This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

Data-Flow Graph Mapping Optimization for CGRA
with Deep Reinforcement Learning

Dajiang Liu, Shouyi Yin, Member, IEEE, Guojie Luo, Member, IEEE, Jiaxing Shang,
Leibo Liu, Member, IEEE, Shaojun Wei, Yong Feng and Shangbo Zhou

Abstract—Coarse-grained reconfigurable architectures (C-
GRAs) have drawn increasing attention due to their flexibility
and energy efficiency. Data flow graphs (DFGs) are often mapped
onto CGRAs for acceleration. The problem of DFG mapping
is challenging due to the diverse structures from DFGs and
constrained hardware from CGRAs. Consequently, it is difficult
to find a valid and high quality solution simultaneously. Inspired
from the great progress in deep reinforcement learning for AI
problems, we consider building methods that learn to map DFGs
onto spatially-programmed CGRAs directly from experiences.
We propose RLMap, a solution that formulates DFG mapping on
CGRA as an agent in reinforcement learning (RL), which unifies
placement, routing and PE insertion by interchange actions of
the agent. Experimental results show that RLMap performs
comparably to state-of-the-art heuristics in mapping quality,
adapts to different architecture and converges quickly.

Index Terms—CGRA, DFG, Mapping, Reinforcement Learn-
ing

I. INTRODUCTION

Runtime-reconfigurable architectures that enable near ASIC
performance without or with a little sacrificing programma-
bility are urgently required for computation-intensive algo-
rithms. Software Defined Hardware (SDH)[1] is a promising
technique to achieve this goal, resulting in the ability to
run computation-intensive algorithms at very low cost, and
consequently, enables pervasive use of high energy-efficient
solutions for a wide range of applications. Many works[2][3]
achieve high performance on data throughput on FPGA. With
higher energy-efficiency than FPGA, Coarse-Grained Recon-
figurable Architectures (CGRA)[4][5][6][7] becomes a typical
representative of SDH. The Process Element Array (PEA) in
CGRA can be dynamically reconfigured to adapt to the change
of applications.

According to the execution manner, the mapping algorithms
mainly fall into two board categories, spatial mapping and
temporal mapping. In spatial mapping[8][9][10][11], the func-
tionality of PEA would not be changed once it is configured.
So, spatial mapping needs less configuration context, therefore,
it has advantages of more power efficiency. In temporal

D. Liu, J. Shang, S. Zhou and Y. Feng are with the College of Computer Science,
Chongging University, Chongging 400044, China. S. Yin, L. Liu, and S. Wei are with
the Institute of Microelectronics, Tsinghua University, Beijing 100084, China. G. Luo
is with the Center for Energy-Efficient Computing and Applications, Peking University,
Beijing 10871, China. (Corresponding author: Dajiang Liu, e-mail: liudj@cqu.edu.cn)

This work was supported in part by National Natural Science Foundation of Chi-
na (No. 61804017), Fundamental Research Funds for the Central Universities (No.
2018CDXYJSJ0026), National Natural Science Foundation of China (No. 61702059),
National Key Research and Development Program of China (No. 2017YFB1402400)
and Frontier and Application Foundation Research Program of CQ CSTC (No. c-
stc2017jcyjAX0340)

mapping[12][13], the functionality of PEA changes with time
and modulo scheduling is commonly used to reduce initia-
tion interval. However, the performance of temporal mapping
would drop off precipitously when the configuration cost could
not be hidden in that target CGRA. In this paper, we mainly
address the problem of spatial mapping on CGRA.

Data-Flow Graph (DFG), as the kernel of computation-
intensive applications, is the key for compiling of CGRA. In
the compiling flow, computation-intensive parts are firstly par-
titioned from applications[14][15]. Then, these computation-
intensive parts are transformed into DFGs. Finally, these DFGs
are optimized and mapped onto the PEA of CGRA. As DFGs
are the kernels of various of application, DFG mapping is
a research spot in CGRA[16][13][17]. The DFG mapping is
usually performed in three steps[13]: scheduling, placement
and routing. Scheduling assigns the operation of DFG to
control steps. Placement assigns operations of DFG to PEs
and routing assigns edges of DFG to hardware routes among
PEs. As PEA often has sparse hardware connections among
PEs, placement and routing are often closely coupled for
effective mapping. In addition to the direct connections among
PEs, routing PE (RPE) insertion is often used to increase the
routability of mapping.

In order to improve the mapping efficiency, several mapping
methods have been previously proposed: SPKM approach[8],
pattern-based approach[9][10] and DFGNet approach[11]. In
SPKM approach, column-wise scattering, RPE insertion and
row-wise scattering are iteratively adopted to minimize the
number of utilized rows under valid mapping. In both column-
wise scattering and row-wise scattering steps, integer linear
programming (ILP) is used to find the optimal solution. In this
approach, node placement and RPE insertion are separated in
three iterative steps, and it tends to find suboptimal solution
as the solution is searched in a separated optimization space.
In pattern-based approach, a cluster-by-cluster mapping is
accelerated by placing patterns, and then anytime algorithms
are used to find the optimal mapping solution. In the patterns
for node clusters, placement and RPE insertion are previously
elaborated. Although it achieves much better speedup, the
scalability is limited as it highly depends on a pattern database.
Also, the placement and RPE insertion in patterns are not
flexible. In DFGNet approach, a DFG is firstly preprocessed
(including routing node insertion) and then mapped onto PEA
in node-by-node manner guided by a convolution neural net-
work trained by supervised learning. This method is rather fast
and produce high-quality solutions. However, as samples need
to be previously labeled in supervised learning, it becomes

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

Observation: Mapping state

Action: PE Interchange

Reward: validity and quality

Fig. 1. An overview of RL based DFG mapping on CGRA

difficult for mapping on larger CGRAs.
We take a step back to understand some reasons for why
DFG mapping problems on CGRA are challenging:

o The compiling process is complex and often impossible to
be modeled accurately. In mapping process, we not only
need to consider the validation of placement and routing,
but also need to consider the quality improvement. In
particular, the problem of valid mapping is an NP-
complete problem, and it is hardly to judge whether an
intermediate state is good or bad until the last step.

o As the diversity of application and the reconfigurability
of hardware, the optimization space of mapping tends to
be too large to be enumerated. To address this problem,
previous approaches divide mapping into small and sepa-
rate problems, which in turn loose the opportunity to find
a solution closer to the optimum.

In this paper, we attempt to provide a viable alternative
to human-generated heuristics for DFG mapping on CGRA
using machine learning. Recent success of applying machine
learning to other challenging decision-making domains sug-
gests that this idea may not be too far-fetched. Especially,
reinforcement learning (RL) has become an active area in
machine learning research. RL trains an agent that learns
to make better decisions directly from experience interacting
with the environment. The agent can learn from scratch by
a reward that it receives representing how well it is doing
on a task. RL has a long history, but recently it is combined
with deep learning, called deep reinforcement learning (DRL).
DRL can create artificial agents to achieve human-level per-
formance across many challenging domains such as playing
video games[18][19], Computer Go[20][21], etc.

Revisiting the above challenges, we believe RL approaches
are very suitable for DFG mappings on CGRA. First, similar
decisions are often made in similar graphs or subgraphs, which
generates an abundance of training data for RL algorithms.
Second, the PEA in CGRA usually keeps regular (e.g., 2D
arrays) and small (e.g., 4 x 4 to 8 x 8) for the reason of area
and power. Therefore, the state space and action space can
be well represented using RL. Third, RL can model complex
systems and decision-making policies as deep neural networks
(DNN) analogous to the models used for game-playing agents.
As the DNN has generalization ability, unseen raw can also be
well handled toward good results. Finally, it is possible to train
for objectives that are hard-to-optimize directly because they
lack precise models if there exist reward signals that correlate
with the objective.

