieving optimal throughput by extracting parallel-

ism in behavioral synthesis often exaggerates memory bottleneck 

issues. Data partitioning is an important technique for increasing 

memory bandwidth by scheduling multiple simultaneous 

memory accesses to different memory banks. In this paper we 

present a vertical memory partitioning and scheduling algorithm 

that can generate a valid partition scheme for arbitrary affine 

memory inputs. It does this by arranging non-conflicting memory 

accesses across the border of loop iterations. A mixed memory 

partitioning and scheduling algorithm is also proposed to com-

bine the advantages of the vertical and other state-of-art algo-

rithms. A set of theorems is provided as criteria for selecting a 

valid partitioning scheme. This is followed by an optimal and 

scalable memory scheduling algorithm. By utilizing the property 

of constant strides between memory addresses in successive loop 

iterations, an address translation optimization technique for an 

arbitrary partition factor is proposed to improve performance, 

area and energy efficiency. Experimental results show that on a 

set of real-world medical image processing kernels, the proposed 

mixed algorithm with address translation optimization can gain 

speed-up, area reduction and power savings of 15.8%, 36% and 

32.4% respectively, compared to the state-of-art memory parti-

tioning algorithm.  

Keywords-Behavioral Synthesis; Memory Partitioning; Memory 

Scheduling 

I. INTRODUCTION 

 With the exponentially increasing complexity in modern 

SoC designs, behavioral synthesis is gradually being accepted 

by the industry. For example, the AutoESL behavioral synthe-

sis tool [1, 2] is now part of the Vivado Design Suit available 

to all Xilinx FPGA designs. By transforming untimed algo-

rithmic descriptions into hardware implementations, behavior-

al synthesis can significantly reduce time-to-market and de-

sign cost with acceptable performance and power penalties. 

Typical applications for behavioral synthesis are data-

intensive or computation-intensive kernels in signal pro-

cessing and multimedia applications, where general-purpose 

processors often fail to meet the performance/power require-

ments. Such computation kernels are usually loops that ma-

nipulate multiple data elements simultaneously from arrays. 

Loop pipelining [3] is a common optimization technique that 

overlaps different loop iterations to increase performance by 

minimizing initiation interval (II). While more computation 

units can be added to exploit loop-level parallelism for arith-

metic/logic operations, the support of multiple memory ac-

cesses efficiently is a key problem to utilizing the potential 

performance gain made available by loop pipelining.  

It would be expensive and non-scalable in terms of both 

cost and power to simply increase the number of memory 

ports [4]. Moreover, for reconfigurable platforms such as 

FPGAs, the number of ports of on-chip block RAM is fixed. 

Duplicating the target array into multiple copies can support 

multiple simultaneous read operations with significant area 

and power overhead, but it doesn’t support simultaneous 

writes. A better approach is to divide the original data array 

into several disjoint memory banks using memory partitioning. 

At compile time, the behavioral synthesis tool can statically 

analyze the data access pattern of the target array and avoid 

the conflicts among memory accesses by partitioning the array 

into different memory banks.  

In parallel, memory partitioning for distributed computing 

has been studied for decades, where each processing unit ac-

cesses its local memory [5-7]. The ideas of some memory par-

titioning algorithms in distributed computing can be applied to 

memory partitioning in behavioral synthesis. For example, the 

algorithm in [8] that partitions memory into multiple banks to 

avoid communication between multiple tiles on a single chip 

is similar to the vertical partitioning algorithm proposed in this 

paper. However, there are also some fundamental differences 

between these two scenarios. The first difference is that 

memory partitioning in behavioral synthesis must meet cycle-

level data access constraints to avoid simultaneous accesses on 

the same memory block. Therefore, memory partitioning and 

memory scheduling in behavioral synthesis should be an inte-

grated process. The second difference is that in distributed 

computing, all the data elements accessed by a memory refer-

ence have to be bound to the specific local memory bank (or 

processing unit) to which the reference is mapped. In behav-

ioral synthesis multiple accesses of the same memory refer-

ence can access different memory banks in different loop it-

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

IEEE/ACM International Conference on Computer-Aided Design 

(ICCAD) 2012, 
November 5-8, 2012, San Jose, California, USA 
Copyright © 2012 ACM 978-1-4503-1573-9/12/11... $15.00 

488



erations, which will greatly expand the solution space. A third 

difference is that data arrays are typically partitioned into a 

fixed number of banks determined by the hardware configura-

tion(proportional to the number of processors) in distributed 

computing, while the number of partitioned banks, or partition 

factor in behavioral synthesis can be an arbitrary number de-

termined by the data access pattern in a  particular application. 

