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Abstract—The market benefits from a barrage of Ultra High
Definition (Ultra-HD) displays, yet most extant cameras are
barely equipped with Full-HD video capturing. In order to
upgrade existing videos without extra storage costs, we propose
an FPGA-based super-resolution system that enables real-time
Ultra-HD upscaling in high quality. Our super-resolution system
crops each frame into blocks, measures their total variation
values, and dispatches them accordingly to a neural network or
an interpolation module for upscaling. This approach balances
the FPGA resource utilization, the attainable frame rate, and
the image quality. Evaluations demonstrate that the proposed
system achieves superior performance in both throughput and
reconstruction quality, comparing to current approaches.

Keywords-Field-Programmable Gate Arrays; Ultra High Def-
inition; Super-Resolution; Real-time

I. INTRODUCTION

Ultra high definition (UHD) technology has been changing

the entertainment industry significantly. However, UHD con-

tent is severely short of supply due to limited content creators

or hard to access due to insufficient network bandwidth.

Hence, it is highly in demand to upscale video content

of conventional full high-definition (2K FHD) resolution of

1920×1080 into the 4K UHD version of 3940×2160.

Estimating a fine-resolution image/video from a coarse-

resolution input is often referred to as super-resolution. This

fundamentally important problem in image processing and

computer vision has become particularly attractive as high-

definition displays dominate the market. Previous works

using interpolations [1], model-based methods [2]–[4], and

example-based methods [5]–[11] will be elaborated in Sec-

tion II-A. Furthermore, a variety of neural network solutions

[8]–[10] achieved satisfying reconstruction quality. However,

most of these CPU-based methods are far from reaching ideal

performance as well as energy efficiency.

Given the huge storage expense of UHD content and in-

spired by the aforementioned state-of-the-art super-resolution

techniques, we propose a super-resolution generation solution

in real-time with FPGA in this work. Our work makes the

following contributions:

1) It combines an accurate but complex neural network

with a fast but naive interpolation algorithm. In this

way, we generate outputs in both high speed and quality

for large-size inputs.

§ Contributed equally.
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Figure 1. Observation Model that Relates LR Image to HR Image

2) We propose a quantitative model for analysis and opti-

mization to balance the utilization of limited hardware

resources, the attainable frame rate, and the visual

performance.

3) Our super-resolution system generates a higher res-

olution video than reported in existing literature,

namely 3940×2160 UHD videos from 1920×1080
FHD sources at a frame rate of approximately 30fps

on an embedded FPGA board.

II. RELATED WORK

A. Super-Resolution

Super-resolution has generated a wide spectrum of studies

since the seminal work [12]. And we refer readers to [13]

for a comprehensive literature review.

The most straightforward methods for super-resolution are

those based on interpolations, including nearest-neighbor,

bilinear, bicubic, and Lanczos algorithms [1]. These methods

usually run fast and are easy to implement, but inevitably

produce excessively blurry results [2].

Model-based methods [2], [3] aim to restore high-

resolution scenes according to the observation model in

Figure 1 and with priors (regularizations). Most of the works

(e.g., [4]) assume known blur kernels and noise levels, but

in reality they can be arbitrary [14].

Example-based approaches learn the mapping between

low- and high-resolution patches. These approaches either

exploit internal similarity of the same image [6], [7], or learn

the mapping function from external exemplar pairs [5], [11].

It is worth noticing that deep learning techniques have been

181

2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines

2576-2621/18/$31.00 ©2018 IEEE
DOI 10.1109/FCCM.2018.00036



successfully applied in super-resolution [8]–[10] and often

achieve state-of-the-art restoration quality.

B. FPGA-based Neural Network Accelerators
FPGA-based accelerators for neural networks are gaining

popularity because of its higher energy-efficiency compar-

ing to GPUs and shorter development cycles comparing to

ASICs. Since convolution operations often take up a large

proportion of the total operations in neural networks, most

of the previous works focus on optimizing convolutions.
Many accelerators focus on improving the computa-

tional efficiency. They explore parallelism, computing se-

quences (pipelines), and computation-communication bal-

ance by loop optimization techniques like loop unrolling and

loop tiling [15]–[18]. Theses techniques are analyzed in depth

in [19].
Some efforts have also been put on reducing the computa-

tional demands through frequency domain acceleration [20],

[21], binarized/tenarized networks [22]–[24], and network

compression [25].
Other studies have put forward hardware abstractions [26],

[27] and end-to-end automated frameworks [28], [29].