In this paper we propose DRL based approach to spatially
map a DFG onto CGRA more efficiently. As shown in Fig. 1,

Data memory |

Host controllor
)

| Configuration memory |

Fig. 2. (a) A general CGRA architecture, (b) A registered routing, (c) An
unregistered routing

the approach takes into account information of environment
(mapping state) by performing series of experiments (PE
interchange action mentioned below) to understand which
operations of DFG should be placed on which PE of PEA,
which edges of DFG should be routed by which connections
of PEA and how to arrange the placement and routing so that
the a valid and high-quality mapping can be obtained. Our
contributions are summarized as follows:

e« We formulate DFG mapping problem as an agent of
algorithm in RL, which can learn DFG mapping from
scratch.

o We define agent actions as neighbor PE interchanges,
combing placement, routing and routing PE insertion in
a closely-coupled way. It results in a large space that is
prone to find a solution closer to the optimal one.

o We propose a reward signal that properly reflects how
well an action is doing for the mapping task. This well
designed reward can not only accelerate the training to
convergence, but also help the agent to get valid and high-
quality mapping.

The remainder of the paper is organized as follows: Section

IT gives background of CGRA mapping and reinforcement
learning. Then, section III states the proposed method and Sec-
tion IV shows the experimental results. Finally, we conclude
in Section V.

II. BACKGROUND AND RELATED WORKS
In this section, we provide a brief introduction to the

required background in CGRA, DFG mapping and DRL. Then,
we present related works in recent years.

A. Target Architecture

As shown in Fig. 2(a), a CGRA is typically constituted
of a host controller and a 2-D processing element array
(PEA), where the host controller is responsible for running
the operation system and irregular programs, and the PEA

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

PE PE IE
E PE] ‘hliivA PE; E
e PE f\ PE
(a) (b) (c)

Fig. 3. PE interconnection styles: (a) 4-way routing, (b) 4-way-1-hop routing,
(c) 8-way routing

executes computation-intensive workloads. The processing
element (PE), usually comprising one or more arithmetic
logic units (ALUs), can perform arithmetic operations and
communicate with each other using a spatial interconnection.
The output register in a PE could be bypassed for routing value
not crossing clock edge, as the red line show in Fig. 2(a).
Fig. 2(b) and (c) illustrated two cases of using routing PE. If
data communicated between PEs must be stored in registers
at each hop, operation b must be executed three cycles after
operation a. On the other hand, if registers are bypassed during
data routing, b can be executed immediately after a. After
placement and routing, the output registers of PEs could be
trivially selected for bypass according to dependence latency.

The connections between PEs are usually sparse[22] for
power and area consideration, and therefore only neighbor
or near neighbor PEs are connected. Fig. 3 depicts three
commonly used interconnection styles, including 4-way inter-
connection (i.e., mesh routing), 4-way-1-hop interconnection
(i.e., mesh plus routing) and 8-way interconnection.

B. DFG Mapping on CGRA

Given a DFG and a PEA, the DFG mapping on CGRA
problem is to find a valid and optimal mapping from the
DFG D = (V,E) to the PEA graph C = (P, L), where
V, E, P and L represent the set of operations in DFG,
the dependencies among operations, the set of PEs and the
interconnections among PEs, respectively. The application
mapping is a function ¢ : D — C, which in turn implies
two functions, ¢y : V — P and ¢ : E — S. The natation
S is the path set, i.e., the combination of interconnections (L)
among PEs and the size of S is 2/%1.

Definition 2.1: (Routing PE) Given p;, ¢; be the PEs in
C, l; = (pi,q;) be the connection between p; and ¢;, and
(lo,l1,-++ ,1n) € S (n < |L|) be the connection path of ¢ =
(u,v). The routing PE set of e is defined as R. = {¢|V] =
(p,q),q # dv(v) A q # ¢v(u)}. Then, the routing PE set of
the whole mapping is defined as R = |J, . Re.

Definition 2.2: (Valid Mapping) Given a DFG D = (V, E)
and PEA C = (P, L), a valid mapping is defined as flows:

1) Yu € V, Jp € P such that ¢y (u) = p.

2) Yu,v € V, if u # v, then dp,q € P A p # q such that

ov(u) =g, ov(v) =q.

3) YueV,¢(v) ¢ R.

4) Ve = (u,v), if u # v then opg(e) = (lo,l1, - ,1ln) €

S such that ¢y (u) = po, ¢y (v) = ¢ and g; = p; 1.

5) Vey,es € E, if €1 7é es then Rel ﬂ R62 = 0.

In definition 2.2, the conditions 1), 2) and 3) state that each
operation in D has a target PE and each PE can hold only
one operation node or routing node, i.e., no operation conflict
is permitted in the valid mapping. The condition 4) and 5)
state that each edge in D has a connection path in C' and the
connection paths for different edges should not share routing
PEs.

C. Reinforcement Learning

In reinforcement learning, an agent improves its behavior by
interacting with an environment, as shown in Fig. 1. At each
time step ¢, the agent observes one state s;, and is required
to choose an action a; on the state. Following the action, the
state of the environment transfers to a new state s;y; and
the agent receives a reward 7,. The state transition process
is assumed to be a Markov Decision Process (MDP), i.e. the
state transition probabilities and rewards depend only on the
state of the environment s, and the action taken by the agent
Q.

The goal of the agent is to select actions in a way that
maximizing future rewards by interacting with the environ-
ment. The future reward is assumed to be discounted by a
factor of + per time-step, and the future discounted return
at time ¢ is defined as R, = Y,_, 7" try , where T
is the time-step at which the task terminates. The optimal
action-value function Q* (s, a) is also defined as the maximum
expected return achievable by following any strategy, after
seeing some sequence s and then taking some action a,
Q*(s,a) = max, E[R:|s; = s,a: = a,], where 7 is a policy
mapping states to actions. The policy can be discrete values
over actions or probability distributions over actions.

The solve of policy 7 falls into two categories: value-based
method and policy-based method. The value-based method
first calculates the action-value function, then deduces the
policy using simple strategies like e-greedy. This method needs
less training data and is suitable for task of small action space.
The policy-based method directly parameterizes the policy and
it is fit for task of continuous or large action space. In this
work, we formulate action as neighbor PE interchange (see
sections below) and the action space is rather small. Therefore,
value-based method is adopted in this work.

The optimal action-value function obeys an important iden-
tity known as the Bellman equation basing on the following
intuition: if the optimal value Q*(s’,a’) of the state s’ at the
next time-step was known for all possible actions a’, then
the optimal strategy is to select the action ¢’ maximising the
expected value of r +vQ* (s, a’).

Q*(s,a) = Egc [r + ymax Q*(s',a’)|s, d] (D

where ¢ indicates the environment in reinforcement learn-
ing. Specifically, as shown in Fig. 1, € means the target
processing element array (PEA) in a CGRA. The basic idea
behind value-based reinforcement learning algorithm is to
estimate action-value function by Bellman equation update,
Qit1(s,a) = E[r + maxy Q;(s',a’)|s,a]. As iteration i
increases to infinity, the value of iteration algorithm converge

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

to the optimal action-value function. In task of large state-
action space, the basic approach becomes impractical. Instead,
it is common to use a function approximator to estimate the
action-value function, Q(s,a;0) ~ @Q*(s,a). Recently, Q-
network[18], a deep neural network function approximator
with weights 6, shows great success in video games and
computer Go. The deep Q-network (DQN) can be trained by
minimizing a sequence of loss functions L;(6;) that changes
at each iteration 7,
Lz(az) - Es,wv/l [(yz - Q(57 a; 91))} (2)
where y; = Egnc[r+ymaxy Q(s',a’;0;-1|s,a] is the
target for iteration ¢ and p(s,a) is a probability distribution
over sequences s and actions a. The parameters from the
previous iteration #;_; are held fixed when optimizing the
loss function L;(6;). Instead of preparing fixed targets in
supervised learning, the targets here depend on the network
weights. Therefore, there are two neural network are involved
in DQN, target network and evaluation network. The target
network is responsible for providing targets and the other one
is responsible for improving the weights at every iteration.
Periodically, the weights in evaluation network are cloned to
the target network. Base on the loss function, the weights can
be updated by performing gradient descent using gradient as
follows:

Vei Ll(el) - Es,aNp;S’NE [(yl - Q(S, a; 91)) VQ,iQ(S, as; 91)]
3)
It is difficult to compute the full expectations in the above
gradient. Expediently, it is often to optimize the loss function
by stochastic gradient descent. If the weights are updated
after every time-step, the expectations are replaced by single
samples from the behaviour distribution p and the environment
€ respectively.