The works that are most relevant to this paper are [9] and 

[10]. Research in [9] attempts to partition and schedule multi-

ple memory references on a data array in the same loop itera-

tion to multiple cyclic banks to avoid confliction. Memory 

padding was introduced before memory partitioning to handle 

memory references with modulo operations [10]. While these 

works take a first step towards efficient memory support for 

loop pipelining in behavioral synthesis, the algorithms gener-

ate inefficient results for some inputs, as shown in the motiva-

tional examples in Section II.  

In this paper a vertical memory partitioning and scheduling 

algorithm, or a vertical MPS for short, is developed where 

multiple accesses of the same memory reference in different 

loop iterations are scheduled to different memory banks. In 

contrast, approaches in [9-11] that schedule multiple memory 

references in the same loop iteration to non-conflicting 

memory banks are referred to as horizontal MPS in this paper. 

We show that the vertical MPS can generate valid solutions 

for arbitrary affine memory references
1
 within a loop for any 

fixed memory port constraint. Furthermore, a mixed partition-

ing and scheduling algorithm, or a mixed MPS, that combines 

the advantages of both the horizontal and vertical MPS is pro-

posed where different memory references in different itera-

tions on an array can be scheduled simultaneously and effi-

ciently to non-conflicting memory banks.  

Traditionally, partition factors which are powers of 2 are 

always preferred to other factors since modulo and divide op-

erations can be transformed into shift operations that are suita-

ble for hardware implementation. In this paper arbitrary parti-

tion factors are supported using a novel address translation 

technique that considers the regularity of affine memory ac-

cesses between adjacent loop iterations, so that a larger design 

space can be explored for better results.  

Our contributions include the following: (i) A vertical and a 

mixed memory partitioning and scheduling algorithm for effi-

ciently supporting arbitrary multiple affine memory references 

in a loop in behavioral synthesis. (ii) An optimal and scalable 

memory scheduling algorithm finding the maximum matching 

with minimum cost on the bipartite memory scheduling graph. 

(iii) An optimized address translation with arbitrary partition 

factors which are not powers of 2.  

Experimental results show that on a set of real-world medi-

cal image processing kernels, the proposed mixed MPS algo-

rithm with address translation optimization can gain speed-up, 

area reduction, and power saving of 15.8%, 36% and 32.4% 

respectively, compared to the horizontal MPS. 

                                                           
1 The address of an affine memory reference is a linear combination 

of loop induction variables. Research in [12]  shows that the majority 

of array references in loop kernels are affine memory references. 

The remainder of the paper is organized as follows. Section 

II gives a motivational example for our memory partitioning 

and scheduling problem. Section III formulates our problem of 

memory partitioning and scheduling. Section IV presents pro-

posed memory partitioning and scheduling algorithms. Section 

V reports experimental results and is followed by conclusions 

in Section VI. 

II. DEFINITIONS AND A MOTIVATIONAL EXAMPLE 

In this paper, we focus on partitioning and scheduling mul-

tiple memory accesses to different memory banks to support 

simultaneous memory accesses in loop pipelining. For sim-

plicity, loop stride is assumed to be 1 in this paper. Algorithms 

and formulations are easily extended for any constant loop 

stride. Assume that there are m affine memory references 

R1:a1*i+b1, R2:a2*i+b2, …, Rm:am*i+bm on the same array in 

the target loop without dependency constraints among them. 

Rjk is used to represent the k-th loop iteration of Rj, whose ad-

dress is aj*k+bj. Common variables in this paper are shown in 

Table 1. 

DEFINITION 1 (MEMORY PARTITION). A Memory partition is 

described as a function P which maps array access Rjk to parti-

tioned memory banks, i.e., P(Rjk) is the memory bank index 

that Rjk belongs to after partitioning. 

EXAMPLE 1. Cyclic partitioning (shown in Figure 1): 

       (       )    

In this paper, cyclic partitioning is used as the memory par-

titioning scheme where N is the partition factor. 

DEFINITION 2 (MEMORY SCHEDULE). A Memory schedule is 

described as a function T which maps array access Rjk to its 

execution cycles, i.e., T(Rjk) is the cycle to which Rjk  is sched-

uled.  