C. Super-Resolution System on FPGA
Real-time super-resolution systems [30], [31] based on the

iterative back projection algorithm are presented. It combines

and slightly modifies a model-based super-resolution algo-

rithm [32] that assumes identical blur between frames (for

computational efficiency), and an iterative one [33] that uses

L1-norm minimization (for robustness). Fixed-point precision

is used, and a highly pipelined architecture is proposed for

the real-time purpose. Szydzik et al. [34] reduces logic occu-

pation when implementing the Non-Uniform Grid Projection

Algorithm.
In [35] a learning-based super-resolution system is pre-

sented. It implements the A+ algorithm [36] using only a few

line buffers (and without a frame buffer). The system consists

of three pipelined stages, which are an interpolation stage for

generating low-frequency parts, a mapping stage to select

high-frequency patches by pre-trained regression functions,

and a construction stage that enhances and overlaps the low-

frequency image patches with high-frequency information.

Noticing that the second stage handles massive computations

and introduces long latency, the operation period in the

second stage is doubled, and the system is designed with

multiple clock domains.
In [37] a convolutional neural network for super-resolution

based on FRCNN [8] is implemented on FPGA. Instead of

enlarging the input beforehand, it applies horizontal and/or

vertical flips to the network input images. This flip prevents

the information decrease which occurs in the pre-enlargement

process, enabling the network to utilize the most of its input

image size [37].

III. SUPER-RESOLUTION ALGORITHM

A. Overall Algorithm
For run-time limitation and resource constraints, we come

up with a super-resolution algorithm that combines a neural

network and an interpolation-based method.

Given a low-resolution (LR) image X, we first crop the

image into N×N -pixel sub-images with a stride of k. For

each sub-image, we calculate its importance index through

a measurement function M : RN×N → R. The sub-images

with high importance indices are upscaled using a neural

network, while the rest are simply upscaled by interpolation.

Finally, the upscaled sub-images are assembled into a high-

resolution (HR) image Y.

The pseudo code for super-resolution is listed in Algo-

rithm 1.

Algorithm 1 Overall Super-Resolution Algorithm

Input: LR image X, upscaling factor n, threshold T
Output: HR image Y

1: Crop X into sub-images {x} with a stride k
2: for all sub-image x do
3: if M(x) ≥ T then
4: y← Upscale(x)
5: else
6: y← CheapUpscale(x)
7: end if
8: end for
9: Mosaic Y with upscaled sub-images {y}

The selection of sub-image stride k will be discussed in

Section IV-E.

B. Total Variation-based Masking

In our practice, we adopt the total variation (TV) [38]

as the masking measure M in Algorithm 1. Note that an

anisotropic version of TV is employed for easier computa-

tion.

We use some of the notations in [39]. Let us consider

an N×N image as a 2-dimensional matrix in X , where X
is the Euclidean space R

N×N . To define the discrete total

variation, we introduce a discrete (linear) gradient operator

∇ : X → X ×X . If x ∈ X , ∇x is a vector in X ×X given

by:

(∇x)i,j = ((∇x)Vi,j , (∇x)Hi,j) (1)

with

(∇x)Vi,j =
{
xi+1,j − xi,j if i < N

0 if i = N

(∇x)Hi,j =
{
xi,j+1 − xi,j if j < N

0 if j = N

(2)

for i, j = 1, 2, . . . , N .

Then, the total variation of x is defined by

J(x) =
∑

1≤i,j≤N

||(∇x)i,j ||1 (3)

with ||y||1 := |y1|+ |y2| for y = (y1, y2) ∈ R
2.

We select TV as the masking method for the following

several reasons:
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1) TV value reveals the high-frequency intensity of an

image block. High TV value comes with more high-

frequency information, like edges and textures, which

cannot be restored well by interpolation methods.