D. Related Works

In recent years, the problem of DFG mapping has been
well discussed in the literature. Most existing approaches
falls into one or several categories, including integer linear
programming (ILP) approach, simulated annealing approach,
partitioning approach, analytic approach and machine learning
approach.

ILP approach usually formulates the mapping problem into
clear representation in mathematics and it is possible to
find the optimal solution. Due to high time complexity, ILP
approach[23][24] is suitable for problem of moderate size.
Therefore, it is frequently used to solve a sub-problem in
mapping algorithms.

Simulated annealing (SA) approach is widely used to solve
complex problems due to its generality and accessibility. It is
not only applied to CGRAs[25][26], but also widely applied
to FPGAs[27][28][29]. SA-based approach can achieve good
mapping solutions but are often inefficient for large problems.

Partitioning approach has strong scalability and is efficient
to even large problems, such as SPKM[8], NTUPlace[30],
KernelPartion[31], etc. The basic idea of partitioning is divide

4

and conquer. These algorithms perform very fast. However,
the mapping result may be suboptimal due to the separated
searching space.

Analytical —approach can achieve good quality
results[32][33] for its efficiency and scalability. Analytical
approaches firstly generate an optimized mapping allowing
placement overlapping. Then, overlapping elements are
separated iteratively. Consequently, it can be very fast even
for large problems. However, the solution quality can suffer
due to the local nature of final adjustments.

Machine learning approaches are fast and efficient as they
exploit previous experiences, including pattern-based approach
and supervised learning based approach. Pattern-based method
[10] uses patterns to index into a dictionary that provides
suggestions for good spatial arrangements of nodes onto rela-
tively homogeneous hardware. The scalability is poor and has
no generality as the pattern dictionary is static. DFGNet[11]
method trains a neural network to provide suggestions for good
mapping by supervised learning. It is only suitable for very
small CGRAs as data labeling for supervised learning becomes
impossible for large CGRAs.

As SPKM combines the advantages of several approaches
above and focuses on spatial mapping on CGRA, we use
SPKM as the basis for comparison.

III. METHOD

In this section, we present our method for DFG mapping
on CGRA using RL. We formulate the problem in subsection
III-A and describe how to represent it as an RL task in
subsection III-B. Then, we introduce how to train the learning
algorithm and how to use the trained agent in real DFG
mapping in subsection III-C.

A. Objective and Problem

The objective of spatial mapping should balance power,
area, and performance. The exact value is difficult and time
consuming to compute. Similarly, we define the same cost
function as that in [10] for three reasons: 1) we address the
same problem of DFG spatial mapping, 2) routing PEs are
considered in both work, and 3) specific factors are obtained
from power simulations run on a ASIC process using the third-
part simulation tools. The specifical form of objective is as
follows:

nn Tp

O(s) = Y (O 1;,1)+(2000x Ny,)+ (800 % Npg) +(400 X Ny

i=1 j=1
“4)

where n,, np, Nop, Npg and N, indicate the number
of nodes, number of parents of a node, the number of ALUs
performing an operation, the number of PEs used as routing PE
and the number of empty PEs. Parameter N,,,), is determined
by counting the number of empty PEs in the smallest rectangu-
lar area that contains the PEs that have already been assigned
operations. A larger area solution may have more empty ALUs
and more ALUs used as passgates. If all else is equal, this
solution will thus incur a greater cost than a more compact

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

TCAD, VOL. 14, NO. 8, AUGUST 2017

580822010 21010 15010 10010 1501021010 2801056080
280102101015010 10010 6010 10010150102101028010
210101501010010 6010 3010 6010 100101501021010
1501010010 6010 3010 O 3010 6010 1001015010
10010 6010 3010 0 C 0 3010 6010 10010
1501010010 6010 3010 O 3010 6010 1001015010
210101501010010 6010 3010 6010 100101501021010
280102101015010 10010 6010 100101501021010 28010
8090 2201021010 15010 10010 1501021010 2801056080

(a)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

2101015010 6010 1501021010
210101501010010 3010 1001015010 21010
210101501010010 6010 10 6010 100101501021010
1501010010 6010 3010 O 3010 6010 1001015010
6010 3010 10 0 C 0 10 3010 6010

1501010010 6010 3010 O 3010 6010 1001015010
210101501010010 6010 10 6010 100101501021010

210101501010010 3010 1001015010 21010
2101015010 6010 1501021010

(b)

Fig. 4. Connection cost for (a) mesh routing PEA and (b) mesh-plus routing
PEA

solution. The cost factors, 2000, 800 and 400, used in Equation
(4) were obtained based on power simulations run on a 90-nm
ASIC process from Synopsys using the Synopsys PrimeTime-
PX tool in work [10]. These cost factors are relevant in a
relative sense. If better cost factors or cost factors in different
ASIC processes are available to replace Equation (4), it can
be substituted trivially.

The interconnection cost of edges in DFGs falls into two
ca}tegories: edges I f‘;l supported by the architecture and edges
I;"" not supported by the architecture.

For edges supported by the architecture, the interconnection
cost can be obtained by Synopsys PrimeTime-PX tools in
the target process. For example, as shown in Fig. 4, the
interconnection costs between neighbor PEs for mesh and
mesh-plus routing architecture are almost Os (’0”s in Fig. 4(a)
and (b)) for both architectures and the interconnection cost
between near neighbor PEs is 10 (”10”s in Fig. 4(b)) for mesh-
plus routing architecture in 90 nm ASIC process.

For edges that are not supported by the architecture, in-
terconnect cost is a heuristic cost and there are two basic
rules to determine their interconnection cost. 1) The cost value
of the unsupported interconnection should be larger than any
other cost factors, such as the cost factors for operation PE,
routing PE and empty PE, in Equation (4). The reason is that
legal routing is a precondition for DFG mapping on CGRA
and it should have the higher weight as compared to the
mapping quality. 2) The cost for long distance edge should
have higher cost than that for short distance edge, where the
distance indicates the Manhattan distance between the PEs of
the source operation and target operations. As the work in
[10], the heuristic interconnection cost not supported by the
architecture is as follows:

®)

where d; ; is the manhattan distance between the mapped
PE of operation ¢ and operation j. As shown in Fig. 4(a)
and (b), the diagonal interconnection has manhattan distance
of 2, and the interconnection cost is 3010, which is greater
than the cost factor (2000) of operation PE. The longest
interconnection, shown in Fig. 4, has manhattan distance of
8, and the interconnection cost is 36010, which is greater than
the cost factor of other shorter interconnections.