0 1 2 … 

0 N 2N … 

1 N+1 2N+1 … 

Bank 0 

Bank 1 

N-1 2N-1 3N-1 … Bank N-1 

…… 

Figure 1. Cyclic partitioning 

Table 1. Symbols 
Variables Meaning 

i Loop induction variable 

j,k,l,h,g Temporal variables 

m Number of memory references in each loop iteration 

Rj The j-th affine memory references in the target loop, can be 
expressed in the form of aj*i+bj 

aj, bj Used to express Rj shown above 

Rjk The k-th iteration of affine memory reference  Rj. Can be 

expressed in the form of aj*k+bj 

N Cyclic partition factor 

II Loop iteration interval 

p Memory port number 

VS Valid partition factor set 

VSh, VSv, 

VSm 

Valid partition factor set for horizontal, vertical and mixed 

MPS algorithms 
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DEFINITION 3 (HORIZONTAL SCHEDULE [9]). A Horizontal 

schedule is a memory schedule with scheduling function T that 

satisfies: 

                               

        (   )            . 

EXAMPLE 2. Horizontal scheduling (II=1): 

 (   )     , c is a constant. 

If there are two affine memory references R1:a1*i+b1 and R2: 

a2*i+b2 in a loop with initiation interval II=1 and port p=1, 

research in [9] shows that the valid partition factor N using the 

horizontal MPS must satisfy (1). 

 {
                        

                             
 (1) 

Equation (1) shows that horizontal MPS fails if    
                      , or generates large partition fac-

tors if       is a large prime number, as shown in Table 2.  

To address this problem, vertical schedule is proposed. 

DEFINITION 4 (VERTICAL SCHEDULE). A Vertical schedule is 

a memory schedule with scheduling function T that satisfies: 

                               

                  (   )

                      
where N is the partition factor. 

EXAMPLE 3. Vertical scheduling (II=1): 

 (   )             , c is a constant. 

The difference between the horizontal and vertical MPS can 

be illustrated using Figure 2. In Section IV, we will show that 

the vertical MPS guarantees valid solutions for arbitrary affine 

memory inputs, although it may generate worse results for 

some inputs than the horizontal MPS (shown in Table 1).  

A mixed memory partitioning and scheduling algorithm is 

proposed to combine the advantages of both the horizontal and 

vertical MPS algorithms. Using mixed MPS, different memory 

references in different iterations on an array can be scheduled 

simultaneously to non-conflicting memory banks.  

We use a real-world application, denoise [13] as an example 

to demonstrate the design trade-offs in the memory partition-

ing and scheduling problem. A simplified source code for de-

noise is shown in Figure 3(a). The value of an element is ac-

cumulated with all its neighbors in 8*8*8 three-dimensional 

Table 2. Comparison between horizontal and vertical MPS Algorithms 

Condition 
Example 

Nhorizontal Nvertical 
R1 R2 

                        Failed 4 

                  Failed 4 

           

     
          Failed 3 

      is a large 
prime number 

 +1       N≥127 3 

Case that horizontal 
MPS is better 

       +1 2 3 

 

T
im

e 

R11 R21 

R12 R22 

R10 R20 

R10 R11 

R20 R21 

R12 R13 

R22 R23 

Horizontal MPS  Vertical MPS  

R
13
 R

23
 … …  … …  

#define C    (i+8*j+8*8*k)) 
#define R     (C+1) 
#define L      (C-1) 
#define D     (C+8) 
#define U      (C-8) 
#define O      (C+8*8) 
#define I      (C-8*8) 
for(k = 1; k < 7; k++) 
  for(j = 1; j < 7; j++) 
   for(i = 1; i < 7; i++) 

v[C]=u[C]+u[R]+u[L]+u[D]+u[U]+u[O]+u[I]; 

 
(a) Sample code 

u[C]i u[R]
i
 u[L]

i
 u[D]

i
 u[U]

i
 u[O]

i
 u[I]

i
 

(b) Horizontal MPS (N=10) 

u[D]
i
 u[R]

i
 

N=7 

u[C]
i
 u[D]

i
 

N=8 

u[D]
i
 u[L]

i
 

N=9 
(c) Conflict detection for horizontal MPS 

Cycle 0 

u[C]
i
 u[C]

i+1
 u[C]

i+2
 u[C]

i+3
 u[C]

i+4
 u[C]

i+5
 u[C]

i+6
 Cycle 0 

u[R]
i
 u[R]

i+1
 u[R]

i+2
 u[R]

i+3
 u[R]

i+4
 u[R]

i+5
 u[R]

i+6
 Cycle 1 

u[L]
i
 u[L]

i+1
 u[L]

i+2
 u[L]

i+3
 u[L]

i+4
 u[L]

i+5
 u[L]

i+6
 Cycle 2 

u[D]
i
 u[D]

i+1
 u[D]

i+2
 u[D]

i+3
 u[D]

i+4
 u[D]

i+5
 u[D]

i+6
 Cycle 3 

u[U]
i
 u[U]

i+1
 u[U]

i+2
 u[U]

i+3
 u[U]

