
cuMBIR: An Efficient Framework for Low-dose X-ray CT Image
Reconstruction on GPUs

Xiuhong Li1, Yun Liang1,3,∗, Wentai Zhang1, Taide Liu1, Haochen Li1, Guojie Luo1, Ming Jiang2
1 Center for Energy-efficient Computing and Applications, School of EECS, Peking University, China

2 Department of Information Science, School of Mathematical Sciences, Peking University, China
3 State Key Laboratory of Computer Science, ICT, CAS, China

{lixiuhong,ericlyun,rchardx,tdliu,sodalee,gluo,ming-jiang}@pku.edu.cn

ABSTRACT
Low-dose X-ray computed tomography (XCT) is a popular imaging
technique to visualize the inside structure of object non-destructively.
Model-based Iterative Reconstruction (MBIR) method can recon-
struct high-quality image but at the cost of large computational
demands. Therefore, MBIR often resorts to the platforms with hard-
ware accelerators such as GPUs to speed up the reconstruction
process.

ForMBIR, the reconstruction process is to minimize an objective
function by updating image iteratively. The X-ray source emits
large amounts of X-rays from various views to cover the object
as much as possible. Different X-rays always have complex and
irregular geometric relationship. This inherent irregularity makes
the minimization process of the objective function on GPUs very
challenging. First, different implementations of the minimization of
objective function have different impacts on the convergence and
GPU resource utilization. To this end, we explore different solvers
to the minimization problem and different parallelism granularities
for GPU kernel design. Second, the complex and irregular geomet-
ric relationship of X-rays introduces irregular memory behaviors.
Two nearby X-rays may intersect and thus incur memory collisions,
while two far away X-rays may incur non-coalesced memory ac-
cesses. We design a unified thread mapping algorithm to guide the
mapping from X-rays to threads, which can optimize the memory
collisions and non-coalesced memory accesses together. Finally,
we present a series of architecture level optimizations to fully re-
lease the horse power of GPUs. Evaluation results demonstrate
that cuMBIR can achieve 1.48X speedup over the state-of-the-art
implementation on GPUs.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
•Computer systems organization→ Single instruction,mul-
tiple data;

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’18, June 12–15, 2018, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5783-8/18/06. . . $15.00
https://doi.org/10.1145/3205289.3205309

KEYWORDS
Low-dose XCT, Model-based Iterative Reconstruction, GPGPU

ACM Reference Format:
Xiuhong Li1, Yun Liang1,3,∗,Wentai Zhang1, Taide Liu1, Haochen Li1, Guojie
Luo1, Ming Jiang2. 2018. cuMBIR: An Efficient Framework for Low-dose
X-ray CT Image Reconstruction on GPUs. In ICS ’18: 2018 International
Conference on Supercomputing, June 12–15, 2018, Beijing, China. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3205289.3205309

1 INTRODUCTION
X-ray computed tomography (XCT) has been widely applied in
non-destructive testing and contact-free inspection method, such
as medical imaging, age determination and industrial materials
testing [7]. It has received more and more attentions from high
performance computing domain recently [23, 27, 28]. In general, an
XCT equipment consists of an X-ray source, an array of X-ray de-
tectors and a scanned object. The X-ray source emits large amounts
of X-rays with an initial intensity. For each X-ray, its intensity will
attenuate when it goes through the scanned object. The detector
array will collect the attenuated intensity as the projection mea-
surement. An X-ray corresponds to a projection measurement. XCT
Image reconstruction is to obtain the inside structure of scanned
object (i.e. the attenuation coefficients within the object) through
large amounts of projection measurements.

For XCT image reconstruction, the research studies mainly lie on
two problems: how to reduce the dosage to decrease the radiation
exposure damage and how to develop efficient reconstruction algo-
rithms to decrease the reconstruction time. In fact, the two problems
are closely coupled. In the low-dose case, the lack of projection
measurements, the X-ray scatter phenomenon and poly-energetic
issues make the design of effective reconstruction algorithms chal-
lenging [8]. Model-based Iterative Reconstruction [26] (MBIR) has
been proved as a good choice to generate high-quality images in
the low-dose case. The prior knowledge is often used inMBIR in the
form of regularizer to guarantee the image’s smoothness within in-
dividual regions and segmentation across different regions [17, 21].

The reconstruction may take extremely long. For example, the
typical reconstruction time of a 3D volume with size 512×512×512
is more than half an hour on traditional multi-core CPUs [27, 36].
Thus, it is hard to meet the time requirements in the hospital where
large amounts of patients are waiting for the diagnose results. To
speed up the reconstruction process, XCT image reconstruction has
been accelerated on GPUs [15, 16, 26, 39]. However, prior studies
mainly focus on the reconstruction algorithms without the archi-
tectural insights of GPUs, and their differences mainly lie on the
CT scanner geometry, such as helical XCT [26] and 3D cone-beam

184

https://doi.org/10.1145/3205289.3205309
https://doi.org/10.1145/3205289.3205309

ICS ’18, June 12–15, 2018, Beijing, China Xiuhong Li, Yun Liang, Wentai Zhang, Taide Liu, Haochen Li, Guojie Luo and Ming Jiang

Projection Measurement

Inside Structure

Source

Detector

Scan

Scan

Reconstruct

Reconstruct

cuMBIR

(a) Illustration of XCT scan and reconstruction process.

𝐴𝑖𝑗

×

𝑓𝑖

=

𝑔𝑖

n m

System Matrix 𝑨 Object 𝒇 Projection 𝒈

Non-zero intercept

Zero intercept

(b) The mathematical description of XCT scan process.

X-ray

m

Voxel along the X-ray path.

n

Figure 1: The preliminary of XCT image reconstruction.

XCT [39]. [23] proposes high performance MBIR on GPUs. But it
lacks the systematic study of solver selection, parallelism gran-
ularity, and memory optimization. Moreover, the asynchronous
parallelization on GPUs will incur non-coalesced memory accesses,
memory collisions and their coupling behaviors, which is ignored.

ForMBIR, the reconstruction process is to minimize an objective
function (i.e. model). How to select a GPU-friendly solver to the
minimization process and determine the parallelism granularity for
the GPU kernel design is the first challenge. In this work, we first
explore different solvers and their impacts on GPU acceleration.
We mainly consider two solvers: stochastic gradient descent (SGD)
and iterative coordinate descent (ICD). ICD has also been studied
by some previous approaches [3, 24, 26]. Then, we explore different
parallelism granularities for the GPU kernel design. We select a
GPU-friendly implementation based on their impacts on the MBIR
convergence and GPU resource utilization.

The complex and irregular geometric relationship of different
X-rays leads to irregular memory access behaviors on GPUs, which
is the second challenge. First, different X-rays have complex inter-
section relationship, which means that multiple threads may update
(read or write) the same voxel (i.e. 3-D pixel) simultaneously. If mul-
tiple threads write to the same memory address simultaneously on
GPUs, there is only one thread that can finish the write operation
to that memory address unless using atomic operations, but atomic
operations will degrade performance significantly [18]. Besides,
due to complex and irregular geometric relationship, coalescing the
memory accesses to reduce unnecessary memory transactions is
also not trivial. To reduce memory collisions and improve memory
coalescing, we design a unified thread mapping algorithm to guide
the mapping from projections to threads. The thread mapping algo-
rithm consists of two parts. We first apply graph coloring algorithm
to divide the X-rays into different groups. Within each group, the
X-rays have no intersections and thus no memory collisions. Then,
for each group, we apply graph partitioning algorithm to map the
X-rays into warps to reduce non-coalesced memory accesses.

