
Memory Partitioning and Scheduling Co-optimization

in Behavioral Synthesis

Peng Li,
1
 Yuxin Wang,

1
 Peng Zhang,

2
 Guojie Luo,

1
 Tao Wang,

1,3
Jason Cong

1,2,3

1
Center for Energy-Efficient Computing and Applications, School of EECS, Peking University, Beijing, 100871, China

2
Computer Science Department, University of California, Los Angeles, Los Angeles, CA 90095, USA

3
UCLA/PKU Joint Research Institute in Science and Engineering

{peng.li, ayer.wang, gluo, wangtao}@pku.edu.cn, {cong, pengzh}@cs.ucla.edu

Abstract—Achieving optimal throughput by extracting parallel-

ism in behavioral synthesis often exaggerates memory bottleneck

issues. Data partitioning is an important technique for increasing

memory bandwidth by scheduling multiple simultaneous

memory accesses to different memory banks. In this paper we

present a vertical memory partitioning and scheduling algorithm

that can generate a valid partition scheme for arbitrary affine

memory inputs. It does this by arranging non-conflicting memory

accesses across the border of loop iterations. A mixed memory

partitioning and scheduling algorithm is also proposed to com-

bine the advantages of the vertical and other state-of-art algo-

rithms. A set of theorems is provided as criteria for selecting a

valid partitioning scheme. This is followed by an optimal and

scalable memory scheduling algorithm. By utilizing the property

of constant strides between memory addresses in successive loop

iterations, an address translation optimization technique for an

arbitrary partition factor is proposed to improve performance,

area and energy efficiency. Experimental results show that on a

set of real-world medical image processing kernels, the proposed

mixed algorithm with address translation optimization can gain

speed-up, area reduction and power savings of 15.8%, 36% and

32.4% respectively, compared to the state-of-art memory parti-

tioning algorithm.

Keywords-Behavioral Synthesis; Memory Partitioning; Memory

Scheduling

I. INTRODUCTION

 With the exponentially increasing complexity in modern

SoC designs, behavioral synthesis is gradually being accepted

by the industry. For example, the AutoESL behavioral synthe-

sis tool [1, 2] is now part of the Vivado Design Suit available

to all Xilinx FPGA designs. By transforming untimed algo-

rithmic descriptions into hardware implementations, behavior-

al synthesis can significantly reduce time-to-market and de-

sign cost with acceptable performance and power penalties.

Typical applications for behavioral synthesis are data-

intensive or computation-intensive kernels in signal pro-

cessing and multimedia applications, where general-purpose

processors often fail to meet the performance/power require-

ments. Such computation kernels are usually loops that ma-

nipulate multiple data elements simultaneously from arrays.

Loop pipelining [3] is a common optimization technique that

overlaps different loop iterations to increase performance by

minimizing initiation interval (II). While more computation

units can be added to exploit loop-level parallelism for arith-

metic/logic operations, the support of multiple memory ac-

cesses efficiently is a key problem to utilizing the potential

performance gain made available by loop pipelining.

It would be expensive and non-scalable in terms of both

cost and power to simply increase the number of memory

ports [4]. Moreover, for reconfigurable platforms such as

FPGAs, the number of ports of on-chip block RAM is fixed.

Duplicating the target array into multiple copies can support

multiple simultaneous read operations with significant area

and power overhead, but it doesn’t support simultaneous

writes. A better approach is to divide the original data array

into several disjoint memory banks using memory partitioning.

At compile time, the behavioral synthesis tool can statically

analyze the data access pattern of the target array and avoid

the conflicts among memory accesses by partitioning the array

into different memory banks.

In parallel, memory partitioning for distributed computing

has been studied for decades, where each processing unit ac-

cesses its local memory [5-7]. The ideas of some memory par-

titioning algorithms in distributed computing can be applied to

memory partitioning in behavioral synthesis. For example, the

algorithm in [8] that partitions memory into multiple banks to

avoid communication between multiple tiles on a single chip

is similar to the vertical partitioning algorithm proposed in this

paper. However, there are also some fundamental differences

between these two scenarios. The first difference is that

memory partitioning in behavioral synthesis must meet cycle-

level data access constraints to avoid simultaneous accesses on

the same memory block. Therefore, memory partitioning and

memory scheduling in behavioral synthesis should be an inte-

grated process. The second difference is that in distributed

computing, all the data elements accessed by a memory refer-

ence have to be bound to the specific local memory bank (or

processing unit) to which the reference is mapped. In behav-

ioral synthesis multiple accesses of the same memory refer-

ence can access different memory banks in different loop it-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IEEE/ACM International Conference on Computer-Aided Design

(ICCAD) 2012,
November 5-8, 2012, San Jose, California, USA
Copyright © 2012 ACM 978-1-4503-1573-9/12/11... $15.00

488

erations, which will greatly expand the solution space. A third

difference is that data arrays are typically partitioned into a

fixed number of banks determined by the hardware configura-

tion(proportional to the number of processors) in distributed

computing, while the number of partitioned banks, or partition

factor in behavioral synthesis can be an arbitrary number de-

termined by the data access pattern in a particular application.