i+4
 u[U]

i+5
 u[U]

i+6
 Cycle 4 

u[O]
i
 u[O]

i+1
 u[O]

i+2
 u[O]

i+3
 u[O]

i+4
 u[O]

i+5
 u[O]

i+6
 Cycle 5 

u[I]
i
 u[I]

i+1
 u[I]

i+2
 u[I]

i+3
 u[I]

i+4
 u[I]

i+5
 u[I]

i+6
 Cycle 6 

(d) Vertical MPS (N=7) 

u[O]
i
 Cycle 0 

u[D]
i
 u[O]

i+1
 Cycle 1 

u[C]
i
 u[R]

i
 u[L]

i
 u[D]

i+1
 u[O]

i+2
 Cycle 2 

u[C]
i+1
 u[R]

i+1
 u[L]

i+1
 u[D]

i+2
 u[U]

i
 u[O]

i+3
 Cycle 3 

u[C]
i+2
 u[R]

i+2
 u[L]

i+2
 u[D]

i+3
 u[U]

i+1
 u[O]

i+4
 u[I]

i
 Cycle 4 

(e) Mixed MPS (N=7) 

Figure 2. Comparison between horizontal and vertical MPS algorithms 

Figure 3. A motivational example 
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space to filter out noises. In the innermost loop, there are 7 

data accesses (C, R, L, D, U, O, I for center, right, left, down, 

up, zout and zin) to the same array u. If the target loop is to be 

fully pipelined using single-port memory banks, array u has to 

be cyclic partitioned to multiple (at least 7) memory banks.  

Using the horizontal MPS, seven data references on array u 

in the same i-th iteration (u[C]i, u[R]i, u[L]i, u[D]i, u[U]i, 

u[O]i and u[I]i) are scheduled simultaneously to non-

conflicting memory banks, as shown in Figure 3(b). Since the 

difference between the address of u[D]i and u[R]i is always 7, 

scheduling u[D]i and u[R]i in the same cycle will cause con-

flict if partition factor N=7. Likewise, 8 and 9 can not be used 

as valid partition factors, as shown in Figure 3(c). Therefore, 

array u needs to be partitioned into 10 memory banks.  

Scheduling results using the vertical MPS is shown in Fig-

ure 3(d). In the first cycle, accesses to u[C] in 7 successive 

loop iterations can be loaded simultaneously if the array is 

partitioned into 7 cyclic banks. The loaded values are buffered 

into temporal registers for future use. In the following cycles, 

u[R], u[L], u[D], u[U], u[O] and u[I] in the 6 successive loop 

iterations are also loaded into temporal registers. Accumula-

tion of data values will start at cycle 7 and u[C] in the next 7 

loop iterations will be loaded in buffers. Compared to the hor-

izontal MPS, the vertical MPS can reduce the partition factor 

from 10 to 7, but it adds 6 extra cycle latencies for the whole 

loop with 42 registers overhead.  

Scheduling results using the mixed MPS are shown in Fig-

ure 3(e). In the example, u[C]i+2, u[R]i+2, u[L]i+2, u[D]i+3, 

u[U]i+1, u[O]i+4, u[I]i are scheduled to 7 cyclic banks. Com-

pared to the vertical MPS, a 2-cycle-latency and 25 registers 

can be saved using the mixed MPS. Compared to the horizon-

tal MPS, 3 memory banks can be saved using the vertical and 

mixed MPS algorithms.  

III. PROBLEM FORMULATION 

From the motivational example, we can see that vertical and 

mixed schedules can potentially reduce the number of parti-

tioned memory banks and thus the cost of the overall memory 

subsystem. These are the problems: how to find valid partition 

factors, how to find the memory scheduling with minimum 

cost for a given partition factor and how to find the best parti-

tion and schedule. 

DEFINITION 5 (VALID MEMORY SCHEDULE). Given a loop-

based computation kernel with m affine memory references R1 , 

R2 , …, Rm on the same array, the target throughput requirement 

II, the number of memory ports p, and partition factor N, a 

valid memory schedule is one memory schedule that satisfies 

both throughput and memory port requirements. 

                                  (2) 

Btl={Rjk |        = t and        = l} 

                        
(3) 

where Rjk is scheduled to T(Rjk) with loop prolog c. Equa-

tion (2) formulates memory throughput requirement.     is the 

set of all the memory accesses which access memory bank l in 

cycle t, and (3) formulates the port number requirement. 

DEFINITION 6 (VALID MEMORY SCHEDULE SET). A valid 

memory schedule set SN is a set of valid memory schedules. 