For MBIR, the computations are single precision operations by
default. However, modern GPUs are equipped with various SIMT

computational resources with different precision ranges including
FP16, FP32, and FP64. Besides, special functional units (SFUs) are
also involved to support approximate computation for transcenden-
tal functions. To fully utilize these resources on GPUs, we propose
to use mixed-precision computing technique within the range of al-
lowed precision tolerance. In terms of memory resources on GPUs,
read-only texture memory is designed for graphics applications
where memory access patterns exhibit the spatial locality. Thus, we
place read-only projection measurements into texture memory to
improve memory throughput.

In summary, this paper develops cuMBIR, an MBIR solution on
GPUs. The contributions are as follows:

• We first analyze two solvers (ICD and SGD) to the minimiza-
tion problem and explore different parallelism granularities
for GPU kernel design.
• We propose a unified thread mapping algorithm to optimize
the memory collision problem and non-coalesced memory
access problem together.
• We propose a series of architecture level optimizations to fur-
ther improve performance including mixed-precision com-
puting and on-chip memory optimization.

Evaluation results demonstrate cuMBIR can achieve 1.48X speedup
on average over the state-of-the-art implementation (GPU-ICD [23])
on NVIDIA Volta 100 GPU with the high-quality reconstruction
results.

2 BACKGROUND
In this section, we first introduce the preliminary of X-ray computed
tomography. Then, we explain the theory of model-based iterative
reconstruction method. Finally, we show the computational and
memory resources on GPUs.

2.1 X-ray Computed Tomography
Low-dose XCT acts an important role in medical diagnosis and
treatment. We illustrate the XCT using a cone-beam X-ray appa-
ratus in Figure 1(a). The X-ray source emits an amount of X-rays

185

cuMBIR: An Efficient Framework for Low-dose X-ray CT Image Reconstruction on GPUs ICS ’18, June 12–15, 2018, Beijing, China

with an initial intensity. For each X-ray beam, its intensity will at-
tenuate after it goes through the scanned object. Then, the detector
will collect them as projection measurements. To fully cover the
scanned object, the X-ray source and detector rotate around the
scanned object to get large amounts of projection measurements
from various views. For the typical XCT equipment, the number
of views can be 90 to 180, and the array of detector is 512 × 512.
The scan process from object to projection measurements with the
reconstruction process from projection measurements to object are
a pair of inverse processes.

Beer-Lambert law characterizes how the intensity decreases
when an X-ray goes through an object.

I = I0 × exp (−p) (1)

where I0 is the initial intensity, I is the attenuated intensity, and
p is the line integral of the linear attenuation coefficients along
the path of the X-rays. As shown in the upper part of Figure 1(b),
the scanned object is first discretized, and then the line integral
can be formulated as inner production, where the first vector is
intercepts of the voxels along the path and the second vector is the
attenuation coefficients of these voxels.

The XCT scan process can be described as the multiplication of
a system matrix and a voxel vector in the lower part of Figure 1(b).

A × f = g (2)

where A ∈ Rm×n is the system matrix to simulate the path of all
X-rays.m is the number of X-rays, and n is the number of voxels
within the scanned object. Each row corresponds to an X-ray (a
projection measurement). Ai, j is the intercept that the ith X-ray
goes through the jth voxel. Zero represents the X-ray does not go
through this voxel. It is obvious that for each X-ray, the number of
voxels along its path is limited compared with the total number of
voxels, and there are large amounts of zeros in each row ofA. Thus,
A is a sparse matrix. For a given XCT equipment, we can either get
the system matrix A offline and store it using the CSR format or
compute it during runtime. f ∈ Rn is the reconstructed image (i.e.
the attenuation coefficient) and it is regarded as a column vector.
g ∈ Rm is the vector of projection measurements (ln(I0/I) obtained
from Equation 1) of all X-rays.

2.2 Reconstruction Theory and Algorithm
Image reconstruction is to obtain the inside structure image f
through the projection measurements g. MBIR can generate high-
quality image through the projection measurements with low sam-
pling rate and low signal-to-noise ratio [7]. It is to minimize the
following model:

E (f) ≜ D (g,Af) + αR (f) (3)

whereD (g,Af) is the fidelity term based on the projection measure-
ments, R (f) is the regularizer based on the prior knowledge, and
α is the weight parameter of regularization. In general, different
models use different R (f).

ForMBIR, there are various R (f), such as Tikhonov and total vari-
ation. In this paper, we incorporate Mumford-Shah functional [17]
as the regularizer, which can not only force the smoothness of the
images within individual regions but also simultaneously guarantee

segmentation across image edges1. Note that our technique is not
restricted to the Mumford-Shah functional only, and can be applied
to other regularizers as well.

2.3 Baseline GPU Architecture
AGPU is composed of several streamingmultiprocessors (SMs) and
SMs are connected with global memory through interconnection
network. Within each SM, besides large amounts of registers, there
are various caches and shared memory. Each SM is also equipped
with various SIMD pipelines including INT units, SP units, DP units,
and special function units (SFUs). The GPU global memory consists
of large amounts of continuous segments with fixed size2. When a
warp executes an instruction that accesses global memory, it coa-
lesces the memory accesses of the threads within the warp into one
or more memory transactions depending on the size of the word ac-
cessed by each thread and the distribution of the memory addresses
across the threads. There are two kinds of irregular memory access
behaviors, memory collision and non-coalesced memory access.

If a non-atomic instruction executed by a warp writes to the same
memory address for more than one of the threads within one warp,
there is only one thread that can finish the write operation to that
memory address, and which thread performs the write operation is
undefined [18]. This is called memory collision. Likewise, threads
from different warps also incur memory collisions when they write
to the same address simultaneously. If the memory accesses within
a warp reside in multiple segments, it will cause more memory
transactions with unnecessary data. This is called non-coalesced
memory access. Because a memory transaction needs latency of
hundreds of cycles, irregular memory behaviors often degrade the
GPU memory throughput significantly.

GPU Kernel Design

Solver Selection

Parallelism Exploitation

Thread Mapping

Graph Coloring

Graph Partitioning

Architectural Optimization

Mixed Precision

Texture Memory

cuMBIR

Figure 2: The overview of cuMBIR.

3 OVERVIEW OF CUMBIR
MBIR is an iterative method, and its evaluation criterion is the image
quality and convergence speed. The convergence speed depends
on the number of iterations and the time of each iteration. In this
section, we present the overview of cuMBIR, an efficient framework
for low-dose XCT image reconstruction on GPUs. As shown in
Figure 2, the design of cuMBIR is composed of three key components
including GPU kernel design, thread mapping, and architectural
optimization.

For MBIR, the reconstruction process is to minimize an objec-
tive function by updating image iteratively. The objective function
can be minimized by different solvers and different solvers have
1Its formula isMS (f , K) ≜ β

∫
Ω\K | ▽ f |

2dx +λH 1 (K). For simplicity, more details
can be referred in [17].
2The size varies from data type of the memory access.