The works that are most relevant to this paper are [9] and

[10]. Research in [9] attempts to partition and schedule multi-

ple memory references on a data array in the same loop itera-

tion to multiple cyclic banks to avoid confliction. Memory

padding was introduced before memory partitioning to handle

memory references with modulo operations [10]. While these

works take a first step towards efficient memory support for

loop pipelining in behavioral synthesis, the algorithms gener-

ate inefficient results for some inputs, as shown in the motiva-

tional examples in Section II.

In this paper a vertical memory partitioning and scheduling

algorithm, or a vertical MPS for short, is developed where

multiple accesses of the same memory reference in different

loop iterations are scheduled to different memory banks. In

contrast, approaches in [9-11] that schedule multiple memory

references in the same loop iteration to non-conflicting

memory banks are referred to as horizontal MPS in this paper.

We show that the vertical MPS can generate valid solutions

for arbitrary affine memory references
1
 within a loop for any

fixed memory port constraint. Furthermore, a mixed partition-

ing and scheduling algorithm, or a mixed MPS, that combines

the advantages of both the horizontal and vertical MPS is pro-

posed where different memory references in different itera-

tions on an array can be scheduled simultaneously and effi-

ciently to non-conflicting memory banks.

Traditionally, partition factors which are powers of 2 are

always preferred to other factors since modulo and divide op-

erations can be transformed into shift operations that are suita-

ble for hardware implementation. In this paper arbitrary parti-

tion factors are supported using a novel address translation

technique that considers the regularity of affine memory ac-

cesses between adjacent loop iterations, so that a larger design

space can be explored for better results.

Our contributions include the following: (i) A vertical and a

mixed memory partitioning and scheduling algorithm for effi-

ciently supporting arbitrary multiple affine memory references

in a loop in behavioral synthesis. (ii) An optimal and scalable

memory scheduling algorithm finding the maximum matching

with minimum cost on the bipartite memory scheduling graph.

(iii) An optimized address translation with arbitrary partition

factors which are not powers of 2.

Experimental results show that on a set of real-world medi-

cal image processing kernels, the proposed mixed MPS algo-

rithm with address translation optimization can gain speed-up,

area reduction, and power saving of 15.8%, 36% and 32.4%

respectively, compared to the horizontal MPS.

1 The address of an affine memory reference is a linear combination

of loop induction variables. Research in [12] shows that the majority

of array references in loop kernels are affine memory references.

The remainder of the paper is organized as follows. Section

II gives a motivational example for our memory partitioning

and scheduling problem. Section III formulates our problem of

memory partitioning and scheduling. Section IV presents pro-

posed memory partitioning and scheduling algorithms. Section

V reports experimental results and is followed by conclusions

in Section VI.

II. DEFINITIONS AND A MOTIVATIONAL EXAMPLE

In this paper, we focus on partitioning and scheduling mul-

tiple memory accesses to different memory banks to support

simultaneous memory accesses in loop pipelining. For sim-

plicity, loop stride is assumed to be 1 in this paper. Algorithms

and formulations are easily extended for any constant loop

stride. Assume that there are m affine memory references

R1:a1*i+b1, R2:a2*i+b2, …, Rm:am*i+bm on the same array in

the target loop without dependency constraints among them.

Rjk is used to represent the k-th loop iteration of Rj, whose ad-

dress is aj*k+bj. Common variables in this paper are shown in

Table 1.

DEFINITION 1 (MEMORY PARTITION). A Memory partition is

described as a function P which maps array access Rjk to parti-

tioned memory banks, i.e., P(Rjk) is the memory bank index

that Rjk belongs to after partitioning.

EXAMPLE 1. Cyclic partitioning (shown in Figure 1):

 ()

In this paper, cyclic partitioning is used as the memory par-

titioning scheme where N is the partition factor.

DEFINITION 2 (MEMORY SCHEDULE). A Memory schedule is

described as a function T which maps array access Rjk to its

execution cycles, i.e., T(Rjk) is the cycle to which Rjk is sched-

uled.

0 1 2 …

0 N 2N …

1 N+1 2N+1 …

Bank 0

Bank 1

N-1 2N-1 3N-1 … Bank N-1

……

Figure 1. Cyclic partitioning

Table 1. Symbols
Variables Meaning

i Loop induction variable

j,k,l,h,g Temporal variables

m Number of memory references in each loop iteration

Rj The j-th affine memory references in the target loop, can be
expressed in the form of aj*i+bj

aj, bj Used to express Rj shown above

Rjk The k-th iteration of affine memory reference Rj. Can be

expressed in the form of aj*k+bj

N Cyclic partition factor

II Loop iteration interval

p Memory port number

VS Valid partition factor set

VSh, VSv,

VSm

Valid partition factor set for horizontal, vertical and mixed

MPS algorithms

489

DEFINITION 3 (HORIZONTAL SCHEDULE [9]). A Horizontal

schedule is a memory schedule with scheduling function T that

satisfies:

 () .