DEFINITION 7 (VALID PARTITION FACTOR SET). A valid par-

tition factor set VS is a set of partition factors with valid 

memory schedules, i.e., VS={N | SN≠ }. 

VSh, VSv and VSm are used to represent the valid partition 

factor set solved by the horizontal, vertical and mixed algo-

rithms respectively. 

The memory partitioning and scheduling problem can be 

divided into the three problems formulated below. 

PROBLEM 1 (MEMORY PARTITIONING). Given a loop-based 

computation kernel with m affine memory references R1 , R2 , …, 

Rm on the same array, target throughput requirement II, num-

ber of memory ports p,  find the valid partition factor set VS. 

PROBLEM 2 (MEMORY SCHEDULING). Given a loop-based 

computation kernel with m affine memory references R1 , R2 , …, 

Rm on the same array, target throughput requirement II, num-

ber of memory ports p, a platform-dependent cost function, 

and a valid partition factor N∈VS, find the memory schedule 

fN∈SN， s.t. for∀   
  SN , cost(fN) ≤cost(  

 ). 

PROBLEM 3 (MEMORY PARTITIONING AND SCHEDULING CO-

OPTIMIZATION). Given a loop-based computation kernel with 

m affine memory references R1 , R2 , …, Rm on the same array, 

target throughput requirement II, memory port limitation p, 

and a platform-dependent cost function, find the memory 

schedule f， s.t. for ∀N∈VS, ∀  
 ∈SN , cost(f) ≤cost(  

 ). 

IV. PARTITIONING AND SCHEDULING ALGORITHMS 

Algorithm 1 is the proposed memory partitioning and 

scheduling algorithm used to solve Problem 3. Partition fac-

tors are enumerated and evaluated from the minimum possible 

partition factor for m memory references. Line 9 tests whether 

N is a valid partition factor (Problem 1, to be solved in Section 

IV.A). Line 11 finds the optimal schedule for the valid parti-

tion factor N (Problem 2, to be solved in Section IV.B). Line 

12 estimates the cost of a schedule (to be discussed in Section 

IV.C). The cost’s lower bound (to be discussed in Section 

IV.C) is a monotonically increasing function with respect to N; 

thus, the exit condition can be tested at line 8 when the cost’s 

lower bound becomes greater than the minimum cost bound. 

Algorithm 1 Partitioning_Scheduling(R, II, p) 

1. /* R: Memory reference set in the loop*/ 

2. /* II: target initiation interval */ 

3. /* p: memory port number */ 

4. /* opt_N: optimal partition factor*/ 

5. /* opt_schedule: optimal schedule */ 

6. min_cost = INF; 

7. for (N=m/II/p;  

8.   min_cost>cost_lbound_N; N++) 

9.   if (!is_valid_partition_factor(N)) 

10.     continue; 
11.   opt_schedule_N=schedule(R, II, p, N); 
12.   cur_cost=cost(opt_schedule_N); 
13.   if (min_cost> cur_cost) 
14.     min_cost=cost;  
15.     opt_N=N; 
16.     opt_schedule=opt_schedule_N; 
17.   end if 
18. end for 
19. return (opt_N,opt_schedule); 
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A. Memory Partitioning Algorithm 

1) Vertical Partitioning Algorithm 

Vertical MPS schedules memory accesses of the same 

memory reference in successive loop iterations simultaneously 

to different memory banks. The constraints for the vertical 

partition for fully pipelining (II=1) and single-port memories 

are: 

                                 

LEMMA 1.  If II=p=1,        

 {

             

             
   

             

 (4) 

PROOF. 

             
                      
                                      

                  

 
  

   (    )
                          

          (    )          

            
 

   (    )
  

 

   (    )
   

 {

             

             
   

             

                                                            

THEOREM 1.        

{

                    

                    
   

                    

 (5) 

Proof omitted due to page limit.  

Theorem 1 implies that       for any memory reference 

patterns, because we can always find a feasible N as   
                        for the conditions above. Alt-

hough other valid partition factors could be much smaller, 

                          gives an upper bound of 

valid solutions. This means that arbitrary affine memory refer-

ences in a loop can be fully pipelined by the vertical MPS. 

Although it is easy to determine whether a given integer sat-

isfies (5), finding an explicit expression of the minimal cyclic 

partition factor is not straightforward. Fortunately, in real-

world applications,    in affine memory references are rela-

tively small, so the upper-bound                   is 

also a moderate number. Enumeration from m to find the min-

imal cyclic partition factor N will not be a compute-intensive 

work. 

2) Mixed Partitioning Algorithm 

As described in the motivational example, the mixed MPS 

schedules memory accesses of the different memory refer-

ences in successive loop iterations to different memory banks 

in different cycles. 