In order to determine the terminal condition for RL, we also
attempt to find the lower bound of objective function (Oy) in
Equation (4). To get the lower bound of objective function,

I =500 x d; ;> + 500 x d;; + 10

¢a"3

a§g

b

Fig. 5. Necessary routing PEs needed: (a) a 3-node circle needs 1 RPE on
mesh PEA, (b) a 5-node circle needs 1 RPE on mesh PEA, (¢) a 3-node
circle needs 1 RPE on mesh-plus PEA and (d) a 5-node circle needs 0 RPE
on mesh-plus PEA.

we assume that only necessary routing PEs are inserted, the
minimal rectangular mapping area is available and all edges
are validly routed. The number of necessary routing PEs (IN),)
is highly related to both the number of circles with odd number
of operations in the DFG and the routing style of the target
architecture. For mesh routing PEA, at least one routing PE
is needed for a circle with odd number of operations. As
shown in Fig. 5(a) and (b), the 3-operation circle and the 5-
operation circle are both inserted with a routing PE to get a
valid mapping. For mesh-plus routing PEA, at least one routing
PE is needed for 3-operation circle and it is not necessary to
insert a PE for circles with the number operation greater than
3. As shown in Fig. 5(c), a routing PE is inserted for the
3-operation circle to get a valid mapping. In Fig. 5(d), no
routing PE is inserted for the 5-operation circle as there is a
1-hop interconnection to deliver the long edge from operation
d to e.

When N;g necessary routing PEs are inserted, the total
number of nodes occupying PEs can be obtained, N, ,q. =
Nop + Np,. Then, we can get the area of the minimal
rectangular S,,in (Npode) that can cover the N,,,4. nodes on
the target PEA without consideration the specific placements
of these nodes. Next, the number of empty PE can be easily
calculated by Nnop = Smin(Nnode) — Nnode- Finally, the
lower bound of the objective function can be presented as
follows:

Oy = 2000 X Nop, + 800 x N7y + 400 X Nyyopy (6)

In Equation (6), the item 2000 X N, is a constant for differ-
ent solutions as the number of operations in a DFG is invariant.
Compared to Equation (4), the item of interconnection cost is
neglected here as we assume that all edges are validly mapped.
We also note that, in Equation (6), the items 800 x N;g and
400 x Nyop are theoretical value. If we directly used it as a
condition of terminal mapping state, it may never be satisfied.
Therefore, we add a relaxation factor (8) to Equation (6) and
it becomes:

O}, = 2000 X Ny, + B(800 x Ny +400 X Nyop) (1)

where 3 is greater than 1 and is determined empirically.
In the experiments, we find the training process can converge
quickly when £ is set to 1.1. With the value of relaxed lower

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

Fig. 6. Formulation steps of our approach

bound of objective function, we define the valid mapping states
as terminal states once their objective function values get less
than O};.

Based on the objective function in Equation (4) and the valid
mapping definition in section II, the problem of our approach
can be represented as follows:

Problem 1. Given a DFG D = (V| FE) and a PEA P =
(P, L), find a mapping ¢ : D — P to minimize cost O subject
to ¢ is a valid mapping.

In the problem defined above, it is assumed that the number
of operation in D should be less than or equal to the number of
PE in P. If the larger DFGs appear, they can be prepartitioned
using algorithms like the work in [31].

B. RL Formulation

As show in Fig. 6, the RL formulation of DFG mapping
on CGRA involves four important aspects: 1) state represen-
tation extracting topologies of DFG and CGRA, 2) action
representation unifying placement, routing and RPE insertion
in a closely-coupled manner, 3) reward function design to
present how well an action is doing on mapping validity and
quality, and 4) network architecture to evaluate action strategy.
In this subsection, the first 3 steps are elaborated. The network
architecture will be studied in the experimental parts.

State representation. We represent the mapping state (i.e.,
the placement and routing result) as distinct images(see Fig.
7 for illustration). The image in Fig. 7(c) shows a mapping
state from DFG D (Fig. 7(a)) to a 4 x 4 PEA (Fig. 7(b)). In
the mapping, shown in Fig 7(b), ont only are the 8 operations
in the DFG placed, but also a routing node, o', is inserted
and placed on PE 5. We use a W2 x H? image to represent
the mapping state, where W and H indicate the width and
height of the PEA. For simplify, the unfilled cells in the image
shown in 7(c) are all zeros. The image can not only present the
operation’s placement (¢y-), but also present the edge’s routing
path (¢g), including the routing PE inserted. The image is
divided into W x H blocks and each block is further divided
into W x H cells. Each block indicates the mapping situation

6

€12C13C14Cys

(e)

Fig. 7. An example of state representation. (a) A DFG D, (b) a mapping state
of D, (c) the state representation of the mapping, (d) the cell representation
of block b3, and (e) the cell representation of block b5

of the corresponding PE as follows: 1) the cell j of block
1 (¢ = j) indicates the types of PE, O for operation PE and
1 for routing PE. 2) the cell j of block i (i # j) indicate
the dependence of operation on PE 7, O for no edge between
operations on PE ¢ and PE j, 1 for an edge from the operation
on PE ¢ to the operation on PE j and 2 for an edge from the
operation on PE j to the operation on PE :. If all the cells of
block ¢ are zeros, the PE i is not mapped with any operation.
For example, block b3 in Fig. 7(d), co = 2 indicates that there
is a dependence from operation f on PE 2 to operation ¢ on
PE 3, and c7; = 1 indicates that there is a dependence from
operation ¢ on PE 3 to operation e on PE 7. Fig. 7(e) gives
a another example on block b5, where c¢5 = 1 indicates PE 5
is a routing PE transferring data from operation a on PE 1 to
operation d PE 6.

With the state representation above, the mapping informa-
tion for a DFG on a specific PEA can be extracted completely.
In such state representation, as each PE can only hold one op-
eration, operation conflicts can be naturally avoided satisfying
condition 2) in definition 2.2. Also, PE interchange action (see
below) further guarantees one PE can hold less or equal to 1
operation (including routing node) if the initial mapping state
has no operation conflict. Similar to the images for mapping
states, the PEA graph C = (P, L) can also be represented
by a such image. Consequently, mapping validation can be
easily checked by perform AN D operation on state image and

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

Fig. 8. Action space of state update. (a) Interchanges on neighbor PEs, (b) interchange on 2 operations, (c) interchange on an operation and its routing node,

and (d) interchange on an operation and an empty PE

PEA image. Moreover, this state representation can be easily
extended to heterogeneous PEA by improve the encoding of
type cell (¢; in b, @ = 7).

Action representation. At each time step, the mapping
algorithm will change the placements of operations or routing
nodes. It would require a large action space of size N xW x H
at each time step, where N is the number of operation in the
input DFG. Considering the maximum of N is W x H, the
action space is up to (W x H)?2. In addition, operation conflict
may occur if more than one operations are mapped on a PE.
In order to keep the action space small and avoid operation
conflict, we define action as interchange of operations on
neighbor PEs (see Fig. 8 for illustration) as follow:

Definition 3.1: Given u,v € V be the operations in D =
(V,E), p,q € P be the PEs in PEA C = (P, L), p = ¢y (u)A
q = ¢y (v) and D(p, q) = 1, action ¢(p, q) is defined as a new
placement pair (p = ¢y (v),q = ¢y (u)) that interchanges the
position of operation v and v.

In definition 3.1, D is the manhattan distance (distance
between two points in a grid based on a strictly horizontal
and/or vertical path). The condition D(p,q) = 1 greatly
reduce the action space without loss of completeness. The
completeness of action ¢ can be represented as follows:

Theorem 3.1: Let C = (P,L) be the PEA, D = (V,E)
be the DFG and 1 be the neighbor PE interchange action.
Yu,v € D, if p = ¢y (u) A ¢ = ¢y (E), 3 a series of action
(1,42, -~ ,9bn) such that p = v (v) A q = by (u).

Proof 3.1: As Vp,q € P, there is a series of PEs
(p1,p2,-++ ,pn) such that D(p,p1) = 1,D(p1,p2) =
1,-+,D(pn,q) = 1. We first construct an action se-
quence (¢(p,pl), ¥ (p1,p2),- ¥ (Pn,q)) that making ¢ =
¢v(u),pn = év(v). Then we construct an action sequence
(YPn>Pn-1),- - ,(p1,p)) that making p = ¢y (v). Conse-
quently, the operations on p and ¢ are interchanged.