EXAMPLE 2. Horizontal scheduling (II=1):

 () , c is a constant.

If there are two affine memory references R1:a1*i+b1 and R2:

a2*i+b2 in a loop with initiation interval II=1 and port p=1,

research in [9] shows that the valid partition factor N using the

horizontal MPS must satisfy (1).

 {

 (1)

Equation (1) shows that horizontal MPS fails if
 , or generates large partition fac-

tors if is a large prime number, as shown in Table 2.

To address this problem, vertical schedule is proposed.

DEFINITION 4 (VERTICAL SCHEDULE). A Vertical schedule is

a memory schedule with scheduling function T that satisfies:

 ()

where N is the partition factor.

EXAMPLE 3. Vertical scheduling (II=1):

 () , c is a constant.

The difference between the horizontal and vertical MPS can

be illustrated using Figure 2. In Section IV, we will show that

the vertical MPS guarantees valid solutions for arbitrary affine

memory inputs, although it may generate worse results for

some inputs than the horizontal MPS (shown in Table 1).

A mixed memory partitioning and scheduling algorithm is

proposed to combine the advantages of both the horizontal and

vertical MPS algorithms. Using mixed MPS, different memory

references in different iterations on an array can be scheduled

simultaneously to non-conflicting memory banks.

We use a real-world application, denoise [13] as an example

to demonstrate the design trade-offs in the memory partition-

ing and scheduling problem. A simplified source code for de-

noise is shown in Figure 3(a). The value of an element is ac-

cumulated with all its neighbors in 8*8*8 three-dimensional

Table 2. Comparison between horizontal and vertical MPS Algorithms

Condition
Example

Nhorizontal Nvertical
R1 R2

 Failed 4

 Failed 4

 Failed 3

 is a large
prime number

 +1 N≥127 3

Case that horizontal
MPS is better

 +1 2 3

T
im

e

R11 R21

R12 R22

R10 R20

R10 R11

R20 R21

R12 R13

R22 R23

Horizontal MPS Vertical MPS

R
13
 R

23
 … … … …

#define C (i+8*j+8*8*k))
#define R (C+1)
#define L (C-1)
#define D (C+8)
#define U (C-8)
#define O (C+8*8)
#define I (C-8*8)
for(k = 1; k < 7; k++)
 for(j = 1; j < 7; j++)
 for(i = 1; i < 7; i++)

v[C]=u[C]+u[R]+u[L]+u[D]+u[U]+u[O]+u[I];

(a) Sample code

u[C]i u[R]
i
 u[L]

i
 u[D]

i
 u[U]

i
 u[O]

i
 u[I]

i

(b) Horizontal MPS (N=10)

u[D]
i
 u[R]

i

N=7

u[C]
i
 u[D]

i

N=8

u[D]
i
 u[L]

i

N=9
(c) Conflict detection for horizontal MPS

Cycle 0

u[C]
i
 u[C]

i+1
 u[C]

i+2
 u[C]

i+3
 u[C]

i+4
 u[C]

i+5
 u[C]

i+6
 Cycle 0

u[R]
i
 u[R]

i+1
 u[R]

i+2
 u[R]

i+3
 u[R]

i+4
 u[R]

i+5
 u[R]

i+6
 Cycle 1

u[L]
i
 u[L]

i+1
 u[L]

i+2
 u[L]

i+3
 u[L]

i+4
 u[L]

i+5
 u[L]

i+6
 Cycle 2

u[D]
i
 u[D]

i+1
 u[D]

i+2
 u[D]

i+3
 u[D]

i+4
 u[D]

i+5
 u[D]

i+6
 Cycle 3

u[U]
i
 u[U]

i+1
 u[U]

i+2
 u[U]

i+3
 u[U]

i+4
 u[U]

i+5
 u[U]

i+6
 Cycle 4

u[O]
i
 u[O]

i+1
 u[O]

i+2
 u[O]

i+3
 u[O]

i+4
 u[O]

i+5
 u[O]

i+6
 Cycle 5

u[I]
i
 u[I]

i+1
 u[I]

i+2
 u[I]

i+3
 u[I]

i+4
 u[I]

i+5
 u[I]

i+6
 Cycle 6

(d) Vertical MPS (N=7)

u[O]
i
 Cycle 0

u[D]
i
 u[O]

i+1
 Cycle 1

u[C]
i
 u[R]

i
 u[L]

i
 u[D]

i+1
 u[O]

i+2
 Cycle 2

u[C]
i+1
 u[R]

i+1
 u[L]

i+1
 u[D]

i+2
 u[U]

i
 u[O]

i+3
 Cycle 3

u[C]
i+2
 u[R]

i+2
 u[L]

i+2
 u[D]

i+3
 u[U]

i+1
 u[O]

i+4
 u[I]

i
 Cycle 4

(e) Mixed MPS (N=7)

Figure 2. Comparison between horizontal and vertical MPS algorithms

Figure 3. A motivational example

490

space to filter out noises. In the innermost loop, there are 7

data accesses (C, R, L, D, U, O, I for center, right, left, down,

up, zout and zin) to the same array u. If the target loop is to be

fully pipelined using single-port memory banks, array u has to

be cyclic partitioned to multiple (at least 7) memory banks.