Considering                          , only 

memory accesses in the first N iterations are considered in 

memory partitioning. Memory accesses in later iterations (k>N) 

can be partitioned and scheduled using the same pattern based 

on modulo scheduling. 

DEFINITION 8 (CONFLICT GRAPH). Given m memory refer-

ences Rm on the same array, and cyclic partition factor N, a 

conflict graph G(V,E) is a undirected graph where      (0

≤j<m, 0    ) corresponds to memory access Rj in the k-

th loop iteration, and edge (            iff             . 

The conflict graph reflects pairwise conflict information be-

tween two memory accesses. Note that congruence modulo is 

a transitive relation, so each connected component in a con-

flict graph is a clique. 

DEFINITION 9 (INTRA-REFERENCE CONFLICT GRAPH). The j-

th intra-reference conflict graph Gj (Vj, Ej) is a subgraph of a 

conflict graph G where    (0     ) ∈ Vj, and edge 

(            ) iff             . 

DEFINITION 10 (CONFLICT SET). The conflict set SG(key) of a 

conflict graph G defined as                      

          . 
All elements in a conflict set are connected by a clique in G. 

Figure 4 shows the conflict graph of two memory references 

R1: 9*i+1 and R2: 4*i+1 with partition factor of 6. Since each 

connected component in a conflict graph is a clique, only the 

spanning tree is shown in the figure for simplicity.  

Conflict set:                                 ;       

           ;                       ;.                   

Conflict set of each column:    
    {              } ; 

   
    {              } ;    

    {         } ;    
    

{         }     
    {         }. 

THEOREM 2.         

{
 
 
 

 
 
 

                                       

                

                                       

                
  

                                       

                

           (6) 

where 

     {
       (     )        

           
 (7) 

Proof omitted due to page limit.  

V0,0

V0,1

V0,2

V0,3

V0,4

V0,5

4

V1,0

V1,1

V1,2

V1,3

V1,4

V1,5

3

5

1

9*i+1 4*i+1

Figure 4. Example conflict graph
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The term      in (6) represents whether |   
   |   , or 

whether the j-th intra-reference conflict graph has a conflict 

set with key k. Given input memory references,     can be 

calculated using (7). Therefore, (6) can be used to determine 

whether a given integer N is a valid partition factor. As in the 

vertical MPS, enumeration from m/(II*p) can be used to find 

valid partition factors. 

B. Memory Scheduling 

As formulated in Problem 2, the memory scheduling prob-

lem is to find the valid schedule with minimum cost for a giv-

en valid partition factor      . Considering         

                 ,  only memory accesses in the first N 

iterations are considered in memory scheduling. Memory ac-

cesses in later iterations can also be scheduled according to the 

first N iterations.  

A memory bank can be accessed by different array accesses 

in different cycles. To model this, a memory bank can be 

viewed as multiple virtual slots in different cycles. 

DEFINITION 11 (VIRTUAL MEMORY SLOT). A virtual 

memory slot                            is 

the virtual instance of the g-th port of memory bank l at cycle 

h. 

EXAMPLE 4. Virtual memory slot: 

Suppose II=1, p=2, N=2, the memory system has 8 virtual 

memory slots: S000, S001, S010, S011, S100, S101, S110, S111. 

With the concept of the virtual memory slot, in a valid 

memory schedule at most one memory access is scheduled to 

any virtual memory slot. The entire scheduling space can be 

described using a memory-scheduling graph. 

DEFINITION 12 (MEMORY-SCHEDULING GRAPH). Given m 

memory references R0, R1, …, Rm-1 on the same array, cyclic 

partition factor      , a memory-scheduling graph 

SG(     , E) is a undirected bipartite graph where    

{    |             corresponds to memory access 

Rj in the k-th loop iteration,                    

          corresponds to the virtual instance of the g-th 

port of memory bank l in cycle h, and edge (             iff 

           .  

An edge (          in a memory scheduling graph means 

that the memory reference Rjk can be scheduled to the virtual 

memory slot     . An optimal memory schedule is a maxi-

mum matching on the bipartite graph SG, where each memory 

access is scheduled to a virtual memory slot, and each virtual 

memory slot will serve at most one memory access. 

Figure 5(a) shows an example memory scheduling graph 

with R1: i, R2:i+9 and N=2, II=p=1. Figure 5(b) and Figure 5(c) 

show the horizontal and vertical scheduling respectively.  

For a given      , area of memory and address transla-

tion logic is fixed. Therefore, we formulate the cost of a 

memory schedule as the number of buffer registers needed. 