186

ICS ’18, June 12–15, 2018, Beijing, China Xiuhong Li, Yun Liang, Wentai Zhang, Taide Liu, Haochen Li, Guojie Luo and Ming Jiang

different impacts on the convergence and image quality. We first
systematically explore two different solvers (i.e. SGD and ICD) to
the objective function. Then, for each solver, we study two different
granularities of parallelism on GPU kernel design. The details of
GPU kernel design are in Section 4.

Different X-rays have irregular geometric relationship, and the
inherent irregularity will make GPU acceleration challenging. On
one hand, different X-rays may have intersections. There may ex-
ist large amounts of memory collisions when updating the image.
How to reduce the number of memory collisions is critical for
convergence. On the other hand, the irregular memory accesses
make it hard to perform memory coalescing to reduce the number
of off-chip memory transactions. Moreover, the tight coupling ef-
fect between them makes the optimization more challenging. We
present an efficient thread mapping algorithm to alleviate the ir-
regularities, which is detailed in Section 5. Finally, we propose a
set of architecture level optimizations to further improve perfor-
mance including mixed-precision computing and on-chip memory
optimization in Section 6.

4 GPU KERNEL DESIGN
The key of GPU kernel design is parallelism exploitation. Differ-
ent solver and parallelism granularities have significant impacts
on parallelism exploitation. In this section, we first compare two
popular solvers and then determine the parallelism granularity.

4.1 Solver Selection
There are many popular iterative optimization methods for finding
the local minimum of an objective function, such as stochastic
gradient descent (SGD) and iterative coordinate descent (ICD). To
find a local minimum of an objective function, one takes steps
proportional to the negative of the gradient of the objective function
at the current point. On GPUs, parallel processes share a global
address space that they read and write to asynchronously. For the
synchronous parallel algorithms, multiple workers compute the
gradient on a data shard in parallel and need a synchronization
step before performing the next iteration. This synchronization will
incur significant performance degradation [23]. On comparison,
asynchronous parallel algorithms neglect these synchronization.

As the description of reconstruction theory and algorithm in
Section 2, the objective function of XCT image reconstruction is
sparse. [20] proves that the minimization of the sparse objective
function can be parallelized without synchronization. Thus, this
paper mainly considers asynchronous parallel SGD and ICD to
solve the minimization problem. Both of them try to update image f
iteratively to find the minimal of the objective function D (g,Af) +
αR (f) in Equation 3, where f is n-dimension coordinate space and
each dimension corresponds to a voxel. Their differences mainly
lie on the update method at each step.

SGD uses the fact that the gradient points to the direction of
local descent, and then at each step, it moves slowly towards the
direction. However, for ICD, at each step, it only moves along one di-
mension, and the step size is determined by the gradient component
in this dimension. Therefore, SGD picks a projection measurement
to update image at each step, while ICD picks a voxel to update
image at each step.

Algorithm 1 Model-based Iterative Reconstruction.
Input: f - image to be reconstructed, д - sinogram, γ - learning

rate, S - Solver
Output: f - reconstructed image
1: // SGD solver
2: if S == SGD then
3: while Image f has not converged do
4: for each projection дi from sinogram д do
5: // Get the voxels this X-ray goes through
6: Calculate v and w
7: // update all voxels in v
8: for all voxels ∈ v do
9: delta ← ▽(D (д,Af) + αR (f));
10: f ← f + γ × delta
11: end for
12: end for
13: end while
14: // ICD solver
15: else
16: while Image f has not converged do
17: for each voxel fi in image f do
18: // Get the X-rays that go through this voxel
19: Calculate r
20: delta ← 0
21: for each X-ray in r do
22: // Get the voxels this X-ray goes through
23: Calculate v and w
24: // Get the delta for voxel fi contributed by this

X-ray
25: delta+ = ▽(D (д,Af) + αR (f));
26: end for
27: // update voxel fi
28: fi ← fi + γ × delta
29: end for
30: end while
31: end if

Algorithm 1 shows the process of SGD solver and ICD solver,
respectively. The input includes the image f, the projection mea-
surements g, the learning rate γ and the selected solver S . We will
first describe the SGD solver. The reconstruction process is com-
posed of one outer loop (Line 3) and one inner loop (Line 4). An
iteration of the outer loop is called as an epoch. In each epoch, all
projections are picked to decrease Equation 3. A projection mea-
surement corresponds to an X-ray. At each step, an X-ray is picked
to perform update. For an X-ray, we first calculate its path, that is,
the voxels it goes through and the intercepts (v and w)(Line 6), as
shown in Figure 1(b). Then, we compute the delta for each voxel
along the path and update them (Line 9 to 10).

As for the ICD solver, its main difference with the SGD solver lies
on the inner loop (Line 4 of SGD and Line 17 of ICD). At each step,
one voxel is picked to perform update, instead of one projection
measurement. For one voxel fi in image f, we first get all the X-rays
that go through this voxel (Line 19). Then, for each above X-ray,
we get the delta contributed by this X-ray (Line 21 to 26). Finally,
we update this voxel.

187

cuMBIR: An Efficient Framework for Low-dose X-ray CT Image Reconstruction on GPUs ICS ’18, June 12–15, 2018, Beijing, China

(b) A thread is a worker.(a) A block is a worker.

Memory Segment Requested Access

Figure 3: Illustration ofmemory access patternwhen a block
or a thread acts as a worker of a projection on GPUs.

Next, we perform the solver selection. SGD outperforms than
ICD from three aspects. First, the SGD solver can update all the
voxels along the X-ray path at each step. The latest update can be
observed by other threads instantly. Second, the ICD solver needs
large amounts of calculations of the X-ray path. Although they
can be directly obtained from system matrix A offline, the matrix
generally has very large size and it is unfeasible to reside in GPU
device memory. Third, in prior works [23, 24, 26] where ICD have
been applied, the requirement for image quality is not high. For the
Mumford-Shah regularizer, the voxel-by-voxel update method of
ICD has negative impacts on image smoothness and segmentation.
Thus, we select SGD as the solver. More details will be presented in
the experiment section.

4.2 Parallelism Granularity
For the SGD solver, the inner loop is designed as a kernel, and
the outer loop is implemented by multiple times of kernel launch.
When considering kernel design, we assign the workload of an X-
ray projection to a worker. On GPUs, a worker can be a thread or a
thread block. Thus, there are two different parallelism granularities.
If the number of projections is not large, the latter can improve
the GPU occupancy. In fact, in real XCT applications, there are
large amounts of projection measurements, the former can also
fully exploit the occupancy on GPUs.

When a worker is a block, there exist two disadvantages. The
first disadvantage comes from the inherent serial feature of the
calculation of the X-ray path (i.e. v and w). When computing them,
only one thread within this thread block is utilized, leaving other
threads idle. The second disadvantage lies on memory utilization.
According to the coalescing mechanism on the GPU, each time a
memory transaction will return a whole memory segment. We use a
4× 4 object as an example, two adjacent voxels consist of a memory
segment, as shown in Figure 3. We have two X-rays. The requested
voxels of them are colored as blue box, and they both require to
access 5memory addresses. The top-left memory segment is notated
as segment 0, and the right-down one is notated as segment 7.
When a block acts as a worker shown in Figure 3(a), after we
finish the update of X-ray 0 and X-ray 1 using two blocks, we
access 9 memory segments in total. Thus, the memory bandwidth
utilization is 5+5

9×2 ≈ 55.56%. When a thread acts as a worker shown
in Figure 3(b), we assume that the two threads corresponding to
X-ray 0 and X-ray 1 are within the same warp. After we finish

the update of X-ray 0 and X-ray 1, it needs to access segment 0, 2,
4, 4, 6, 6, 7 in order. Without consideration of locality, we access
7 memory segments with memory bandwidth utilization (5+57×2 ≈
71.43%). Finally, we select the SGD solver with a thread as a parallel
worker of a projection measurement. More performance details
of different implementations will be provided in the experiment
section.