Using the horizontal MPS, seven data references on array u

in the same i-th iteration (u[C]i, u[R]i, u[L]i, u[D]i, u[U]i,

u[O]i and u[I]i) are scheduled simultaneously to non-

conflicting memory banks, as shown in Figure 3(b). Since the

difference between the address of u[D]i and u[R]i is always 7,

scheduling u[D]i and u[R]i in the same cycle will cause con-

flict if partition factor N=7. Likewise, 8 and 9 can not be used

as valid partition factors, as shown in Figure 3(c). Therefore,

array u needs to be partitioned into 10 memory banks.

Scheduling results using the vertical MPS is shown in Fig-

ure 3(d). In the first cycle, accesses to u[C] in 7 successive

loop iterations can be loaded simultaneously if the array is

partitioned into 7 cyclic banks. The loaded values are buffered

into temporal registers for future use. In the following cycles,

u[R], u[L], u[D], u[U], u[O] and u[I] in the 6 successive loop

iterations are also loaded into temporal registers. Accumula-

tion of data values will start at cycle 7 and u[C] in the next 7

loop iterations will be loaded in buffers. Compared to the hor-

izontal MPS, the vertical MPS can reduce the partition factor

from 10 to 7, but it adds 6 extra cycle latencies for the whole

loop with 42 registers overhead.

Scheduling results using the mixed MPS are shown in Fig-

ure 3(e). In the example, u[C]i+2, u[R]i+2, u[L]i+2, u[D]i+3,

u[U]i+1, u[O]i+4, u[I]i are scheduled to 7 cyclic banks. Com-

pared to the vertical MPS, a 2-cycle-latency and 25 registers

can be saved using the mixed MPS. Compared to the horizon-

tal MPS, 3 memory banks can be saved using the vertical and

mixed MPS algorithms.

III. PROBLEM FORMULATION

From the motivational example, we can see that vertical and

mixed schedules can potentially reduce the number of parti-

tioned memory banks and thus the cost of the overall memory

subsystem. These are the problems: how to find valid partition

factors, how to find the memory scheduling with minimum

cost for a given partition factor and how to find the best parti-

tion and schedule.

DEFINITION 5 (VALID MEMORY SCHEDULE). Given a loop-

based computation kernel with m affine memory references R1 ,

R2 , …, Rm on the same array, the target throughput requirement

II, the number of memory ports p, and partition factor N, a

valid memory schedule is one memory schedule that satisfies

both throughput and memory port requirements.

 (2)

Btl={Rjk | = t and = l}

(3)

where Rjk is scheduled to T(Rjk) with loop prolog c. Equa-

tion (2) formulates memory throughput requirement. is the

set of all the memory accesses which access memory bank l in

cycle t, and (3) formulates the port number requirement.

DEFINITION 6 (VALID MEMORY SCHEDULE SET). A valid

memory schedule set SN is a set of valid memory schedules.

DEFINITION 7 (VALID PARTITION FACTOR SET). A valid par-

tition factor set VS is a set of partition factors with valid

memory schedules, i.e., VS={N | SN≠ }.

VSh, VSv and VSm are used to represent the valid partition

factor set solved by the horizontal, vertical and mixed algo-

rithms respectively.

The memory partitioning and scheduling problem can be

divided into the three problems formulated below.

PROBLEM 1 (MEMORY PARTITIONING). Given a loop-based

computation kernel with m affine memory references R1 , R2 , …,

Rm on the same array, target throughput requirement II, num-

ber of memory ports p, find the valid partition factor set VS.

PROBLEM 2 (MEMORY SCHEDULING). Given a loop-based

computation kernel with m affine memory references R1 , R2 , …,

Rm on the same array, target throughput requirement II, num-

ber of memory ports p, a platform-dependent cost function,

and a valid partition factor N∈VS, find the memory schedule

fN∈SN， s.t. for∀
 SN , cost(fN) ≤cost(

).

PROBLEM 3 (MEMORY PARTITIONING AND SCHEDULING CO-

OPTIMIZATION). Given a loop-based computation kernel with

m affine memory references R1 , R2 , …, Rm on the same array,

target throughput requirement II, memory port limitation p,

and a platform-dependent cost function, find the memory

schedule f， s.t. for ∀N∈VS, ∀
 ∈SN , cost(f) ≤cost(

).

IV. PARTITIONING AND SCHEDULING ALGORITHMS

Algorithm 1 is the proposed memory partitioning and

scheduling algorithm used to solve Problem 3. Partition fac-

tors are enumerated and evaluated from the minimum possible

partition factor for m memory references. Line 9 tests whether

N is a valid partition factor (Problem 1, to be solved in Section

IV.A). Line 11 finds the optimal schedule for the valid parti-

tion factor N (Problem 2, to be solved in Section IV.B). Line

12 estimates the cost of a schedule (to be discussed in Section

IV.C). The cost’s lower bound (to be discussed in Section

IV.C) is a monotonically increasing function with respect to N;

thus, the exit condition can be tested at line 8 when the cost’s

lower bound becomes greater than the minimum cost bound.