According to the operations mapped on neighbor PEs,
interchange action is further classified into three cases:

« interchange neighbor PEs with an operation and its rout-

ing node includes 2 sub-actions: 1) swapping the target
PEs of the operation and its routing node, 2) merging
the route node to the operation and the target PE of the
routing node becomes a empty PE. As shown in Fig. 8(c),
operation a and its routing node a’ swapped in the first

case in sub-action 1, and routing node a’ is merged into
operation @ in sub-action 2.

« interchange neighbor PEs with only 1 operation on one
of them includes 3 sub-actions: 1) move the operation to
the empty PE, 2) add a routing node on the empty PE for
one sink of the operation, 3) add a routing node on the
empty PE for the other sink of the operation. In case 2)
and 3), if there is only one sink for the operation, then
just add a routing node on the empty PE for the only one
operation. As shown in Fig. 8(d), operation a is moved to
blue empty PE in sub-action 1, a routing node is added to
the blue sink on the blue empty PE in sub-action 2, and
a routing node is added to red sink on the blue empty PE
in sub-action 3.

o other cases: the positions of the two operations are
swapped. Accordingly, the edges of operations follow the
new positions. As show in Fig. 8(b), the target PE of
operation a and b is swapped.

From the discuss above, we note that there are at most
three sub-actions in an interchange, and in most cases, there
is only one sub-action in an interchange. Therefore, we don’t
increase the action space for sub-actions and the size of the
whole action space is 2W H-W-H. If more than one sub-
actions occur in an interchange, these sub-actions are selected
with equal probabilities. It can cover all the basic operations
of DFG mapping, placement, routing and RPE insertion, and
these basic operations could be closely coupled, which offers
more opportunities to find a solution closer to the optimal one.

Rewards. We need a proper reward signal to guide the agent
towards good solutions for our objective, minimizing the cost
O while keeping mapping valid. Based on the cost function
in Equation (4), the step reward is represented as follows:

R(s,a) = O(s) — O(s) 8)

where s’ indicates the new state by taking action a on state
s. With the reward deduced from mapping objective, the agent
could receive intensive and correct signals indicating how well
the agent is doing at every time-step. Therefore, the agent can
learn how to map DFGs efficiently and optically.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

Intermediate|state?

Input layer

Hidden layer
Output layer

) :

State | transition

Input layer

Update

Data generation and training flow of our approach

Output layer

Loss layer

Fig. 9.

C. Data Generation and Training

We present the action-value of RL as a neural network
(called Q-network) which takes a mapping state image de-
scribed above as input, and outputs the approximate action-
value of all possible actions. As shown in Fig. 9, the running
flow of our approach involves data generation and training. In
order to make learning more efficient, target network freezing
[18] is used in the flow. Therefore, there are two Q-network,
named target network and evaluation network, in the data
generation phase and training phase, respectively. These two
networks have the same structure and work as follows:

In the data generation phase, 1) we first generate initial
state s; by random DFG mapping on PEA. 2) Then, e-greedy
policy is used to select an action a; for the state, i.e., with
the probability of € selecting a random action and with the
probability of 1-e selecting a predicted action by the target
network. e decreases with time-step from 1.0 and becomes
fixed when reaching to 0.05. 3) Next, the reward r; and
new state s,y; are generated by executing the selected action
a; on the initial state s;. 4) Finally, we store the transition
(8¢, as, 7, S¢+1) into a replay memory. In step 3), if the new
state is a terminal state, we go back to step 1. Otherwise, we
send the new state to the target network in step 2). Repeat
the above steps over and over again, we generate millions
of transition samples and update the samples in the replay
memory in a first-in-first-out way. The random generated DFG
in step 1) should satisfy 4 conditions: a) the number of
operations in the state involved DFG is from 4 to W x H.
b) there is no operation conflict in the mapping state, c) the
number of input edges of each operation (i.e., in-degree) in
the DFG is less than or equal to 2, and d) the sum of in-
degree and out-degree (i.e., the number of output edges of an
operation) is less than or equal to the number of connections
of the target PE.

In the training phase, 1) we first sample a mini-batch

Algorithm 1 Training algorithm with memory replay
Input:
1: Initialize replay memory D to capacity N
2: Initialize the neural network with random weights
3: for episode = 1, M do
Initialize state sy with random generation
5 for t=1, T do
6: With probability € select a random action ay
otherwise select a; = arg max,Q*(s¢, a; 6)
7: Execute action a; in PEA emulator and observe
reward 7; and image sy
Store transition (S¢, a;, 7, S¢4+1) in D
Sample random minibatch of
(85,a4,75,5541) from D
10: Set y; = r; for if s;4; is terminal state,
otherwise set y; = r; + v maxy Q(st, a'’; 6)
11: Perform a gradient descent step on
(y; — Q(s;,a;;0))? as Equation (3)
12: Update Q = Q every K steps
13: end for
14: end for

»

transitions

(sj,aj,75,8541) if the replay memory is large enough. 2)
Then, the state s;,1 is sent to the target network to find the
maximal action value Q' = max, Q(s;j4+1,a;0). 3) Next, the
delayed label is generated using equation y; = r; + Q. 4)
Meanwhile, state s; and a; are sent to the evaluation network
to obtain the reference value @+ of a; on s;. 5) Then, by
calculating the gradient in Equation (3) from y; and Q*, the
weights of the evaluation network in update at each iteration.
As target network freezing [18] technique is used for more
efficient learning, the weights of evaluation are periodically
cloned to the target network at every K steps. The details of
training are presented in Algorithm 1.

After training, the DFG mapping becomes intuitive and
simple. By using the trained network on e-greedy policy, with
e fixed to 0.05, the mapping state is updated step by step and
gradually becomes valid and optimized.

IV. EXPERIMENT RESULTS

To demonstrate the effectiveness of the proposed mapping
approach, RLMap, we conduct a series of experiments, in-
cluding experiments of get more valid mappings, experiments
of getting high-quality mapping, experiments of learning con-
vergence, a case study, experiments of scalability to different
architectures and experiments of compilation time.

A. Setup

Benchmarks In testing phase, we conducted experiments
on 16 DFG kernels from benchmark MiBench, Spec2006
and PolyBench with 4 to 58 operations most widely used
by academic researchers for CGRA mapping. The number
of operations and edges for each of the DFG kernel are
summarized in Table I in the order of operation number.

Target Architectures We consider CGRAs with different
PEA sizes and different routing styles to fully evaluate our

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

TABLE I
STATISTICS OF THE BENCHMARK DFGS

[DFGs [#OPs | #EDGEs [| DFGs [#OPs | #EDGEs |
beyl 4 5 calvir 16 8
adi 6 8 jquant2 18 17
filter 6 4 mshift 20 22
wrf 5 5 vsolve 21 20

seidel-2d 9 9 fdtd-apml 21 22
pppm 12 9 clincs 29 32
places 13 12 ftt 40 32
wayinit 17 16 jfdctflt 58 44

210 B RLMap

%0.8— [DFGNet

£ I Pattern

%0-6’ EE SPKM

“E 0.41

[}

€02

2
0.0-

10 20 30 40 50 60
Number of operators in DFGs

Fig. 10. Map more DFGs on 8x8 mesh-routed CGRA

proposed approach. The PEA size differs from 4 x 4 to 8 x §,
which covers most CGRAs in the literature. The routing style
varies from mesh (routing with 4 neighbor PE connected) to
mesh plus (routing with 4 neighbor PEs and 4 one-hop PEs
connected), which cover the routing manners of most CGRAs
in the literature.

Neural network architecture We built the RLMap proto-
type described in using a neural network with an input layer,
a hidden layer and an output layer. The size of input layer and
output layer is W2 x H? and 2x W x H-W-H, as described in
subsection III-B. Empirically, in our mapping problem, we use
a full connected layer as the hidden layer as it captures more
details from mapping state than others. The number of neurons
in the hidden layer also varies for CGRAs with different PEA
size (see discussions below).