2) The distribution of TV value over natural image blocks

is close to Rayleigh distribution. As a result, we can

effortlessly sift a portion of blocks out by setting a rea-

sonable threshold value. The Rayleigh-like distribution

of gradient in images is also mentioned in previous

studies [40].

3) TV value is easy to calculate. In Section IV-B, we

propose a micro-architecture which computes TV of

an image while reading in image pixels.

C. Convolutional Neural Network for Super-Resolution

We adopt the hourglass-shaped convolutional neural net-

work proposed by Chao Dong et al. [41], namely FSRCNN-s,

which can learn an end-to-end mapping between the original

LR and the target HR images with no pre-processing. We

give a brief introduction to FSRCNN-s here.

1) Neural Network Topology: The same as in [41], we

denote a convolution layer as Conv(ci, fi, ni) and a decon-

volution layer as DeConv(ci, fi, ni), where the variables ci,
fi, and ni represent the number of channels, the filter size,

and the number of filters, respectively. FSRCNN-s can be

decomposed into the following five stages (layers).

Feature Extraction Conv(1, 5, 32) extracts 32 feature

maps from the original LR image using

filters of size 5×5.

Shrinking Conv(32, 1, 5) reduces the LR feature

dimension from 32 to 5 using filters of

size 1×1.

Mapping Conv(5, 3, 5) nonlinearly maps LR

features onto HR features using filters

of size 3×3.

Expanding Conv(5, 1, 32) expands the HR feature

dimension from 5 to 32 using filters of

size 1×1.

Deconvolution DeConv(32, 9, 1) upsamples and ag-

gregates previous features using filters

of size 9×9.

2) Activation Function: FSRCNN-s suggests the use of

the Parametric Rectified Linear Unit (PReLU) after each

convolution layer. The activation function is defined as

f(xi) := max (xi, 0) + ai min (xi, 0), (4)

where xi is the input signal of the activation f on the i-th
channel, and ai is the coefficient of the negative part. Unlike

for ReLU where the parameter ai is fixed to be zero, it is

learnable for PReLU.

3) Cost Function: FSRCNN-s adopts the mean square

error (MSE) as the cost function. The optimization objective

is represented as

min
θ

1

n

n∑
i=1

||F (Y i
s ; θ)−Xi||22, (5)
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Figure 2. An overview of the proposed system. Grey boxes indicate the
input and output frame buffers. The dispatcher is integrated into the input
buffer.

where Y i
s and Xi are the i-th LR and HR sub-image pair

in the training data, and F (Y i
s ; θ) is the network output for

Y i
s with parameters θ. All parameters are optimized using

stochastic gradient descent with the standard backpropaga-

tion.

IV. IMPLEMENTATION

A. System Overview

Figure 2 illustrates the overall system design. It consists

of three main parts:

• Dispatcher: It calculates the TV value of each block

according to the equations mentioned in Section III-B.

Then it dispatches the blocks whose TV values are

greater than the threshold, which we have decided in

advance, to the neural network, while others to the

interpolation module.

• Pipelined Neural Network: FSRCNN-s is implemented

in a fully pipelined structure where each network layer is

a pipeline stage. The number of multipliers in each stage

is also configured to achieve well-balanced throughputs

of the stages.

• Interpolator: The simple and fast interpolator handles

the blocks whose TV values are less than the threshold.

The bilinear algorithm, which can upscale images with

low costs and fine performance, is selected.

Finally, the output blocks from the network or interpolator are

assembled to generate the final output high-resolution image.

B. Micro-architecture for Stencil Masking

In our TV-based masking, the vertical and horizontal

gradients of a pixel rely on the pixel itself, as well as the

one below and the one on the right-hand side, respectively.

The computation pattern can be considered as stencil com-

putation, i.e., each point is updated (iteratively) as a function

of its value and values at its neighboring elements. Figure 3

depicts the access pattern of the computation. To calculate

gradients at x[offset ], we have to access pixels x[offset ],
x[right ], and x[down], which are colored dark blue in the

figure.