Algorithm 1 Partitioning_Scheduling(R, II, p)

1. /* R: Memory reference set in the loop*/

2. /* II: target initiation interval */

3. /* p: memory port number */

4. /* opt_N: optimal partition factor*/

5. /* opt_schedule: optimal schedule */

6. min_cost = INF;

7. for (N=m/II/p;

8. min_cost>cost_lbound_N; N++)

9. if (!is_valid_partition_factor(N))

10. continue;
11. opt_schedule_N=schedule(R, II, p, N);
12. cur_cost=cost(opt_schedule_N);
13. if (min_cost> cur_cost)
14. min_cost=cost;
15. opt_N=N;
16. opt_schedule=opt_schedule_N;
17. end if
18. end for
19. return (opt_N,opt_schedule);

491

A. Memory Partitioning Algorithm

1) Vertical Partitioning Algorithm

Vertical MPS schedules memory accesses of the same

memory reference in successive loop iterations simultaneously

to different memory banks. The constraints for the vertical

partition for fully pipelining (II=1) and single-port memories

are:

LEMMA 1. If II=p=1,

 {

 (4)

PROOF.

 ()

 ()

 ()

 ()

 {

THEOREM 1.

{

 (5)

Proof omitted due to page limit.

Theorem 1 implies that for any memory reference

patterns, because we can always find a feasible N as
 for the conditions above. Alt-

hough other valid partition factors could be much smaller,

 gives an upper bound of

valid solutions. This means that arbitrary affine memory refer-

ences in a loop can be fully pipelined by the vertical MPS.

Although it is easy to determine whether a given integer sat-

isfies (5), finding an explicit expression of the minimal cyclic

partition factor is not straightforward. Fortunately, in real-

world applications, in affine memory references are rela-

tively small, so the upper-bound is

also a moderate number. Enumeration from m to find the min-

imal cyclic partition factor N will not be a compute-intensive

work.

2) Mixed Partitioning Algorithm

As described in the motivational example, the mixed MPS

schedules memory accesses of the different memory refer-

ences in successive loop iterations to different memory banks

in different cycles.

Considering , only

memory accesses in the first N iterations are considered in

memory partitioning. Memory accesses in later iterations (k>N)

can be partitioned and scheduled using the same pattern based

on modulo scheduling.

DEFINITION 8 (CONFLICT GRAPH). Given m memory refer-

ences Rm on the same array, and cyclic partition factor N, a

conflict graph G(V,E) is a undirected graph where (0

≤j<m, 0) corresponds to memory access Rj in the k-

th loop iteration, and edge (iff .

The conflict graph reflects pairwise conflict information be-

tween two memory accesses. Note that congruence modulo is

a transitive relation, so each connected component in a con-

flict graph is a clique.

DEFINITION 9 (INTRA-REFERENCE CONFLICT GRAPH). The j-

th intra-reference conflict graph Gj (Vj, Ej) is a subgraph of a

conflict graph G where (0) ∈ Vj, and edge

() iff .

DEFINITION 10 (CONFLICT SET). The conflict set SG(key) of a

conflict graph G defined as

 .
All elements in a conflict set are connected by a clique in G.

Figure 4 shows the conflict graph of two memory references

R1: 9*i+1 and R2: 4*i+1 with partition factor of 6. Since each

connected component in a conflict graph is a clique, only the

spanning tree is shown in the figure for simplicity.

Conflict set: ;

 ; ;.

Conflict set of each column:
 { } ;

 { } ;

 { } ;

{ }
 { }.

THEOREM 2.

{

 (6)

where

 {
 ()

 (7)

Proof omitted due to page limit.

V0,0

V0,1

V0,2

V0,3

V0,4

V0,5

4

V1,0

V1,1

V1,2

V1,3

V1,4

V1,5

3

5

1

9*i+1 4*i+1

Figure 4. Example conflict graph

492

The term in (6) represents whether |
 | , or

whether the j-th intra-reference conflict graph has a conflict

set with key k. Given input memory references, can be

calculated using (7). Therefore, (6) can be used to determine

whether a given integer N is a valid partition factor. As in the

vertical MPS, enumeration from m/(II*p) can be used to find

valid partition factors.

B. Memory Scheduling

As formulated in Problem 2, the memory scheduling prob-

lem is to find the valid schedule with minimum cost for a giv-

en valid partition factor . Considering

 , only memory accesses in the first N

iterations are considered in memory scheduling. Memory ac-

cesses in later iterations can also be scheduled according to the

first N iterations.

A memory bank can be accessed by different array accesses

in different cycles. To model this, a memory bank can be

viewed as multiple virtual slots in different cycles.