Baselines

In testing phase, all the experiments were performed on the
same Linux workstation with an Intel Xeon 2.4 GHz CPU and
64GB memory. Since SPKM][8], pattern-based mapping[10]
and DFNet[11] are typical and excellent approaches for CGRA
spatial mapping, we compared the quality of our placement
results with the three approaches. For SPKM and DFGNet,
the cost function of the approach is modified to the objective
in Equation (4). For pattern-based mapping approach (we
use “Pattern” below for simplify), we use the patterns and
arrangements listed in Fig. 10 in [10] as the dictionary.

B. Map more applications

Mapping validation is a basic condition of the mapping
problem. It becomes more difficult when the available routing
resources get sparser, such as mesh-routed PEA. In order to
demonstrate the ability of getting valid mapping, we try to
map 100 randomly generated DFGs onto an 8 x 8 mesh-routed

9

PEA using different approaches. As some of the DFGs can
not be validly mapped originally, we terminate the mapping
process after 2 hours. Fig 10 plots how many DFGs can be
validly mapped by each approach. The horizontal axis in Fig.
10 represents the number of nodes that each DFG contains,
and vertical axis represents the number of valid mappings out
of 100 DFGs. From Fig. 10, we note that it is more difficult
to find a valid mapping when the number of nodes in each
DFG increases. When the number of node is less than 10,
all the four mapping method perform well and they almost
find the same number of valid mappings. When the number
of node is 15, DFGNet performs worse as it only supports
DFGs with nodes up to 16. When the number of node is more
than 50 (approximate the size of PEA), pattern-based method
and SPKM method can hardly find a valid mapping, while
our proposed method can still find several valid mappings. On
average, our proposed approach can obtain 21.7x and 34.3x
more valid mappings than pattern-based method and SPKM
method. As the trained Q-network in our method can predict
good mapping manner, our proposed approach can find more
valid mappings within the same period of time.

C. Get High-Quality Mappings

The reward designed in Equation (8) can not only make
the agent get valid mapping, but also can make agent get
low cost mapping. Table II presents the detailed costs of
different approaches on the benchmark described in Table I
targeting to an 8 x 8 mesh routed PEA, where DFGNet is not
included as it only supports small DFGs. In table II, N, Ny,
Npop and Ny, indicate the number of operators, the number
of routing PEs, the number of empty PEs in the smallest
rectangular and the number of 1-hop connections, respectively.
Our approach, RLMap, can get 16 valid mappings while other
two approaches can only get 14 valid mappings out of 16.
For kernels filter, pppm and calvir, the three approaches
almost obtain the same cost, as the structures of these kernels
are relative simple. Consequently, all approaches can find
the optimal solutions. It is noteworthy that our approach can
still find valid mappings for complicated kernels clincs and
j fdctlt while other approaches all fails. The kernel clincs has
29 operations, 32 edges and 6 cycles and some of the edges
are heavily entangled. Therefore, It is quite difficult to find
the optimal, even a valid solution, for this kernel. However,
RLMap can still find a solution with 3 routing PEs and 7 1-
hop connections with the help of Q-network prediction. As for
kernel j fdctlt, the number of operations is 58, which is quite
close to the size of 8 x 8 PEA. Consequently, it is also difficult
to find a valid mapping for it. With the efficient action-value
prediction from Q-network, our approach still finds a solution
with 2 routing PE and 2 1-hop connections. On average, our
approach can get 5.66% and 2.91% less costs as compared to
SPKM and pattern-based approaches.

D. Training and Convergence

The training time is highly related to the convergence
behavior of the Q-network. In reinforcement learning of our
work, we randomly generate initial mapping states for various

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

10

TABLE I
COMPARISONS OF MAPPING COST WITH SPKM AND PATTERN BASED APPROACHES
DFGs Nop Npg Nrop Nhop Cost
All | SPKM | Pattern | RLMap | SPKM [Pattern | RLMap | SPKM [Pattern [RLMap | SPKM [Pattern [RLMap
bycl 4 3 3 3 2 1 1 1 1 1 1.12e4 1.08e4 1.08e4
adi 6 3 4 4 3 2 2 1 0 1.56e4 | 1.60e4 1.60e4
filter 6 0 0 0 0 0 0 0 0 0 1.20e4 | 1.20e4 1.20e4
wrf 5 0 0 0 1 0 0 1 1 1 1.04e4 1.00e4 1.00e4
seidel-2d 9 1 1 0 2 2 3 1 1 1 1.96e4 | 1.96e4 1.92e4
pppm 12 0 0 0 0 0 0 0 0 0 2.40e4 | 2.40e4 2.40e4
places 13 0 0 0 1 2 2 1 0 1 2.64e4 | 2.68e4 2.68e4
wayinit 17 0 0 0 3 1 1 1 3 1 3.52e4 | 3.44e4 3.44e4
calvir 16 0 0 0 0 0 0 0 0 0 3.20e4 | 3.20e4 3.20e4
jquant2 18 0 0 0 2 3 9 2 3 2 3.96e4 | 3.72¢4 3.68e4
mshift 20 1 1 1 15 12 2 4 3 2 4.68e4 | 4.56e4 4.16e4
vsolve 21 0 0 0 7 7 3 0 0 0 4.48e4 | 4.48e4 4.32e4
ftt 40 0 0 0 24 8 0 16 8 1 8.98e4 | 8.33e4 8.00e4
fdtd-apml 21 5 3 1 12 10 2 6 4 3 5.09¢4 | 4.84e4 4.36e4
clincs 29 - - 3 - - 6 - - 7 - - 6.29¢e4
jfdctt 58 - - 2 - - 4 - - 2 - - 1.19e5
[Normalized [1.00 | 144 | 133 | 1.00 | 439 | 267 | 100 | 262 | 185 | 100 | 106 | 103 | 1 |
DFGs. Then, we select actions by e-greedy policy, generate 55 de3 le-3
state transitions and store these transitions in a replay memory 501 learning rate || 0.8 loss
with the maximal size equaling to 5.0e5. When the number 1'57 0.61
of transitions in replay memory is beyond 1.0e5, a batch of 1.0 0.4l
transitions of size 32 are sampled and training is started. 0'5 0.2
In reinforcement learning, however, accurately evaluating L ‘ ‘ ‘ ‘ L ‘ ‘ ‘ :
the progress of an agent during training can be challenging. 00 02 0.(4a) o6 08 00 02 0.(4b) 06 08
Since the evaluation metric of reinforcement learning, as 075 led 4
suggested by [18], is the total reward the agent collects in an 0.50 s number of episodes
episode or game averaged over a number of games, we usually 0.251
periodically compute it during training. During training, we 0.00 27
track the learning performance by recording the learning rate, —0.251 14
X average reward
average loss per epoch, average episode reward per epoch and —0.50 L, : ‘ ‘ ‘ : : : : :

. . 0.0 02 04 06 08 00 02 04 06 08
average number of episodes (n,) per epoch. The epoch size () le7 (d) le7
(nep) is set to 50000. Fig. 11 shows the learning curves for
.6 X 6'PEA du.rlng training with relaxation factor 5 = 1.1, Fig. 11. Learning curves in training
including learning rate curve, loss curve, average reward curve
over epochs and average number of episodes over epochs. As
shown in Fig. 11(a), the learning rate is decayed exponentially el U
from 2.5e-3 to 2.5e-3. The loss, as depicted in Fig. 11(b), g
decreases with the time-step and gets close to 5.0e-5 at B0
time-step 8.0e6. The average episode reward increase with O
time-step and become convergence at time-step 3.8e6, which B O
indicates our approach can always get gains when getting into EO

convergence. As shown in Fig. 11, the number of episodes
per epoch can demonstrate the effectiveness of our approach
directly. As the maximal time-steps per episode (1,,:) is set
to 10000 and the epoch size (n;) is 50000, the lower bound
of nge 1S :—”’t = 5. When the time-step is less than 2.0e6,
Nge 1S keptrrfo 5 because the Q-network is still stupid and
can hardly get a valid mapping. When time-step is larger than
2.0e6 and less than 5.0e6, ny. becomes larger on average as
the Q-network becomes smart to handle the mapping. When
the time-step is larger than 5.0e6, n,. becomes even larger on
average as the training becomes convergent. We note that the
variance of n,e is very large even though the Q-network gets
convergent. This is because that the initial mapping state is
randomly generated and some of them may cannot be validly
mapped originally. When it happens, n,. is also relative small.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Fig. 12. Case study on kernel fdtd-apml (a) initial placement, (b) mapping
result at time-step 2E6, (c)mapping result at time-step 86