Suppose     is matched to     . No buffer registers are needed 

if h=k*II, when the k-th iteration of memory reference Rj is 

scheduled to the l-th memory bank in cycle k*II. A read/write 

buffer register is needed if h≠k*II. If h>k*II and Rj is a read 

operation, Rjk can be scheduled to cycle h-N using modulo 

scheduling [14]. So the weight of an edge can be defined as: 

    (        )  {
           
           

. 

With these definitions, the optimal memory-scheduling 

problem can be converted to the problem of finding the maxi-

mum matching with minimum cost on the weighted bipartite 

memory-scheduling graph; this can be solved by the Hungari-

an algorithm in polynomial time [15]. 

C. Cost Optimization and Estimation 

1) Address Translation Optimization(ATO) 

As shown in Section II, modulo and divide operations are 

used in address translation for cyclic partitioning. If partition 

factor N is a power of 2, the modulo and divide operations can 

be easily done by selecting bits from the input addresses. Oth-

erwise, they have to be implemented using non-trivial logic 

resources. This is why designers are usually encouraged or 

even restricted to use powers of 2 as partition factors which 

may generate suboptimal results.  

Instead of random addresses, addresses for affine memory 

accesses within loops are much more regular with constant 

stride between adjacent iterations. Considering this, the 

bank_idi+1 and offset_within_banki+1 in the (i+1)-th loop itera-

tion can be calculated using bank_idi and offseti in the previ-

ous i-th loop iteration.  

Suppose a = k*N + l (0≤l<N), then  

           {
                          

                            
 (8) 

          {
                         

                           
 (9) 

Bank_id0 and offset0 can be calculated statically by behav-

ioral synthesis tools at design time. At run-time, bank_idi+1 

and offseti+1 can be generated from buffered bank_idi and off-

seti in the previous iteration
2
. Instead of expensive modulo and 

divide operation, the proposed address translation optimization 

(ATO) technique only uses simple operations (1 compare, 1 

sub and 2 add operations) and two registers, which will greatly 

improve performance, area and energy efficiency. With ATO, 

the address translation cost for arbitrary partition factors 

which are not powers of 2 is greatly reduced. Thus, a larger 

                                                           
2 For each memory reference in the loop, the address translation is 

done at the beginning of the loop. This enables seamless support of 

data-dependent control flow in the loop body in case of memory ref-

erences which are not accessed for each value taken by the induction 

variable. 
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design space can be explored to obtain better results.  

2) Overhead Estimization 

Figure 6 shows the block diagram of a partitioned memory 

system. It consists of memory banks, address translation unit, 

control FSM, possible read/write buffer registers, N input 

MUXs and m output MUXs. 

The overhead of the partitioned memory system can be es-

timated using platform-specific cost functions, which can be 

area- or power- oriented. Take the FPGA platform as an ex-

ample: the number of BRAMs is   ⌈⌈
          

 
⌉  

         ⌉. The cost of the control FSM unit is proportional 

to N. With the proposed address translation optimization tech-

nique, the cost of an address translation unit is proportional to 

the number of memory references m and independent of parti-

tion factor N. The number of buffer registers REG_N can be 

calculated by finding minimum matching on the bipartite 

memory-scheduling graph described in Section IV.B. The 

number of inputs to the k-th input MUX is ∑    
   
    where     

is defined in (7). CMUX(m) is the plat-form dependent cost of 

m-input multiplexer. The number of inputs to the j-th output 

MUX is N/gcd(aj, N). Therefore, the cost of optimal memory 

scheduling with partition factor N is illustrated by (10) for 

FPGAs where             are platform-dependent parameters. 

Costlbound in (11) is monotonically increasing with N, and thus 

can be used in Algorithm 1 as the exit condition. 

          ⌈
⌈
         

 
⌉

        
⌉                  

 ∑       ∑       
   

   

   

   
∑       

 

   (    )
  

   

   
 

(10) 

                             (11) 

V. EXPERIMENTAL RESULTS 

A. Experiment Setup 

Horizontal, vertical and mixed MPS algorithms are imple-

mented as a source-to-source transformation pass. Loop ker-

nels in behavioral languages like C and design constrains in-

cluding memory port limitation and target II are taken as input. 

The memory partitioning and scheduling results are dumped 

into transformed source programs and accepted by the down-

stream behavioral synthesis tools. 

Our test cases include a set of real-life medical imaging 

processing kernels: denoise, registration, binarization, seg-

mentation and deconvolution [16]. All of these kernels have 

abundant memory accesses to the same image data array and 

are perfect examples for testing our MPS algorithms.  