DEFINITION 11 (VIRTUAL MEMORY SLOT). A virtual

memory slot is

the virtual instance of the g-th port of memory bank l at cycle

h.

EXAMPLE 4. Virtual memory slot:

Suppose II=1, p=2, N=2, the memory system has 8 virtual

memory slots: S000, S001, S010, S011, S100, S101, S110, S111.

With the concept of the virtual memory slot, in a valid

memory schedule at most one memory access is scheduled to

any virtual memory slot. The entire scheduling space can be

described using a memory-scheduling graph.

DEFINITION 12 (MEMORY-SCHEDULING GRAPH). Given m

memory references R0, R1, …, Rm-1 on the same array, cyclic

partition factor , a memory-scheduling graph

SG(, E) is a undirected bipartite graph where

{ | corresponds to memory access

Rj in the k-th loop iteration,

 corresponds to the virtual instance of the g-th

port of memory bank l in cycle h, and edge (iff

 .

An edge (in a memory scheduling graph means

that the memory reference Rjk can be scheduled to the virtual

memory slot . An optimal memory schedule is a maxi-

mum matching on the bipartite graph SG, where each memory

access is scheduled to a virtual memory slot, and each virtual

memory slot will serve at most one memory access.

Figure 5(a) shows an example memory scheduling graph

with R1: i, R2:i+9 and N=2, II=p=1. Figure 5(b) and Figure 5(c)

show the horizontal and vertical scheduling respectively.

For a given , area of memory and address transla-

tion logic is fixed. Therefore, we formulate the cost of a

memory schedule as the number of buffer registers needed.

Suppose is matched to . No buffer registers are needed

if h=k*II, when the k-th iteration of memory reference Rj is

scheduled to the l-th memory bank in cycle k*II. A read/write

buffer register is needed if h≠k*II. If h>k*II and Rj is a read

operation, Rjk can be scheduled to cycle h-N using modulo

scheduling [14]. So the weight of an edge can be defined as:

 () {

.

With these definitions, the optimal memory-scheduling

problem can be converted to the problem of finding the maxi-

mum matching with minimum cost on the weighted bipartite

memory-scheduling graph; this can be solved by the Hungari-

an algorithm in polynomial time [15].

C. Cost Optimization and Estimation

1) Address Translation Optimization(ATO)

As shown in Section II, modulo and divide operations are

used in address translation for cyclic partitioning. If partition

factor N is a power of 2, the modulo and divide operations can

be easily done by selecting bits from the input addresses. Oth-

erwise, they have to be implemented using non-trivial logic

resources. This is why designers are usually encouraged or

even restricted to use powers of 2 as partition factors which

may generate suboptimal results.

Instead of random addresses, addresses for affine memory

accesses within loops are much more regular with constant

stride between adjacent iterations. Considering this, the

bank_idi+1 and offset_within_banki+1 in the (i+1)-th loop itera-

tion can be calculated using bank_idi and offseti in the previ-

ous i-th loop iteration.

Suppose a = k*N + l (0≤l<N), then

 {

 (8)

 {

 (9)

Bank_id0 and offset0 can be calculated statically by behav-

ioral synthesis tools at design time. At run-time, bank_idi+1

and offseti+1 can be generated from buffered bank_idi and off-

seti in the previous iteration
2
. Instead of expensive modulo and

divide operation, the proposed address translation optimization

(ATO) technique only uses simple operations (1 compare, 1

sub and 2 add operations) and two registers, which will greatly

improve performance, area and energy efficiency. With ATO,

the address translation cost for arbitrary partition factors

which are not powers of 2 is greatly reduced. Thus, a larger

2 For each memory reference in the loop, the address translation is

done at the beginning of the loop. This enables seamless support of

data-dependent control flow in the loop body in case of memory ref-

erences which are not accessed for each value taken by the induction

variable.

R00

R10

R01

R11

S000

S100

S010

S110

0

0

1
1

1
1

(a) Memory Scheduling Graph (b) Horizontal Scheduling (c) Vertical Scheduling

0

0

R00

R10

R01

R11

S000

S100

S010

S110

0

0

0

0

R00

R10

R01

R11

S000

S100

S010

S110

0

1
1

0

Figure 5. Example memory access scheduling graph

493

design space can be explored to obtain better results.

2) Overhead Estimization

Figure 6 shows the block diagram of a partitioned memory

system. It consists of memory banks, address translation unit,

control FSM, possible read/write buffer registers, N input

MUXs and m output MUXs.

The overhead of the partitioned memory system can be es-

timated using platform-specific cost functions, which can be

area- or power- oriented. Take the FPGA platform as an ex-

ample: the number of BRAMs is ⌈⌈

⌉

 ⌉. The cost of the control FSM unit is proportional

to N. With the proposed address translation optimization tech-

nique, the cost of an address translation unit is proportional to

the number of memory references m and independent of parti-

tion factor N. The number of buffer registers REG_N can be

calculated by finding minimum matching on the bipartite

memory-scheduling graph described in Section IV.B. The

number of inputs to the k-th input MUX is ∑

 where

is defined in (7). CMUX(m) is the plat-form dependent cost of

m-input multiplexer. The number of inputs to the j-th output

MUX is N/gcd(aj, N). Therefore, the cost of optimal memory

scheduling with partition factor N is illustrated by (10) for

FPGAs where are platform-dependent parameters.