When the iterative computation is fully pipelined, the

computation kernel needs to load multiple elements from
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Figure 3. Stencil access pattern of TV computation. Gradients at offset
rely on the dark blue pixels.
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Figure 4. Micro-architecture for TV calculation. Grey, blue, and orange
boxes denote buffers, data path splitters and filters, respectively.

one array in a single clock cycle, so memory partition is

necessary to avoid contention on memory ports. Though

uniform memory partition strategies are explored in recent

publications, e.g., [42], [43], we adopt the micro-architecture

proposed by [44] to decouple the stencil access pattern from

the computation.

The micro-architecture, as illustrated in Figure 4, mainly

contains buffering systems equipped with memory controllers

and data interconnects. There is no data reuse opportunity

among different arrays, so the buffering systems are indepen-

dent of each other. In each buffering system, FIFOs provide

storage the same as conventional data reuse buffers do, while

data path splitters and filters between FIFOs work as memory

controllers and data interconnects. Each buffering system

receives a single data stream without additional external

memory access. Before the computation starts, the controllers

first read-in data and fill up the FIFOs for N cycles. Then

in every clock cycle, the filters send the required data to the

computation kernel, the kernel consumes all data to generate

one output, and the controllers move all the buffered data

forward. In this way, the buffering systems keep proceeding

until the end of the iteration domain. Table I shows the filling

process of the buffering system.

C. Neural Network Implementation

To increase system throughput, we organize the whole

neural network as a pipelined structure, with each network

layer as a pipeline stage. All the feature maps and weights, as

well as bias vectors and PReLU parameters, are all stored in

Table I
FILLING PROCESS OF BUFFERING SYSTEM. IN FILTER STATUS, D, S, AND

F STAND FOR DISCARDING, STALL AND FORWARDING, RESPECTIVELY.

clock cycle data in stream
filter status FIFO status (# of data)

filter 1 filter 2 filter 3 FIFO 1 FIFO 2

1 x[0][0] d d f→s 0 0

2 x[0][1] d f→s s 0 1

N x[0][N-1] d s s N-2 1

N+1 x[1][0] d→f s→f s→f N-1 1

N+2-... x[1][1]-... f f f N-1 1

Table II
NOTATIONS FOR EXPLAINING NEURAL NETWORK IMPLEMENTATION

Notations Meanings

ci Number of input channels of the i-th layer

fi Filter dimension of the i-th layer

ni Number of output channels of the i-th layer

Conv(ci, fi, ni) The i-th convolution layer

Ni Input feature map dimension of the i-th layer

k Sub-image stride

#Conv Number of convolution layers

SHD Size of a Full-HD image

s Upscaling factor

Fr Frame rate (frames/s, fps)

B I/O bandwidth (bits/s, bps)

C BRAM capacity (bits)

WL Word length (bits)

BRAM. We can keep the data on chip mainly because of 1)

the small size neural network and 2) our blocking algorithm

which leads to small feature maps. Notations used in the

following sections are provided in Table II.

1) Convolution Layers: For each convolutional layer

Conv(ci, fi, ni), there are ci×ni filters of size fi×fi, gener-

ating ni outputs. In our implementation, there will be ci×ni

processing elements (PEs) computing in parallel, i.e., one PE

per filter. There are three main steps during processing:

Input An fi×fi sliding window on each input feature

map generates an input vector of f2
i elements.

Compute Corresponding PEs calculate the inner products

of the input vector and the filter.

Output Partial sums are added up and stored in the

target pixels.

The three steps are executed in a pipelining fashion. Figure

5 is a diagram of the Convolution layer architecture.

2) Deconvolution Layer: Deconvolution in this neural

network can be regarded as a structurally inverse process

of convolution. A deconvolution layer DeConv(ci, fi, ni)
upsamples and aggregates the previous ci feature maps with

ci×ni deconvolution filters of size fi×fi. On account of the

memory ports limitation and the reuse of intermediate data,

sliding windows are also applied in the deconvolution layer.

A sliding window holds on the partial results and updates

them lately. This layer also has a three-staged pipeline:

Input Input pixels are obtained from the output fea-

ture maps of the last convolution layer.
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Figure 5. Convolution layer architecture. fi×fi windows are sliding across
the input feature maps.
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Figure 6. Deconvolution layer architecture. fi×fi windows are sliding
across the output feature maps.