5 THREAD MAPPING OPTIMIZATION
When considering GPU kernel design, we select the SGD solver with
a thread as the worker of a projection measurement. In this section,
we will present how to perform the mapping from projections to
threads to alleviate the irregularities.

5.1 Memory Collision Problem
Each X-ray corresponds to a projection measurement (i.e. an ele-
ment in g). It will update all of these voxels along its path. Due to
the complex geometry relation, different X-rays will intersect on
some voxels. As a result, during run-time, multiple threads may
update the same voxles simultaneously. There are two kinds of
memory collisions on GPUs: intra-warp collision and inter-warp
collision. Intra-warp collisions indicate the conflicts that come from
threads belonging to the same warp. Inter-warp collisions mean
the conflicts that come from different warps. This can potentially
be mitigated via the warp scheduler of the GPUs as long as the
two conflicting warps are scheduled separately. Here, we focus on
optimizing the intra-warp collision.

If we use non-atomic operation for image update, in each epoch,
there are large amounts of updates that cannot be performed due
to memory collision. Modern GPUs have provided support for
atomic operations [18]. However, the overhead of atomic operation
depends on the degree ofmemory collisions. If an atomic instruction
executed by a warp writes to the same memory address for more
than one of the threads of the warp, each access to that location
occurs and they are all serialized, but the order in which they occur
is undefined [18]. If we use atomic operation for image update,
comparedwith non-atomic operations, it will increase the execution
time of an epoch due to the expensive cost of atomic operation but
reduce the number of epochs it needs to converge. Therefore, no
matter we use atomic or non-atomic operations, the key issue is to
reduce the memory collisions.

We use 8 X-rays to illustrate the complex geometry relationship
in Figure 4(a). We list the voxels along each X-ray path at a row in
Figure 4(b). The two-tuple within each voxel denotes its coordinate.
When we design GPU kernel, we need to assign an X-ray to a
thread. A thread will access the voxels along the path in order. For
simplicity, we assume that warp size is four. By default, we assign
the X-ray to the thread with the same ID, as shown in Figure 4(b).
We use the same color to mark the same voxels in each column,
which may be memory collisions. In this case, there is one memory
collision in the first warp, and two memory collisions in the second
warp. When we exchange X-ray 1 with X-ray 6, there will be one
memory collision in the first warp, and no memory collisions in
the second warp.

188

ICS ’18, June 12–15, 2018, Beijing, China Xiuhong Li, Yun Liang, Wentai Zhang, Taide Liu, Haochen Li, Guojie Luo and Ming Jiang

Ray 2

Ray 6 Ray 7

(a)X-rays with irregular geometric positions.

0 (0,0)

(0,0)1

(2,0)2

(2,0)4

(3,0)5

(3,0)6

(3,2)7

(0,1)

(3,0)

(3,1)

(2,2)

(2,1)

(2,1)

(0,2)

(3,1)

(3,2)

(2,2)

(0,3)

(1,3)

(2,3)

(0,2)

Path

3 (2,1) (2,2) (3,2)

0

1

2

4

5

6

7

3

Thread Ray

(2,3)

(3,3)

(b) Memory collision problem.

0 (0,0)

(0,0)1

(2,0)2

(2,0)4

(3,0)5

(3,0)6

7

(0,1)

(3,0)

(2,1)

(2,1)

(0,2)

(3,1)

(2,2)

(0,3)

(2,3)

3 (2,1) (2,2)

0

1

2

4

5

6

7

3

Thread Ray

(c) Non-coalesced Memory problem.

(3,2) (3,3)

(2,3)

(3,1) (3,2) (3,3)

(0,2)

(1,0) (1,1) (1,2)

(3,3)

(1,1) (1,2)

(1,0) (1,1) (1,2) (1,3)

(1,0)

(1,2)(1,1)

Path

Ray 3

Ray 1

Ray 0

Ray 5

Ray 4

(1,0)

(1,2) (0,2) (1,2)(2,2)(3,2) (0,2)

Figure 4: Illustration of irregular memory behaviors of MBIR on GPUs.

5.2 Non-Coalesced Memory Access Problem
According to the coalescing memory mechanism presented in Sec-
tion 2.3, memory accesses of the X-rays illustrated in Figure 4(a)
cannot be coalesced together easily. For simplicity, we assume the
two adjacent voxels in the same row are within the same memory
segment in Figure 4(a). Similarly, we also assign the X-ray to the
thread with the same ID, as shown in Figure 4(c). The voxels with
the same color in the same column will reside in the same memory
segment. We quantify the benefits from memory coalescing in the
following way. If N memory addresses can be coalesced within
one memory segment, the benefit is defined as N − 1. In this case,
the score is 1 in the first warp, and 2 in the second warp. If we
choose the same reorganization method as above (exchange X-ray
1 with X-ray 6), the score is 1 in the first warp, and 0 in the sec-
ond warp. However, when we exchange X-ray 3 with X-ray 5, the
score is 3 in the first warp, and 3 in the second warp. Therefore, a
memory collision friendly scheme will alleviate the non-coalesced
memory access problem and vice versa. Moreover, the coalesced
memory accesses may incur memory collisions in turn. The two
problems are closely coupled. How to perform thread mapping to
address memory collision problem and non-coalescing memory
access problem together is not trivial.

5.3 Optimization
Our object is to reduce memory collisions and improve memory
coalescing. In general, the nearby X-rays tends to access the same
memory address. Therefore, to reduce memory collisions, we prefer
to choose the far-away X-rays to form a warp. On the contrary,
to reduce non-coalesced memory accesses, we prefer to choose
the near-by X-rays to form a warp. Thus, the optimization of non-
coalesced memory accesses may introduce more memory collisions
and vice versa. Prior works [30, 35, 37] only attempt to reduce
the non-coalesced memory accesses, but they ignore the coupling
effect with memory collisions. In this paper, we use thread mapping
to unify the optimization of memory collision problem and non-
coalesced memory access problem together.

When optimizing the irregular memory behaviors, our insight
is to optimize the memory collision problem before non-coalesced
memory access problem. This is because coalescedmemory accesses
will group memory accesses with the same or adjacent memory

address together. However, this will aggravate the memory collision
problem and in turn offset the reduction of non-coalesced memory
accesses. We first incorporate graph coloring algorithm to reduce
intra-warp memory collisions and then we perform graph parti-
tioning for each color to reduce non-coalesced memory accesses.

(a) Collision Graph

3

2

7

1

4
2

1

1

6
1

1

5

0

1

1

1

1

65

4
311

0

73

24

2

7

(b) Coalescing Graph

Partition

Figure 5: The framework of thread mapping algorithm.