Costlbound in (11) is monotonically increasing with N, and thus

can be used in Algorithm 1 as the exit condition.

 ⌈
⌈

⌉

⌉

 ∑ ∑

∑

 ()

(10)

 (11)

V. EXPERIMENTAL RESULTS

A. Experiment Setup

Horizontal, vertical and mixed MPS algorithms are imple-

mented as a source-to-source transformation pass. Loop ker-

nels in behavioral languages like C and design constrains in-

cluding memory port limitation and target II are taken as input.

The memory partitioning and scheduling results are dumped

into transformed source programs and accepted by the down-

stream behavioral synthesis tools.

Our test cases include a set of real-life medical imaging

processing kernels: denoise, registration, binarization, seg-

mentation and deconvolution [16]. All of these kernels have

abundant memory accesses to the same image data array and

are perfect examples for testing our MPS algorithms.

Although our algorithm is applicable to both ASIC and

FPGA designs, we chose FPGA as the target device in this

work because of the availability of downstream behavioral

synthesis and implementation tools. The Xilinx Virtex-6

FPGA, AutoESL 2011.4 and ISE 13.2 tools are used in our

experiments. Area utilization and critical path are reported by

ISE, and power data is reported by AutoESL.

B. Case Study: Denoise

The denoise program is used as a case study to compare

various approaches in memory partitioning and scheduling.

Loop II and memory port number p is set to 1 in the experi-

ment. The test results are shown in Table 3.

Horizontal, vertical and mixed memory algorithms are ap-

plied to the design. For each kind of algorithm, partition factor

can be an arbitrary number or restricted to power of 2. Ad-

dress translation optimization (ATO) can be applied to parti-

tion factors which are not powers of 2.

From the results, we can see that compared to the horizontal

MPS, the vertical MPS can reduce the number of block RAMs

at the cost of slices and DSPs due to the complex address

translation patterns. The mixed MPS is always better than both

the horizontal and vertical MPS algorithms in terms of area,

power and latency. The ATO techniques can be used to reduce

both area and power by reducing the number of DSPs signifi-

cantly. With ATO, the minimum partition factor is preferred to

the partition factor with power of 2. Among all approaches,

mixed-ATO shows the best performance, area-efficiency and

power-efficiency. Experimental results of all other test cases

are consistent with these observations.

C. Test Results

Test results on all five test cases are listed in Table 4. The

horizontal MPS and mixed MPS with ATO are compared in

terms of power, critical path delay, the number of slices, block

RAMs and DSPs. On average, our proposed mixed MPS with

ATO can improve area efficiency by 38.9%, 36% and 99.1%

in terms of slices, block RAMs and DSPs compared to the

state-of-art horizontal MPS algorithm. A significant reduction

in DSPs is mainly achieved by using ATO techniques. The

mixed MPS with ATO can also improve power efficiency and

performance by 32.4% and 15.8%.

Table 3. Test results of Denoise

Slices RAMBs DSPs Power CP(ns)

horizontal 529 10 6 679 7.002

horizontal-ATO 459 10 0 537 7.287

horizontal-2^n 3254 256 0 5239 7.335

vertical 1007 7 72 1597 7.259

vertical-ATO 701 7 0 1403 6.505

vertical-2^n 1059 8 0 2477 7.105

mixed 511 7 6 573 6.33

mixed-ATO 427 7 0 510 6.956

mixed-2^n 555 8 0 549 7.046

Figure 6. Block diagram of a partitioned memory system

R

ead
 B

u
ffer

A

d
d

ress T
ran

slatio
n

W

rite B
u

ffer

 Control FSM

 MUX

 MUX

 MUX

 MUX

 MUX

 MUX

 Memory System

 …
 …

 Mem Bank N-1

 Mem Bank 1

 Mem Bank 0

 Resp m Req m

 Resp 2

 Req 2

 Resp 1 Req 1

494

VI. CONCLUSION

In this paper we propose a vertical and a mixed memory

partitioning and scheduling algorithm. Our algorithm can gen-

erate optimal memory partitioning and scheduling schemes for

arbitrary affine memory inputs by arranging non-conflicting

memory accesses across the border of loop iterations. By uti-

lizing the property of constant strides between successive loop

iterations, we propose an address translation optimization for

an arbitrary partition factor to improve performance, area and

energy efficiency. Experimental results show that on a set of

real-world medical image processing kernels, the proposed

mixed MPS algorithm with address translation optimization

can gain speed-up, area reduction and power savings of 15.8%,

36% and 32.4% respectively, compared to the state-of-art

memory partitioning and scheduling algorithm.

VII. ACKNOWLEDGEMENT

This work is supported by the National Natural Science

Foundation of China 61103028 and Research Fund for the

Doctoral Program of Higher Education of China

20110001120132. Also the support provided to UCLA/PKU

JRI from Xilinx is gratefully acknowledged.