Compute Output pixels are calculated with input pixels

and filters.

Output A sliding window updates s columns on the

target feature map each time. Note that the

rest fi−s columns are kept in the window for

further reuse, and the new s column pixels are

initialized to zeroes.

Figure 6 depicts the deconvolution layer architecture.

3) Pipeline Balancing: We also balance the whole

pipeline through resource allocation. In a convolution stage

Conv(ci, fi, ni), there are ci×ni×f2
i ×N2

i+1 multiplications,

note again Ni+1 is the dimension of an output feature map

of this layer. To balance the throughput of each stage, we

should allocate the number of multipliers (DSPs) in each

stage proportional to the number of multiplications in the

stage, while keeping the overall utilization from exceed-

ing the total amount of available DSPs. Table III shows

multiplier allocations of each layer and relevant data. We

obtain the ideal number1 of DSPs (ideal #DSP) of each

layer by assigning multipliers proportionally to the number

of multiplications (#Mult.) of them. Then the ideal IIs are

computed accordingly. We set II of each layer manually (so

that the necessary performance is achieved), and the required

number of DSPs (#DSP) to achieve such II is obtained.

1Rounded down to the nearest integer.

Table III
MULTIPLIER ALLOCATIONS AND RELEVANT DATA

Layer ci fi ni Ni #Mult.
ideal alloc.

#DSP II #DSP II

Extraction 1 5 32 36 819200 201 4076 200 4096

Shrinking 32 1 5 32 163840 40 4096 32 4096

Mapping 5 3 5 32 202500 50 4050 45 4500

Expanding 5 1 32 30 144000 35 4115 32 4500

Deconvolution 32 9 1 30 2332800 573 4072 519 4500

Overall - - - - 3662340 899 4115 828 4500

Available (ZC706) - - - - - 900 - 900 -

D. Interpolator

We use the bilinear interpolation as the alternation of the

neural network method (i.e., CheapUpscale in Algorithm 1).

We observe that from the output perspective, the bilinear

interpolation is very similar to the deconvolution process

described in Section IV-C2. For example, in our case of

2× upscaling, an input pixel Xi,j spreads its value to a

3×3 window centered at Y2i,2j of the output with the

“deconvolution kernel”:

⎡
⎣1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

⎤
⎦. Similarly, this

structure enables the use of sliding window to avoid massive

load/store addressing. The observation also accounts for why

the deconvolution could be adopted for upscaling instead of

pre-enlargement.

E. Sub-image Stride Selection

Sub-image stride k affects the system performance in

both efficiency and quality, and thus should be contemplated

carefully. To generate valid convolution results of an fi×fi
filter, we should enlarge the input feature map with extra

border of size fi−1
2 . Therefore, to have a valid k×k output

through all convolution layers, we should have:

Ni ≡ k +

#Conv∑
i

(fi − 1). (6)

There are several constraints on the stride k that should be

considered:

1) I/O bandwidth constraint. Because each sub-image has

to be enlarged with extra pixels for convolution, small

stride comes with a large border-to-block ratio, which

results in inefficient utilization of I/O bandwidth. To

satisfy I/O bandwidth constraint, we have:

(
N1

k
)2 × SHD × Fr ×WL < B (7)

2) Storage capacity constraint. Large stride comes with

large size of feature maps, which makes storing all

feature maps on chip impossible. To satisfy storage
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capacity constraint, we have2:

(

#Conv+1∑
i=1

(N2
i × ci) + (k × s)2)×WL× 2 < C (8)

3) Upscaling performance constraint. The empirical rela-

tion between this constraint and the design parameters

will be presented in Section V-B3.

By solving simultaneous equation and inequalities (6)-(8)

using corresponding data, we can obtain that 2 ≤ k ≤ 57.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Hardware Platform: We test our system on Xilinx

ZC706 Evaluation Board featuring the XC7Z045 FFG900 -2

AP SoC, which has 350 Logic Cells, 19.1Mb Block RAM,

900 DSP Slices, 360 Maximum I/O Pins, and 16 Maximum

Transceiver Count. We set its working frequency at 100 MHz

and use 16-bit fixed data type.