E. Case Study

To show the gain from our approach, we take the mapping
of kernel fdtd-apml on a 6 x 6 mesh plus PEA for case study.
As shown in Fig. 12, kernel fdtd-apml has 21 operations in
total. Firstly, an initial placement is given, shown in Fig. 12(a),
including three invalidly routed edge (see the red arrows).
When the time-step of training reaches to 2e6, the Q-network
is still stupid and random actions are often taken in e-greedy
policy. Consequently, more invalidly-routed edges and more

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

TABLE III
NEURAL ARCHITECTURE FOR DIFFERENT PEA SIZE

| PEA size | Input Layer | Hidden Layer | Output Layer |

4 x4 16 x 16 256 24
6 x 6 36 x 36 512 60
8 x 8 64 x 64 1024 112
15 led

T —— mesh+ 4x4

£ 1.0{ — mesh+6x6

IS —— mesh+ 8x8

g 05

-% 0.0

o

2-0.5

@

Z-10

0.0 0.2 0.4 0.6 0.8 1.0

Time steps

Fi

=

g. 13. Training curves of agents for different PEA size

trivial routing PE are generated, as shown in Fig. 12(b).
When the time-step of training reaches to 8e6, the Q-network
becomes smart and less exploration is conducted in e-greedy
algorithm. Therefore, the better solution is generated by the
Q-network from the initial state within 10000 time-steps.

F. Scalability to different architectures

Our approach is applicable to different PEA size by simply
modifying the layer size of the neural network. Table III gives
the specific layer size set for PEA size of 4 x4, 6 x6 and 8 x 8.
The sizes of input layer and output layer are strictly determined
by the state representation and action representation described
in section III. The number of neurons in hidden layer is set
256, 512 and 1024 for 4 x4, 6 x 6 and 8 x 8 PEAs, empirically.
With the Q-network set above, the training curves tracking the
agent’s average episode reward are demonstrated in Fig. 13.
From the training curves, the agent of larger PEA size spends
more iterations to get into convergence as the data space and
neural architecture size are much larger. The training time-step
to get into convergence for 4 x 4, 6 X 6 and 8 x 8 PEAs are
about 5e5, 2e6 and 7e6. The time costs of training for three
PEAs are also quite different. As shown in Table IV, it spends
5.05 hours, 23.34 hours and 133.23 hours to make the neural
networks for 4 x 4, 6 x 6 and 8 x 8 PEAs be convergent,
respectively. The training time seems to be exponential to the
PEA size and it becomes impractical for very large PEAs.
However, the PEA size in real CGRA is usually designed to
be small in consideration of power and area. Therefore, our
approach is still applicable for most CGRAs.

G. Compilation Time

Although the training time of RLMap is tediously long for
larger PEA, the compiling time is acceptable. As shown in
Fig. 14, the compilation time of the kernels in Table I of
different approaches targeting to 8 x 8 mesh-routed PEA is
presented, where the x-axis indicates the compilation time
(seconds). All the approaches terminated after 2 hours. SPKM

11

TABLE IV
TRAINING TIME FOR DIFFERENT PEA SIZE

[PEAsize [4x4]6x6] 8x8 |
[time(hours) | 5.05 | 2334 | 133.23 |

avg
jfdctflt
clincs
fdtd-apml
ftt
vsolve
mshift
jquant2
calvir
wayinit
places
pppm
seidel-2d
wrf
filter

T SPKM

adi
[Pattern
bycl = RLMap
1071 10° 10! 102 103

Fig. 14. Compilation time of different approaches

and pattern-based approaches find solutions for 14 kernels and
our approach finds solutions for all the 16 kernels. We note that
our approach performs worse than other approaches on small
kernels. That is because there are millions of operations in the
forward prediction process of Q-network at each time-step. As
for small kernels, the time-step reduced by our approach is not
obvious. Thus, the compilation time, the product of time-step
and latency of each step, is still very long for small kernels. As
for large kernels, our approach reduces the time-steps greatly.
Consequently, the compilation time of our approach also keeps
moderate. On average, our approach gets compilation time
comparable to that of SPKM.

V. CONCLUSIONS

Traditional CGRA mapping algorithms optimize placement,
routing and PE insertion, respectively, and iteratively search
global optimized solution among the three steps. This paper
has proposed an efficient yet high-quality CGRA mapping
approach. It is a novel academic method unifying placement,
routing and PE insertion in a deep reinforcement learning
framework for CGRA mapping. In the Q-network for state-
action evaluation, state, action, reward and network architec-
ture are well designed to guide training to improve routability
while reducing mapping cost. Consequently, the proposed

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

approach can perform DFG mappings with high quality. The
experimental results have shown that our approach has estab-
lished the successful use of deep reinforcement learning for
high-quality and practical CGRA mapping.

[1]
[2]

[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

REFERENCES

D. M. T. Office, “Electronics resurgence initiative: Page 3 investments.”
X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas,” in Proceedings of the 54th Annual
Design Automation Conference 2017. ACM, 2017, p. 29.

X. Wei, Y. Liang, T. Wang, S. Lu, and J. Cong, “Throughput optimiza-
tion for streaming applications on cpu-fpga heterogeneous systems,” in
Design Automation Conference (ASP-DAC), 2017 22nd Asia and South
Pacific. 1EEE, 2017, pp. 488—493.

B. Mei, S. Vernalde, H. De Man, and R. Lauwereins, “Adres: An
architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix,” 2003.

V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar-
alingam, and C. Kim, “Dyser: Unifying functionality and parallelism
specialization for energy-efficient computing,” IEEE Micro, vol. 32,
no. 5, pp. 38-51, 2012.

V. Govindaraju, C. Ho, and K. Sankaralingam, “Dynamically specialized
datapaths for energy efficient computing,” 2011.

L. Liu, D. Wang, M. Zhu, Y. Wang, S. Yin, P. Cao, J. Yang, and S. Wei,
“An energy-efficient coarse-grained reconfigurable processing unit for
multiple-standard video decoding,” IEEE Transactions on Multimedia,
vol. 17, no. 10, pp. 1706-1720, 2015.

J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek,
“Spkm: A novel graph drawing based algorithm for application mapping
onto coarse-grained reconfigurable architectures,” in Proceedings of the
2008 Asia and South Pacific Design Automation Conference. 1EEE
Computer Society Press, 2008, pp. 776-782.

G. Mehta, C. Crawford, X. Luo, N. Parde, K. Patel, B. Rodgers, A. K.
Sistla, A. Yadav, and M. Reisner, “Untangled: A game environment
for discovery of creative mapping strategies,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 6, no. 3, p. 13, 2013.

G. Mehta, K. K. Patel, N. Parde, and N. S. Pollard, “Data-driven
mapping using local patterns,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 32, no. 11, pp. 1668—
1681, 2013.

S. Yin, D. Liu, L. Sun, L. Liu, and S. Wei, “Dfgnet: Mapping dataflow
graph onto cgra by a deep learning approach,” in 2017 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1-4.
B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Ex-
ploiting loop-level parallelism on coarse-grained reconfigurable architec-
tures using modulo scheduling,” in Computers and Digital Techniques,
IEE Proceedings-, vol. 150, no. 5. IET, 2003, pp. 255-61.