Although our algorithm is applicable to both ASIC and 

FPGA designs, we chose FPGA as the target device in this 

work because of the availability of downstream behavioral 

synthesis and implementation tools. The Xilinx Virtex-6 

FPGA, AutoESL 2011.4 and ISE 13.2 tools are used in our 

experiments. Area utilization and critical path are reported by 

ISE, and power data is reported by AutoESL. 

B. Case Study: Denoise 

The denoise program is used as a case study to compare 

various approaches in memory partitioning and scheduling. 

Loop II and memory port number p is set to 1 in the experi-

ment. The test results are shown in Table 3.  

Horizontal, vertical and mixed memory algorithms are ap-

plied to the design. For each kind of algorithm, partition factor 

can be an arbitrary number or restricted to power of 2. Ad-

dress translation optimization (ATO) can be applied to parti-

tion factors which are not powers of 2.  

From the results, we can see that compared to the horizontal 

MPS, the vertical MPS can reduce the number of block RAMs 

at the cost of slices and DSPs due to the complex address 

translation patterns. The mixed MPS is always better than both 

the horizontal and vertical MPS algorithms in terms of area, 

power and latency. The ATO techniques can be used to reduce 

both area and power by reducing the number of DSPs signifi-

cantly. With ATO, the minimum partition factor is preferred to 

the partition factor with power of 2. Among all approaches, 

mixed-ATO shows the best performance, area-efficiency and 

power-efficiency. Experimental results of all other test cases 

are consistent with these observations.  

C. Test Results 

Test results on all five test cases are listed in Table 4. The 

horizontal MPS and mixed MPS with ATO are compared in 

terms of power, critical path delay, the number of slices, block 

RAMs and DSPs. On average, our proposed mixed MPS with 

ATO can improve area efficiency by 38.9%, 36% and 99.1% 

in terms of slices, block RAMs and DSPs compared to the 

state-of-art horizontal MPS algorithm. A significant reduction 

in DSPs is mainly achieved by using ATO techniques. The 

mixed MPS with ATO can also improve power efficiency and 

performance by 32.4% and 15.8%. 

Table 3. Test results of Denoise 

 
Slices RAMBs DSPs Power CP(ns) 

horizontal 529 10 6 679 7.002 

horizontal-ATO 459 10 0 537 7.287 

horizontal-2^n 3254 256 0 5239 7.335 

vertical 1007 7 72 1597 7.259 

vertical-ATO 701 7 0 1403 6.505 

vertical-2^n 1059 8 0 2477 7.105 

mixed 511 7 6 573 6.33 

mixed-ATO 427 7 0 510 6.956 

mixed-2^n 555 8 0 549 7.046 

 

Figure 6. Block diagram of a partitioned memory system 
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VI. CONCLUSION 

In this paper we propose a vertical and a mixed memory 

partitioning and scheduling algorithm. Our algorithm can gen-

erate optimal memory partitioning and scheduling schemes for 

arbitrary affine memory inputs by arranging non-conflicting 

memory accesses across the border of loop iterations. By uti-

lizing the property of constant strides between successive loop 

iterations, we propose an address translation optimization for 

an arbitrary partition factor to improve performance, area and 

energy efficiency. Experimental results show that on a set of 

real-world medical image processing kernels, the proposed 

mixed MPS algorithm with address translation optimization 

can gain speed-up, area reduction and power savings of 15.8%, 

36% and 32.4% respectively, compared to the state-of-art 

memory partitioning and scheduling algorithm.  
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Table 4. Test results on all test cases 

 Slices BRAMs DSPs Pwr. CP ns 

De-

noise 

Horizontal 529 10 6 679 7.002 

Mixed-ATO 427 7 0 510 6.956 
Comp(%) -19.3 -30.0 -100 -24.9 0.7 

Regis-
tration 

Horizontal 486 10 5 358 7.208 

Mixed-ATO 289 6 0 305 5.409 
Comp(%) -40.5 -40.0 -100 -14.8 -25.0 

Bina-

riza-
tion 

Horizontal 369 10 5 392 7.002 

Mixed-ATO 238 5 0 297 5.293 
Comp(%) -35.5 -50.0 -100 -24.2 -24.4 

Seg-
men-

tation 

Horizontal 671 10 9 891 7.302 

Mixed-ATO 452 7 0 620 6.132 
Comp(%) -32.6 -30.0 -100 -30.4 -16.0 

Decon

con-
volu-

tion 

Horizontal 1674 10 141 1790 7.4 

Mixed-ATO 556 7 6 581 6.339 

Comp(%) -66.8 -30.0 -95.7 -67.5 -14.3 

Aver-
age 

Comp(%) -38.9 -36.0 -99.1 -32.4 -15.8 
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