2) Software Setup: The design is implemented by Xilinx

SDSoC Development Environment v2016.3.

3) Dataset: We use the ultra-high resolution 4K video

sequences from SJTU Media Lab [45], which is of YUV

4 : 2 : 0 color sampling, 8 bits per sample, and a frame rate

of 30 fps. The original 4K images are used as the ground

truth, and the 2K LR images are obtained by down-sampling.

Our super-resolution system generates the reconstructed 4K

HR images.

4) Metric: To evaluate our system performance, we use

the Peak Signal-to-Noise Ratios (PSNR) and Structural SIM-

ilarity (SSIM) [46], both of which are widely-used metrics

for quantitatively evaluating image resolution quality. These

metrics measure the difference between reconstructed HR

images and the corresponding ground truth.

The calculation of PSNR using the equation as follows:

PSNR = 10 log10
R2

MSE
, (9)

where R is the maximum fluctuation in the input image data

type. For example, our images are encoded with the 8-bit

unsigned integer data type, thus the R is 255. MSE represents

the mean square error, which is calculated as:

MSE =
1

H ×W

H∑
i=1

W∑
j=1

(I1(i, j)− I2(i, j))
2, (10)

where H and W are the height and the width of the input

images, and I1(i, j) and I2(i, j) are the corresponding pixel

values of the two images.

The SSIM quality assessment index is based on the com-

putation of three terms, namely the luminance term, the

contrast term, and the structural term. The overall index is a

multiplicative combination of these three terms:

SSIM (X,Y) = [l(X,Y)]α · [c(X,Y)]β · [s(X,Y)]γ (11)

2The storage requirement has to be doubled when using ping-pong buffers
in the pipeline.
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Figure 7. TV Distribution of the SJTU 4K Video Sequence Dataset. The
distribution follows the Raylaigh distribution (the red curve). High TV value
indicates more high-frequent information, which should be reconstructed
carefully.

where

l(X,Y) =
2μXμY + C1

μ2
X + μ2

Y + C1

c(X,Y) =
2σXσY + C2

σ2
X + σ2

Y + C2

s(X,Y) =
σXY + C3

σXσY + C3

(12)

where μX, μY, σX, σY, and σXY are the local means,

standard deviations, and cross-covariance for images X and

Y. For the other constants, we often set α = β = γ = 1
for the exponents, and C1 = (K1×L)2, C2 = (K2×L)2,

C3 = C2/2 with K1 = 0.01, K2 = 0.03, and L = 255.

It is worth noticing that the human eye is most sensitive to

luma information, and thus we only separately process and

measure the intensity channel in our YCbCr images.

B. Analysis of Design Options

We carry out multiple experiments to explore the rela-

tionship between the performance with varying TV thresh-

old values and block sizes. The two factors are critical

since different TV thresholds change the workload of each

processing module and thus, influence the performance (in

both speed and quality). At the same time, block sizes

determine resource utilization of the implementation. These

experiments help us determine design parameters in further

system implementation on FPGA.

1) TV Statistics: TV values of sub-image blocks vary from

one to another and could relate to the visual properties of

the original image. Statistics on TV values of our dataset is

illustrated in Figure 7. We observe that the TV distribution

follows the Raylaigh distribution. In our implementation, we

choose 50 as the base value, above which the proportion is

25.3% according to the statistics.

2) Different TV Thresholds with the Same Block Size: In

this group of experiments, we choose 30 as the block size

and set TV value threshold from 30 to 70 with a stride of
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Figure 8. Evaluation of different TV thresholds with the same block
size. Performance and the number of multiplications drop as TV threshold
increases.

�����

�����

�����

�����

�����

���	�

�
��

�
��

����

����

����

����

����

�� �� �� 	� ��

��

�

��
�
�
��


��

����������

���� ��
�

��������

��������

��������

��������

�� �� �� 	� ��
����������

����� ���!���"#

Figure 9. Evaluation of different block sizes with corresponding TV value
thresholds. Performance and the number of multiplications drop as block
size increases.