Algorithm 2 presents the details. We build a memory collision
graph G (V ,E) to represent the memory collisions shown in Fig-
ure 5(a). A node represents an X-ray, and the number is the X-ray’s
ID. The edge between two nodes represents that the two X-rays
have memory collisions. We use the metric collision degree to quan-
tify the memory collisions. In this paper, for two X-rays, collision
degree is denoted as number of the voxels that both of them go
through. The weight of edge between two nodes is the collision
degree. We first perform graph coloring to eliminate intra-warp
memory collisions (Line 2 in Algorithm 2). After this, the X-rays
with the same color have no memory collisions. The graph coloring
problem is NP-Complete, and there are no efficient polynomial
algorithms so far. There have been many efficient heuristics, and
we use Welsh-Powell algorithm [29] in this paper.

After graph coloring, we obtain a set of sub-graphs with different
colors. Then, we consider to reduce non-coalescedmemory accesses
for each sub-graph (Line 4 to 18 in Algorithm 2). For each color,
we first build a memory coalescing graph shown in Figure 5(b).
The edge between two nodes represents the number of memory
accesses that can be coalesced when they are grouped into the

189

cuMBIR: An Efficient Framework for Low-dose X-ray CT Image Reconstruction on GPUs ICS ’18, June 12–15, 2018, Beijing, China

Algorithm 2 Thread mapping algorithm.
1: // Coloring process.
2: colors← by invoking Welsh-Powell algorithm;
3: // Partitioning process.
4: for each color do
5: build the coalescing graph G (V ,E) for this color;
6: N = ⌈(Nnode/32)⌉;
7: // partition G into N components
8: METIS (G,N);
9: for each component of G do
10: if Sizeo f (component) == 32 then
11: Warps .push(component);
12: else if Sizeo f (component) > 32 then
13: node = component .pop ();
14: vector .push(node);
15: Warps .push(component);
16: else
17: node = vector .pop ()
18: component .push(node)
19: Warp.push(component)
20: end if
21: end for
22: end for
23: Warps .push(vector);
Output: Warps

same warp. To quantify the memory coalescing, we define a metric
called coalescing degree. For two X-rays, it means the number of
voxels that can reside in the same segments. The weight of edge
between two nodes represents the coalescing degree. Because the
warp size is 32 in modern GPU, we need to partition the nodes
within each color into sub-graphs, each of which contains 32 nodes.
The number of components can be calculated as ⌊(NNode/32)⌋,
where Nnode represents the number of nodes within this color. We
perform graph partitioning to enhance memory coalescing as much
as possible. For the graph G (V ,E) of each color, we use METIS [9]
to perform graph partitioning (Line 8 in Algorithm 2).

As shown in Algorithm 2(Line 10 to 11), for the component with
32 nodes, the X-rays within this component is directly mapped as a
warp. Next, let’s consider the case where the number of nodes is
not a multiple of 32. For the component with more than 32 nodes,
we first pop the extra X-rays randomly and collect these X-rays
in an independent vector. Then, the remained 32 X-rays within
this component are mapped as a warp. For the component with
less than 32 nodes, we select nodes from the above vector to form
a warp. After all components have been processed, we map the
X-rays in the vector to form warps. The output of Algorithm 2 is
the thread mapping scheme. Finally, we distribute the warps into
multiple thread blocks evenly to finish the thread mapping. The
thread mapping algorithm is finished offline. The thread mapping
scheme will be transferred to the GPU kernel as an argument. The
thread mapping algorithm is only related to the geometry of the
XCT scanner and object size. Thus, given an XCT equipment, for
each body part, we only need to perform the off-line threadmapping
one time.

6 ARCHITECTURE-LEVEL OPTIMIZATION
Apart from global memory optimization, further efforts on architec-
ture level is necessary to fully exploit the horse power of GPUs. In
this section, we first identify that mixed-precision computing can
improve GPU computation resources and then we place the read-
only projection measurements to the texture memory to further
improve GPU on-chip memory resource utilization.

6.1 Mixed-precision Computing
For MBIR, the main operations are single precision. However, we
find that using lower precision FP16 and higher precision FP64, it
nearly has no impact on the MBIR convergence. Thus, to fully use
the SIMT cores within GPUs, we propose mixed-precision MBIR.
There are mainly four computation units in GPUs. INT, SP and DP
units are designed for integer, FP32 (or FP16), and FP64 operations,
respectively. At last, special functional units (SFUs) is used to accel-
erate the transcendental functions at the cost of accuracy. Different
computation units can be used simultaneously.

SP units. FP16 operations are supported using half data type in
modern Nvidia GPUs. Both FP16 and FP32 operations are executed
in SP units. FP16 operations can reduce the memory traffic com-
pared to FP32 operations with negligible accuracy loss. Thus, in
this work, we use FP16 operations instead of FP32 operations.

SFUs. For the computation in Algorithm 1, when computing the
path of an X-ray, trigonometric functions account for a large amount
of time. Trigonometric functions can be implemented using SFU s
with substantial performance improvement but tolerable accuracy
loss [10]. We use __sin f (x) to take place of sin(x) to apply SFUs.
The performance benefits come from two-fold. Apart from the
performance advantage of SFUs, it releases the SP units (otherwise
occupied by the sin function). For MBIR, the precision loss caused
by SFUs will not affect the convergence.

DP units. In original MBIR, there are no FP64 operations. How-
ever, large amounts of computations will exhaust the SP units on
GPUs with DP units idle. In our implementation, we enable fine-
grained FP64 operations by modifying the PTX code. We first claim
a number of FP64 registers (.reg .fp64 %fd<N>), where N represents
the number of required FP64 registers. For an arithmetic instruc-
tion with FP16 type, we first convert the operands to FP64 type
(cvt.f64.f16 %fd1, %h1;). After type conversion, we perform FP64 op-
eration (add.f64 %fd3, %fd2, %fd1;). Finally, we convert the results to
FP16 again (cvt.rn.f16.f64 %h3, %fd3;). Considering that the ratio of
SP units with DP units is 2:1, we select 1/3 instructions in an inter-
leaved fashion and change their type from FP16 to FP64. Finally, we
apply the just-in-time compilation mechanism to invoke the PTX
code. In this way, we can exploit the instruction level parallelism
(ILP) to fully utilize the SP units and DP units.

6.2 On-chip memory
Texture memory is designed for graphics applications where mem-
ory access patterns exhibit the spatial locality, which resides in the
device memory. Besides shared memory, there are also two kinds of
on-chip cache within an SM, unified Texture/L1cache. Because the
projection measurements are read-only, we can place the projection

190

ICS ’18, June 12–15, 2018, Beijing, China Xiuhong Li, Yun Liang, Wentai Zhang, Taide Liu, Haochen Li, Guojie Luo and Ming Jiang

Figure 6: The convergence process of the four different im-
plementations. Each row shows the image reconstruction
result of one implementation with number of epochs 1, 3
and 5, respectively. In top-down order, they are ICD_Blk ,
ICD_Thd , SGD_Blk , and SGD_Thd .

measurements g into the texture memory, and it will be further
cached by the unified Texture/L1 cache.