REFERENCES

[1] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J.

Cong, "AutoPilot: A Platform-Based ESL Synthesis

System," in High-Level Synthesis: From Algorithm to

Digital Circuit, P. Coussy and A. Morawiec, Eds., ed:

Springer Publishers, 2008.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers,

and Z. Zhang, "High-Level Synthesis for FPGAs: From

Prototyping to Deployment," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 30, pp. 473-491, 2011.

[3] E. F. Girczyc, "Loop Winding - a Data Flow Approach to

Functional Pipelining," in IEEE International Symposium

on Circuits and Systems, 1987, pp. 382-385.

[4] Y. Tatsumi and H. J. Mattausch, "Fast Quadratic Increase

of Multiport-Storage-Cell Area with Port Number,"

Electronics Letters, vol. 35, pp. 2185-2187, 1999.

[5] J. Ramanujam and P. Sadayappan, "Compile-Time

Techniques for Data Distribution in Distributed Memory

Machines," IEEE Transactions on Parallel and

Distributed Systems, vol. 2, pp. 472-482, 1991.

[6] J. M. Anderson and M. S. Lam, "Global Optimizations

for Parallelism and Locality on Scalable Parallel

Machines," in Proceedings of the ACM SIGPLAN 1993

conference on Programming language design and

implementation, 1993, pp. 112-125.

[7] A. Agarwal, D. A. Kranz, and V. Natarajan, "Automatic

Partitioning of Parallel Loops and Data Arrays for

Distributed Shared-memory Multiprocessors," IEEE

Transactions on Parallel and Distributed Systems, vol. 6,

pp. 943-962.

[8] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal,

"Memory Bank Disambiguation using Modulo Unrolling

for Raw Machines," in Proceedings of the Fifth

International Conference on High Performance

Computing, 1998, pp. 212-220.

[9] J. Cong, W. Jiang, B. Liu, and Y. Zou, "Automatic

Memory Partitioning and Scheduling for Throughput and

Power Optimization," in Proceedings of the 2009

International Conference on Computer-Aided Design

(ICCAD 2009), San Jose, California, 2009, pp. 697-704.

[10] Y. Wang, P. Zhang, X. Cheng, and J. Cong, "An

Integrated and Automated Memory Optimization Flow

for FPGA Behavioral Synthesis," in Proceedings of the

17th Asia and South Pacific Design Automation

Conference, Sydney, Australia, 2012, pp. 257-262.

[11] J. Cong, W. Jiang, B. Liu, and Y. Zou, "Automatic

Memory Partitioning and Scheduling for Throughput and

Power Optimization," ACM Transactions on Design

Automation of Electronic Systems, vol. 16, 2011.

[12] K. Kennedy and J. R. Allen, Optimizing Compilers for

Modern Architectures: A Dependence-Based Approach.

San Francisco, CA: Morgan Kaufmann Publishers Inc.,

2002.

[13] P. Getreuer. Tvreg: Variational Imaging Methods for

Denoising, Deconvolution, Inpainting, and Segmentation.

Available: http://www.math.ucla.edu/getreuer/tvreg.html

[14] B. R. Rau, "Iterative Modulo Scheduling: an Algorithm

for Software Pipelining Loops," in Proceedings of the

27th annual international symposium on

Microarchitecture, San Jose, California, United States,

1994, pp. 63--74.

[15] H. W. Kuhn, "The Hungarian Method for the assignment

problem," Naval Research Logistic Quarterly, vol. 2, pp.

83-97, 1955.

[16] J. Cong, V. Sarkar, G. Reinman, and A. Bui,

"Customizable Domain-Specific Computing," IEEE

Design and Test of Computers, vol. 28, pp. 5-15, 2011.

Table 4. Test results on all test cases

 Slices BRAMs DSPs Pwr. CP ns

De-

noise

Horizontal 529 10 6 679 7.002

Mixed-ATO 427 7 0 510 6.956
Comp(%) -19.3 -30.0 -100 -24.9 0.7

Regis-
tration

Horizontal 486 10 5 358 7.208

Mixed-ATO 289 6 0 305 5.409
Comp(%) -40.5 -40.0 -100 -14.8 -25.0

Bina-

riza-
tion

Horizontal 369 10 5 392 7.002

Mixed-ATO 238 5 0 297 5.293
Comp(%) -35.5 -50.0 -100 -24.2 -24.4

Seg-
men-

tation

Horizontal 671 10 9 891 7.302

Mixed-ATO 452 7 0 620 6.132
Comp(%) -32.6 -30.0 -100 -30.4 -16.0

Decon

con-
volu-

tion

Horizontal 1674 10 141 1790 7.4

Mixed-ATO 556 7 6 581 6.339

Comp(%) -66.8 -30.0 -95.7 -67.5 -14.3

Aver-
age

Comp(%) -38.9 -36.0 -99.1 -32.4 -15.8

495

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