M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: using epimor-
phism to map applications on cgras,” in Proceedings of the 49th Annual
Design Automation Conference. ACM, 2012, pp. 1284-1291.

D. Liu, S. Yin, L. Liu, and S. Wei, “Polyhedral model based mapping
optimization of loop nests for cgras,” in Proceedings of the 50th Annual
Design Automation Conference. ACM, 2013, pp. 1-8.

D. Liu, S. Yin, Y. Peng, L. Liu, and S. Wei, “Optimizing spatial mapping
of nested loop for coarse-grained reconfigurable architectures,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 11, pp. 2581-2594, 2015.

H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques. ACM, 2008, pp. 166-176.

M. Hamzeh and A. Shrivastava, “Regimap: register-aware application
mapping on coarse-grained reconfigurable architectures (cgras),” in
Proceedings of the 50th Annual Design Automation Conference. ACM,
2013, p. 18.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” Computer Science, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

12

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V.
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, 2016.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

F. Bouwens, M. Berekovic, B. De Sutter, and G. Gaydadjiev, “Architec-
ture enhancements for the adres coarse-grained reconfigurable array,” in
High Performance Embedded Architectures and Compilers. Springer,
2008, pp. 66-81.

G. Lee, S. Lee, K. Choi, and N. Dutt, “Routing-aware application
mapping considering steiner points for coarse-grained reconfigurable
architecture,” in International Symposium on Applied Reconfigurable
Computing. Springer, 2010, pp. 231-243.

J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, and Y. Paek, “A graph
drawing based spatial mapping algorithm for coarse-grained reconfig-
urable architectures,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 17, no. 11, pp. 1565-1578, 2009.

S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling,
and S. Hauck, “Spr: an architecture-adaptive cgra mapping tool,” in
Proceedings of the ACM/SIGDA international symposium on Field
programmable gate arrays. ACM, 2009, pp. 191-200.

C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapidireconfigurable
pipelined datapath,” in International Workshop on Field Programmable
Logic and Applications. Springer, 1996, pp. 126-135.

V. Betz and J. Rose, “Vpr: A new packing, placement and routing tool
for fpga research,” in International Workshop on Field Programmable
Logic and Applications. Springer, 1997, pp. 213-222.

T. Taghavi, X. Yang et al., “Dragon2005: Large-scale mixed-size place-
ment tool,” in Proceedings of the 2005 international symposium on
Physical design. ACM, 2005, pp. 245-247.

C. Sechen and A. Sangiovanni-Vincentelli, “The timberwolf placement
and routing package,” IEEE Journal of Solid-State Circuits, vol. 20,
no. 2, pp. 510-522, 1985.

T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “Ntuplace: a
ratio partitioning based placement algorithm for large-scale mixed-
size designs,” in Proceedings of the 2005 international symposium on
Physical design. ACM, 2005, pp. 236-238.

G. Ansaloni, K. Tanimura, L. Pozzi, and N. Dutt, “Integrated kernel
partitioning and scheduling for coarse-grained reconfigurable arrays,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 12, pp. 1803-1816, 2012.

S.-Y. Chen and Y.-W. Chang, “Routing-architecture-aware analytical
placement for heterogeneous fpgas,” in Design Automation Conference
(DAC), 2015 52nd ACM/EDAC/IEEE. 1IEEE, 2015, pp. 1-6.

T. Luo and D. Z. Pan, “Dplace2. 0: A stable and efficient analytical
placement based on diffusion,” in Proceedings of the 2008 Asia and
South Pacific Design Automation Conference. 1EEE Computer Society
Press, 2008, pp. 346-351.

Dajiang Liu received the B.S. degree in School
of Microelectronics and Solid-state Electronics, U-
niversity of Electronic Science and Technology,
Chengdu, China, in 2009, and Ph.D. degrees in
Institute of Microelectronics, Tsinghua University,
Beijing, China in 2015. From 2015 to 2017, he
has worked in Tsinghua University as a research
associate. He currently works as a lecturer at the
college of computer science in Chongqing Universi-
ty, Chongqing, China. His research interests include
reconfigurable computing and deep reinforcement

learning.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878183, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD, VOL. 14, NO. 8, AUGUST 2017

Shouyi Yin received the B.S., M.S. and Ph.D. degree
in Electronic Engineering from Tsinghua Univer-
sity, China, in 2000, 2002 and 2005 respectively.
He has worked in Imperial College London as a
research associate. Currently, he is with Institute
of Microelectronics at Tsinghua University as an
associate professor. His research interests include
reconfigruable computing, mobile computing and
SoC design.

Guojie Luo received the BS degree in comput-
er science from Peking University, Beijing, Chi-
na, in 2005, and the MS and PhD degrees in
computer science from UCLA, in 2008 and 2011,
respectively. He received the 2013 ACM SIGDA
Outstanding PhD Dissertation Award in Electronic
Design Automation and the 10-year Retrospective
Most Influential Paper Award at ASPDAC 2017.
He is currently an associate professor in the School
of EECS, Peking University. His research interests
include electronic design automation, heterogeneous

computing with FPGAs and emerging devices, and medical imaging analytics.

Jiaxing Shang was born in Guiyang, Guizhou,
China in 1987. He received the B.S. and Ph.D.
degrees in Control Science and Engineering from
Tsinghua University, Beijing, China, in 2010 and
2016 respectively. He currently works as a lecturer
at the college of computer science in Chongqing
University, Chongqing, China. He is doing the post-
doctoral research in Computer Science and Tech-
nology at Chongqing University from 2016. His
research interests include social networks analysis,
data mining, artificial intelligence, and recommender

systems. He has published about 20 high quality journal and conference
articles, including KBS, WASA, ICONIP, SNA-KDD, Physica A, etc

Leibo Liu received the B.S. degree in electronic
engineering from Tsinghua University, Beijing, Chi-
na, in 1999 and the Ph.D. degree in Institute of
Microelectronics, Tsinghua University, in 2004.He
now serves as an associate professor in Institute of
Microelectronics, Tsinghua University. His research
interests include reconfigurable computing, mobile
computing and VLSI DSP.

Shaojun Wei was born in Beijing, China in 1958.
He received Ph.D. degree from Faculte Polytech-
nique de Mons, Belguim, in 1991. He became a
professor in Institute of Microelectronics of Ts-
inghua University in 1995. He is a senior member
of Chinese Institute of Electronics (CIE). His main
research interests include VLSI SoC design, EDA
methodology, and communication ASIC design.

13

Yong Feng was born in Chongqing, China in 1977.
He received the B.S. degree in Computer Applied
Technology from Chongqing University in 1999,
the M.S. degree in Computer Systems Organization
from Chongqing University in 2003, and Ph.D.
degree in Computer Software and Theory from
Chongqing Univeristy in 2006. He currently serves
as a Professor at the College of Computer Science of
Chongqing University in China. From July 2007 to
July 2010, he did the postdoctoral research in Con-
trol Science and Engineering Center at Chongqing
University. Dr. Feng has published more than 50 academic papers and 2
monographs.

Shangbo Zhou was born in Guanxi, China. He
received the B.S. degree from Gangxi National
College in 1985, the M.S. degree from Sichuan
University in 1991, both in Mathematics, and Ph.D.
degree in Circuit and System from Electronic Sci-
ence and Technology University. From 1991 to 2000,
he was with the Chongqing Aerospace Electronic
and Mechanical Technology Design Research Insti-
tute. Since 2003, he has been with the College of
Computer Science of Chongqing University, where
he is now a Professor. His current research interests
include artificial neural networks, physical engineering simulation, visual ob-
ject tracking and nonlinear dynamical system. He has published more than 100
journal and conference papers, including Physical Review E, Neurocomputing,
Chaos, Pattern Recognication, Multimedia Tools and Applications, etc.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