7 EXPERIMENT
We first introduce the methodology in Section 7.1. Then, we analyze
the contribution of each component of cuMBIR in Section 7.2, 7.3
and 7.4, respectively. Finally, we present the overall performance
and compare with the state-of-the-art work GPU-ICD [23] in Sec-
tion 7.5.

Table 1: Configuration of Platform.

Volta Platform
CPU 40-core, Intel Xeon CPU E5-2650 v3 @ 2.5GHz
GPU Tesla Volta 100 (PCIe) with 84 SMs@ 1126MHz,

5376 FP32 cores, 5376 INT32 cores, 2688 FP64
cores, 672 Tensor Cores, and 336 texture units,
16 GB HBM2 memory with 900GB/s bandwidth

PCIe 32 GB/sec

Table 2: 3D-Phantom Projection

Projection Shepp-Logan Hip Abdomen Jaw Forbild
X 256 512 512 128 512
Y 256 256 512 192 640
Z 256 256 256 256 512
N 11.8M 18.0M 23.6M 11.7M 23.6M

7.1 Methodology
Projection. The 3D projection measurements used in this paper

are generated using five different cone beam projections in Table 2,
where X ,Y and Z are the resolution of the 3D-phantoms, and N is
the number of projection measurements. Shepp-logan is a famous
phantom and its description can be obtained from Wikipedia. The
last four datasets can be found from CONRAD [14]. The forbild is
also called head on the CONRAD website. Due to the space limit,
we use Shepp-Logan as the representative phantom to analyze the
contribution of each component of cuMBIR, and all five phantoms
for overall evaluation. For MBIR, the evaluation criterion is the
image quality and convergence speed. We use the root of mean-
square error RMSE between the reconstructed image f with the
original phantom to evaluate the image quality.

Platform. Table 1 shows the configuration of the used platform in
this paper. The platform is composed of an Intel Xeon CPU E5-2650
v3 and an Nvidia Volta 100 GPU.

Parameter. There are two types of parameters: model parameters
(α in Equation 3, β , λ in Mumford-Shah regularizer) and learning
step (γ). We explore different values of α , βandλ. The parameters
are as follows: α = 0.01, β = 0.001, λ = 0.05. For learning rate γ , we
notate the learning rate at epoch t as γt . It monotonically decreases
as the following routine:

γt+1 =
γt

1 + 500γt
(4)

where γ0 is 0.001.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

R
M

S
E

Time(second)

ICD_Blk

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400

R
M

S
E

Time(second)

ICD_Thd

 0

 200

 400

 600

 800

 1000

 0 25 50 75 100

R
M

S
E

Time(second)

SGD_Blk

 0

 200

 400

 600

 800

 1000

 0 12 24 36 48

R
M

S
E

Time(second)

SGD_Thd

Figure 7: Convergence process of the four different imple-
mentations.

191

cuMBIR: An Efficient Framework for Low-dose X-ray CT Image Reconstruction on GPUs ICS ’18, June 12–15, 2018, Beijing, China

 0

 0.2

 0.4

 0.6

 0.8

 1

ICD_Thd

ICD_Blk

SGD_Thd

SGD_Blk

U
ti

li
z
a
ti

o
n

(a) SP Units Utilization.

 0

 0.2

 0.4

 0.6

 0.8

 1

ICD_Thd

ICD_Blk

SGD_Thd

SGD_Blk

 0

 200

 400

 600

 800

U
ti

li
z
a
ti

o
n

B
a
n
d
w

id
th

 (
G

B
/s

)

(b) Memory Bandwidth Result.

Bandwidth Utilization
Bandwith

Figure 8: SP units utilization, memory bandwidth and mem-
ory bandwidth utilization of the four different implementa-
tions.

7.2 Performance Impact of Parallelism
Exploitation

Figure 6 shows the the image reconstruction result of each epoch for
the four implementations on GPUs:ICD_Blk , ICD_Thd , SGD_Blk ,
and SGD_Thd using Shepp-Logan phantom. We can find that ICD-
based methods have worse image smoothness and segmentation,
and they cannot converge well. This is because the coordinate-
based update method cannot work well with the regularizer. The
regularizer needs to update a voxel according to its neighbors. The
ICD solver only updates a voxel at each step, and the latest values
cannot be observed instantly.

Figure 7 shows the convergence process of the four different
implementations. We can find SGD_Thd is the best implementation,
it achieves 1.5X, 4.2X, and 8.3X speedup than SGD_Blk , ICD_Blk
and ICD_Thd , respectively. SGD_Blk method cannot utilize the
GPU resources fully because of serial process to compute the voxels
an X-ray goes through. Thus, the execution time of kernel for
SGD_Blk is longer than SGD_Thd . Figure 8(a) shows the SP units
utilization, and we can find that a thread as a worker outperforms
than a block as a worker. Similarly, Figure 8(b) shows the memory
bandwidth andmemory bandwidth utilization results. On thewhole,
SGD_Thd is the solution which is most suited for GPU acceleration.

7.3 Performance Impact of Thread Mapping
Figure 9 shows the convergence time of random mapping, default
mapping and cuMBIR mapping algorithm. Random mapping means
the mapping from X-rays to threads are randomly mapped, and
default mapping means the thread ID equals with X-ray ID. We
observe that random mapping and default mapping have nearly the
same convergence process and that cuMBIR mapping can achieve
about 1.4X convergence time speedup. The benefit comes from two
aspects. The first is reduction of memory collisions. Figure 10(a)
shows the memory collision results of default mapping and cuMBIR
mapping with atomic and non-atomic, respectively. In the atomic
case, the reduction of intra-warp memory collision degree can
reduce the serialized memory transactions per request, and thus
reduce the time of each iteration. In the non-atomic case, the reduc-
tion of intra-warp memory collision degree can reduce the number
of updates that would be discarded, and thus reduce the number of
iterations. In conclusion, our proposed solution can significantly
reduce the degree of intra-warp memory collision, which further
improve the convergence speed for both atomic and non-atomic
case.

The second is the improvement of memory coalescing. The av-
erage memory transaction per request is a metric to indicate the
memory coalescing. The ideal value is 1, which means perfect mem-
ory coalescing. The worst case is 32, which means that there are no
any memory coalescing within a warp. Figure 10 shows the coalesc-
ing result comparison. We can find that our proposed techniques
can reduce about 50% global memory transactions.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

R
M

S
E

Time(second)

cuMBIR

default

random

Figure 9: Convergence process of three different mapping
schemes: cuMBIR mapping, default mapping and random
mapping.

 0

 256

 512

 768

 1024

Default
Default-Atomic

cuMBIR
cuMBIR-Atomic

In
tr

a-
w

ar
p
 C

o
ll

is
io

n
s

(a) Memory collision result.

 0

 4

 8

 12

 16

 20

 24

Default
Defulat-Atomic

cuMBIR
cuMBIR-Atomic

T
ra

n
sa

ct
io

n
s

p
er

 R
eq

u
es

t

(b) Memory coalescing result.

Figure 10: Improvement of irregular memory behaviors.

7.4 Performance Impact of architecture level
optimization

By mixed-precision computing, we can achieve about 43% con-
vergence speedup. The special function units will decrease the
overhead of triangle functions significantly with negligible preci-
sion loss. We use DP units through ILP, which can utilize both DP
units and SP units. More clearly, SFUs can provide 30% speedup
by itself and DP units further provide 13% convergence speedup.
Unified Texture/L1 cache is also a read-only cache that is shared by
all functional units and speeds up reads from the texture memory
space, which resides in device memory. We can find that by on-
chip memory optimization, we can achieve about 4% convergence
speedup.