10. We test the average values of each block to evaluate the

performance, as shown in Figure 8. We can obtain that the

higher the threshold value, the higher performance. Evidently,

when a higher threshold value is chosen, more blocks will

be processed with the neural network, which often leads to

better results.

3) Different Block Sizes with Corresponding TV Value
Thresholds: In this group of experiments, we increase block

size from 10 to 50 with a stride of 10 and set corresponding

thresholds according to block areas. We use the block size

of 30 and the TV threshold of 50 as the control group. The

results are shown in Figure 9. From the figure we can see that

selecting blocks in a finer-grained gains higher reconstruction

quality. However, this is at the cost of higher computation

complexity.

4) Overall Comparisons: In this group of experi-

ments, we compare six solutions with different con-

figurations in Table IV. Considering both preprocessing

method (blocking/none) and upscaling method (neural net-

work/interpolation), we test all four possible combinations.

The fifth and the sixth solutions both use blocking and mixed

upscaling methods, where 25.3% blocks are up-scaled by the

neural network according to the analysis in Section V-B1, and

the other are up-scaled by interpolation. And the difference

is that the fifth solution selects upscaling method for each

block randomly, while the sixth solution uses total variation

threshold for dispatching. Figure 10 shows the example

Table IV
OVERALL COMPARISONS OF DIFFERENT CONFIGURATIONS

No. Preprocessing Upscaling #Mult. PSNR (dB) SSIM

1 None Interpolation 6.6×107 35.51 0.9138

2 None Neural Network 8.2×109 38.55 0.9421

3 Blocking Interpolation 6.6×107 35.51 0.9138

4 Blocking Neural Network 8.4×109 38.55 0.9420

5 Blocking Mixed-Random 2.2×109 36.10 0.9211

6 Blocking Mixed-TV 2.2×109 37.36 0.9287
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Figure 10. Example outputs of different configurations. Configuration
6, which is adopted in our system, shows better reconstruction quality
than interpolations and mixed-random method (configuration 1, 3, and 5),
and costs only 1/4 multiplications compared with neural network methods
(configuration 2, 4).

outputs of the six configurations.

We can easily conclude that:

1) The neural network method shows significantly better

quality (+3.04 dB) than the interpolation algorithm, at

the cost of two orders of magnitude more multiplica-

tions.

2) Cropping image into small blocks with proper padding

achieves nearly the same quality as un-cropping.

3) Dispatching blocks according to the TV threshold

works better (+1.26 dB) than random dispatching.

4) Mixed-TV method saves about 75% cost of multiplica-

tions with acceptable quality degradation (−1.19 dB)

compared with the neural network method.

C. Overall System Performance

For the super-resolution from Full-HD 1920×1080 inputs

to Ultra-HD 3940×2160 outputs, our system can achieve

average frame rates of 23.9fps, 29.3fps, and 31.7fps with

1, 2, and 3 interpolators, respectively. Resource utilization of

each component is listed in Table V.

VI. CONCLUSION AND FUTURE WORK

Inspired by the existing super-resolution works and tech-

niques, we proposed a real-time UHD super-resolution solu-

tion based on FPGA accelerator. In our solution, each input

frame is cropped into blocks. Then each block is dispatched

according to its total variation value and finally up-scaled

utilizing either a neural network or an interpolation module.

We carry out some pre-experiments to find a proper block
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Table V
RESOURCE UTILIZATION OF SYSTEM COMPONENTS ON A XILINX

ZC706 EVALUATION BOARD

Component BRAM DSP FF LUT

Dispatcher 1 2 618 1138

Neural Network 178 844 63149 98439

Interpolator 0 10 1414 3076

Total 327 858 66261 103714

Available 1090 900 437200 218600

Utilization (%) 30 95 15 47

size and total variation threshold. Our solution is a trade-

off between reconstruction quality and run-time efficiency to

achieve satisfying performance.

It is possible to further accelerate our design using other

techniques, e.g., to accelerate convolutions with Winograds

minimal filtering theory [47]. Resolving the computational

challenges of a generalized super-resolution system that

generates more frames (e.g., from 60fps to 120fps) and more

colors (e.g., from 8-bit RGB pixels to 10-bit ones) is another

appealing research direction.
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