7.5 Overall Performance and Comparison
In this section, we will demonstrate that cuMBIR can achieve better
performance than other existing XCT image reconstruction solu-
tions on GPUs. We compare with the GPU-ICD solution proposed
by Sabne et al. [23]. In their work, they only consider the ICD solver
with a thread block as a parallel worker of a voxel. They compute
A matrix offline and transfer to GPU texture memory to get rid of

192

ICS ’18, June 12–15, 2018, Beijing, China Xiuhong Li, Yun Liang, Wentai Zhang, Taide Liu, Haochen Li, Guojie Luo and Ming Jiang

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80

R
M

S
E

Shepp-Logan - Time(s)

cuMBIR

GPU-ICD
[17]

 0

 200

 400

 600

 800

 1000

 0 40 80 120 160

R
M

S
E

Hip - Time(s)

cuMBIR

GPU-ICD
[17]

 0

 200

 400

 600

 800

 1000

 0 80 160 240 320

R
M

S
E

Abdomen - Time(s)

cuMBIR

GPU-ICD
[17]

 0

 200

 400

 600

 800

 1000

 0 4 8 12 16 20

R
M

S
E

Jaw - Time(s)

cuMBIR

GPU-ICD
[17]

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300 360

R
M

S
E

Forbild - Time(s)

cuMBIR

GPU-ICD
[17]

Figure 11: Convergence process of the five popular phantom projections.

the serial calculation of r. However, on one hand, it will take large
amounts of time to read A from disk and then transfer A to texture
memory, which will even hurt the performance. On the other hand,
the size of A rapidly increases with the object size and number of
X-rays. In terms of 3D scenario, it is unfeasible to accommodate A
on GPU device memory. Moreover, our architectural optimizations
can fully exploit the computation power of GPUs compared with
GPU-ICD. Figure 11 shows the convergence process of five popular
3D phantom projections. We can find that our solution cuMBIR
have 1.48X speedup for convergence time on average. Besides, the
convergence time linearly increases with projection size.

8 RELATEDWORK
XCT Image Reconstruction on GPUs. Low-dose XCT plays an

important role in medical diagnose and treatment. The construc-
tion time and radiation exposure are the two key issues. There
are two main approaches to the iterative construction [1]. The
first approach comprises non-regularized methods, such as simul-
taneous iterative reconstruction techniques (SIRT) and algebraic
reconstruction techniques (ART). The other approach is of regular-
ized methods, which generally possess well-defined convergence
criteria and generate higher quality images. The regularized meth-
ods need to minimize a cost function, which is computationally
expensive. MBIR can reconstruct high-quality image but at the cost
of large computational demands. [15, 16] discuss and demonstrate
that GPU is applicable to X-ray CT image reconstruction. There are
many studies that focus on the implementation of X-ray CT recon-
struction on GPUs [4, 13, 23, 25]. However, these studies always
lack architectural insights of GPUs.

Asynchronous Parallel SGD. The main characteristic of an asyn-
chronous parallel algorithm is that its threads do not need to wait
for inputs from other threads. Hogwild! [20] is an asynchronous
approach for parallel SGD. [19] improves Hogwild! through some
conflict groups and allocates them across cores for the multi-core
CPU platform. Each core asynchronously updates the model with-
out memory access conflicts. Moreover, there are also many studies
which spend efforts on a specific application. [5, 34] propose ef-
ficient matrix factorization based on stochastic gradient descent
on GPUs. However, all of these above studies either focus on the
multi-core platform or a specific application. In this paper, we iden-
tify that asynchronous parallel SGD on GPUs will lead to irregular
memory behaviors.

Irregularity Optimization on GPUs. The performance of GPUs is
sensitive to the number of global memory transactions, and recent
studies have focused on the non-coalesced memory accesses on
GPUs. Many studies have proposed to data reorganization and job
remapping to minimize non-coalesced memory accesses on GPU at
compile time [2, 22, 35] and run-time [30, 37]. Apart from the global
memory perspective, efficient cache management schemes have
also been proposed for single kernel [32, 33] and concurrent kernel
execution scenario [11, 12]. [31] focuses on the trade-off between
singe thread performance and thread level parallelism through in-
telligent register allocation. [13, 38, 40] propose high performance
implementations of GEMM and parallel sparse triangular solver on
GPUs. However, these works cannot work well with the regularizer
used in MBIR. Besides, memory collision on GPUs is also a critical
factor of performance degradation. [6] explores the memory col-
lision problem using atomic addition as an example and proposes
to eliminate the memory collisions of atomic operations. However,
those works either only study irregular memory reference or only
explore memory access collisions.

9 ACKNOWLEDGEMENT
This work was supported by the National Natural Science Foun-
dation China (No. 61520106004 and No. 61672048) and State Key
Laboratory of Computer Architecture, Institute of Computing Tech-
nology, Chinese Academy of Sciences (No. CARCH201502).

10 CONCLUSION
MBIR can reconstruct high-quality images for low-dose X-ray com-
puted tomography. However, it is inherently irregular due to the
complex geometric relationship between X-rays. Thus, its paral-
lelization on GPUs is a challenge. In this paper, we propose cuMBIR,
an optimized model-based iterative reconstruction solution on
GPUs. We first explore different implementations on GPUs. Then,
we design a unified thread mapping scheme to optimize the mem-
ory collision problem and non-coalesced memory access problem
together. Finally, we present a series of architecture level optimiza-
tions including mixed-precision computing and on-chip memory
optimization. We evaluate cuMBIR using five famous medical phan-
toms, and it can achieve 1.48X speedup over the state-of-the-art
GPU implementation.

193

cuMBIR: An Efficient Framework for Low-dose X-ray CT Image Reconstruction on GPUs ICS ’18, June 12–15, 2018, Beijing, China

REFERENCES
[1] 2012. Iterative reconstruction methods in X-ray CT. Physica Medica 28, 2 (2012),

94 – 108.
[2] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J.

Ramanujam, Atanas Rountev, and P. Sadayappan. 2008. A Compiler Framework
for Optimization of Affine Loop Nests for Gpgpus. In Proceedings of the 22Nd
Annual International Conference on Supercomputing. 225–234.

[3] Charles A Bouman and Ken Sauer. 1996. A unified approach to statistical to-
mography using coordinate descent optimization. IEEE Transactions on image
processing 5, 3 (1996), 480–492.

[4] Liubov A Flores, Vicent Vidal, Patricia Mayo, Francisco Rodenas, and Gumersindo
Verdú. 2014. Parallel CT image reconstruction based on GPUs. Radiation Physics
and Chemistry 95 (2014), 247–250.

[5] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. 2011. Large-
scale Matrix Factorization with Distributed Stochastic Gradient Descent. In Pro-
ceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 69–77.

[6] Juan Gomez-Luna, Jose Maria Gonzalez-Linares, Jose Ignacio Benavides Benitez,
and Nicolas Guil. 2013. Performance Modeling of Atomic Additions on GPU
Scratchpad Memory. IEEE Transactions on Parallel and Distributed Systems 24, 11
(Nov 2013), 2273–2282.

[7] Willi A Kalender. 2006. X-ray computed tomography. Physics in Medicine Biology
51, 13 (2006), R29.

[8] Willi A Kalender. 2014. Dose in x-ray computed tomography. Physics in Medicine
Biology 59, 3 (2014), R129.

[9] George Karypis. 1995. METIS - Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 2.0. (09 1995).

[10] Ang Li, Shuaiwen Leon Song, Mark Wijtvliet, Akash Kumar, and Henk Corpo-
raal. 2016. SFU-Driven Transparent Approximation Acceleration on GPUs. In
Proceedings of the 2016 International Conference on Supercomputing.

[11] Xiuhong Li and Yun Liang. 2016. Efficient Kernel Management on GPUs. In
Proceedings of the 2016 Conference on Design, Automation & Test in Europe. 85–90.

[12] Yun Liang, Xiuhong Li, and Xiaolong Xie. 2017. Exploring Cache Bypassing and
Partitioning for Multi-tasking on GPUs. In Proceedings of the 36th International
Conference on Computer-Aided Design. 9–16.

[13] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S Duff, and Brian Vinter. 2016. A
Synchronization-Free Algorithm for Parallel Sparse Triangular Solves. In Euro-
Par. 617–630.

[14] Andreas Maier, Hannes G Hofmann, Martin Berger, Peter Fischer, Chris Schwem-
mer, Haibo Wu, Kerstin MÃĳller, Joachim Hornegger, Jang-Hwan Choi, Christian
Riess, Andreas Keil, and Rebecca Fahrig. 2013. CONRAD-A software framework
for cone-beam imaging in radiology. 40 (11 2013), 111914.

[15] K. Mueller and Fang Xu. 2006. Practical considerations for GPU-accelerated CT.
In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006.
1184–1187.

[16] Klaus Mueller, Fang Xu, and Neophytos Neophytou. 2007. Why do commodity
graphics hardware boards (GPUs) work so well for acceleration of computed
tomography? Computational Imaging 6498 (2007).

[17] David Mumford and Jayant Shah. 1989. Optimal approximations by piecewise
smooth functions and associated variational problems. Communications on Pure
and Applied Mathematics 42, 5 (1989), 577–685.

[18] NVIDIA. 2017. CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide. (2017).

[19] Xinghao Pan, Maximilian Lam, Stephen Tu, Dimitris Papailiopoulos, Ce Zhang,
Michael I Jordan, Kannan Ramchandran, and Christopher Ré. 2016. Cyclades:
Conflict-free asynchronous machine learning. In Advances in Neural Information
Processing Systems. 2568–2576.

[20] Benjamin Recht, Christopher Ré, Stephen J. Wright, and Feng Niu. 2011. Hogwild:
A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In 25th
Annual Conference on Neural Information Processing Systems. 693–701.

[21] Ludwig Ritschl, Frank Bergner, Christof Fleischmann, and Marc Kachelriess. 2011.
Improved total variation-based CT image reconstruction applied to clinical data.
Physics in Medicine Biology 56, 6 (2011), 1545.

[22] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.
Kirk, and Wen-mei W. Hwu. 2008. Optimization Principles and Application Per-
formance Evaluation of a Multithreaded GPU Using CUDA. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
73–82.

[23] Amit Sabne, Xiao Wang, Sherman J. Kisner, Charles A. Bouman, Anand Raghu-
nathan, and Samuel P. Midkiff. 2017. Model-based Iterative CT Image Reconstruc-
tion on GPUs. In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 207–220.

[24] K. Sauer and C. Bouman. 1993. A local update strategy for iterative reconstruction
from projections. IEEE Transactions on Signal Processing 41, 2 (Feb 1993), 534–548.

[25] GC Sharp, N Kandasamy, H Singh, and Michael Folkert. 2007. GPU-based stream-
ing architectures for fast cone-beam CT image reconstruction and demons de-
formable registration. Physics in medicine and biology 52, 19 (2007), 5771.

[26] Jean-Baptiste Thibault, Ken D Sauer, Charles A Bouman, and Jiang Hsieh. 2007. A
three-dimensional statistical approach to improved image quality for multislice
helical CT. Medical physics 34, 11 (2007), 4526–4544.

[27] Xiao Wang, Amit Sabne, Sherman Kisner, Anand Raghunathan, Charles Bouman,
and Samuel Midkiff. 2016. High Performance Model Based Image Reconstruction.
In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 1–12.

[28] XiaoWang, Amit Sabne, Putt Sakdhnagool, Sherman J. Kisner, Charles A. Bouman,
and Samuel P. Midkiff. 2017. Massively Parallel 3D Image Reconstruction. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[29] D. J. A. Welsh and M. B. Powell. 1967. An upper bound for the chromatic number
of a graph and its application to timetabling problems. Comput. J. 10, 1 (1967),
85–86.

[30] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. 2013.
Complexity Analysis and Algorithm Design for Reorganizing Data to Minimize
Non-coalesced Memory Accesses on GPU. In Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. 57–68.

[31] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao Wang,
and Dongrui Fan. 2015. Enabling Coordinated Register Allocation and Thread-
level Parallelism Optimization for GPUs. In Proceedings of the 48th International
Symposium on Microarchitecture. 395–406.

[32] Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. 2013. An Efficient
Compiler Framework for Cache Bypassing on GPUs. In Proceedings of the Inter-
national Conference on Computer-Aided Design. 516–523.

[33] Xiaolong Xie, Yun Liang, Yu Wang, Guangyu Sun, and Tao Wang. 2015. Coordi-
nated static and dynamic cache bypassing for GPUs. In 21st IEEE International
Symposium on High Performance Computer Architecture. 76–88.

[34] Xiaolong Xie, Wei Tan, Liana L. Fong, and Yun Liang. 2017. CuMF_SGD: Par-
allelized Stochastic Gradient Descent for Matrix Factorization on GPUs. In Pro-
ceedings of the 26th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC 2017, Washington, DC, USA, June 26-30, 2017. 79–92.

[35] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU Compiler
for Memory Optimization and Parallelism Management. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
86–97.

[36] Zhou Yu, Jean-Baptiste Thibault, Charles A Bouman, KenD Sauer, and JiangHsieh.
2011. Fast model-based X-ray CT reconstruction using spatially nonhomogeneous
ICD optimization. IEEE Transactions on image processing 20, 1 (2011), 161–175.

[37] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. 2011. On-
the-fly Elimination of Dynamic Irregularities for GPU Computing. In Proceedings
of the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems. 369–380.

[38] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, andMingyu
Chen. 2017. Understanding the GPU Microarchitecture to Achieve Bare-Metal
Performance Tuning. In Proceedings of the 22Nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 31–43.

[39] Xing Zhao, Jing-jing Hu, and Peng Zhang. 2009. GPU-Based 3D Cone-Beam CT
Image Reconstruction for Large Data Volume. International Journal of Biomedical
Imaging 2009, 149079 (2009), 8.

[40] Keren Zhou, Guangming Tan, Xiuxia Zhang, Chaowei Wang, and Ninghui Sun.
2017. A Performance Analysis Framework for Exploiting GPUMicroarchitectural
Capability. In Proceedings of the International Conference on Supercomputing. 1–10.

194

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

