
SpWA: An Efficient Sparse Winograd
Convolutional Neural Networks Accelerator on FPGAs

Liqiang Lu, Yun Liang†
Center for Energy-efficient Computing and Applications, School of EECS, Peking University

{liqianglu,ericlyun}@pku.edu.cn

ABSTRACT
FPGAs have been an efficient accelerator for CNN inference due to
its high performance, flexibility, and energy-efficiency. To improve
the performance of CNNs on FPGAs, fast algorithms and sparse
methods emerge as the most attractive alternatives, which can ef-
fectively reduce the complexity of CNNs. Using fast algorithms,
the feature maps are transformed to special domain to reduce the
arithmetic complexity. On the other hand, compressing CNN models
by pruning the unimportant connections reduces both storage and
arithmetic complexity.

In this paper, we introduce sparse Winograd convolution accel-
erator (SpWA) combining these two orthogonal approaches on FP-
GAs. First, we employ a novel dataflow by rearranging the filter
layout in Winograd convolution. Then we design an efficient archi-
tecture to implement SpWA using line buffer design and Compress-
Sparse-Column (CSC) format-based processing element. Finally, we
propose an efficient algorithm based on dynamic programming to
balance the computation among different processing elements. Ex-
perimental results on VGG16 and YOLO network show a 2.9x∼3.1x
speedup compared with state-of-the-art technique.

1 INTRODUCTION
Convolutional neural networks (CNNs) have been widely used in
various computer vision tasks including image classification, object
detection, and semantic segmentation [18, 20]. Various hardware ac-
celerators have been proposed to accelerate the performance of CNN
models. Among these accelerators, Field Programmable Gate Arrays
(FPGAs) turns out to be a promising solution due to its high per-
formance, flexibility, and energy-efficiency. In addition, High Level
Synthesis (HLS) helps to greatly lower the barrier of hardware pro-
gramming [5, 7, 13, 19]. For example, FPGA accelerators for CNNs
have been successfully designed using C or OpenCL programming
model with high performance. [4, 15, 21, 22, 24, 25, 27].

However, the resources on FPGAs are limited, such as the Block
RAMs (BRAMs) for data storage and Digital Signal Processors
(DSPs) for computation. Therefore, it is critical to reduce the arith-
metic complexity of CNN models so that the FPGAs can yield the
expected performance. To address this limitation, an effective ap-
proach is to compress CNNs by pruning. [8, 9, 12, 14] have shown
that there is significant redundancy in the neural networks, which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196120

can be pruned significantly during the training process. For example,
Han et al. [8, 9] have shown that the weights in typical CNNs can be
pruned to more than 95% sparsity without accuracy loss. Another
important trend in acceleration is to transform the feature maps into
special domains using fast algorithms which can significantly re-
duce the number of multiplications in convolution. Winograd and
Fast Fourier Transformation (FFT), as fast algorithm representatives,
have been widely adopted in many highly-optimized HPC libraries
such as CuDNN[3] and MKL[2]. In Winograd algorithm, the input
tile and filter are transformed to Winograd domain then perform
element-wise matrix multiplication (EWMM). Last, an inverse trans-
formation of the EWMM results is required. For example, using
Winograd algorithm with the tile size 4 × 4 can reduce the number
of multiplications from 3.7 GOPs to 1.64 GOPs for the second layer
in VGG16 network [20]. Recent work demonstrated that the filters
can be trained directly in Winograd domain, which can achieve 90%
sparsity without accuracy loss [12].

Prior efforts on the implementations of fast algorithms do not
consider the case of sparsity [4, 11, 15, 17, 26]. On the other hand,
the hardware design mainly for ASIC platform do not apply fast
algorithms to the sparse CNN models [6, 10, 16, 28]. Although fast
algorithms and sparse methods are appealing in acceleration, FPGA
implementations combining these two techniques have not appeared
yet due to several challenges. First, it is difficult to maintain high
resource efficiency while leveraging the multiplication reduction
from sparsity. Second, sparsity will cause imbalance workload in the
Winograd hardware dataflow. Fast algorithm convolution is a regular
computation with a tile as a basic operating unit. For example, in
Winograd convolution, the transformed input tile and filter perform
EWMM operation tile by tile, then the results across different chan-
nels need to be accumulated. However, when introducing sparsity to
Winograd filters, the workload among different processing elements
will be imbalanced.

To overcome these challenges, we present the sparse Winograd
CNN accelerator (SpWA) on FPGAs, which accelerates CNN infer-
ence that exploits both Winograd fast algorithms and filter sparsity.
We first propose a novel dataflow for SpWA. Then, we design an
efficient architecture to conduct Winograd transformation and sparse
computation. Finally, we develop an efficient algorithm based on
dynamic programming to balance the computation among different
processing elements.

This work makes the following contributions:
• We present a dataflow that applies sparse Winograd algorithm

for accelerating CNNs on FPGAs. In this dataflow, we batch the
transformed input tiles and rearrange the filter layout.

• We propose an architecture based on SpWA dataflow. The SpWA
architecture employs efficient line-buffer and PE designs.

†Corresponding Author

Figure 1: Apply Winograd to convolutional layers

• We design an efficient algorithm to determine the partition of
sparse matrices into groups so as to minimize the total idle cycles.

We evaluate our design by implementing VGG16[20] and YOLO[18]
on Xilinx ZC706 platform. Experimental results show that our design
achieves 2.9x∼3.1x speedup compared with state-of-the-art works.

2 BACKGROUND
2.1 Spatial Convolution
Consider the feedforward procedure in a typical convolutional layer
which receives M channels of H ×W input feature maps ZM×H×W
and outputs N channels of R ×C feature maps YN×R×C , To generate
N channels of output feature map, M channels of input feature maps
are convolved with N ×M filters with the size of r × r , where S is
the stride of filter.

Y (k, i, j) =
M∑
t=1

r∑
p=1

r∑
q=1

f (k, t, p, q) × Z (t, i ∗ S + p, j ∗ S + q) (1)

2.2 Winograd Algorithm
Let us denote the result of computing m outputs with the filter
size of r as F (m, r). Using spatial convolution for F (2, 3) requires
2 × 3 = 6 multiplications. Winograd algorithm computes F (2, 3) in
the following way, which only needs 4 multiplications:

Z = [z0 z1 z2 z3]T f = [x0 x1 x2]T Y = [y0 y1]T[
z0 z1 z2
z1 z2 z3

] 
x0
x1
x2

 =
[
m1 +m2 +m3
m2 −m3 +m4

]
=

[
y0
y1

]
(2)

m1,m2,m3,m4 are:

m1 = (z0 − z2)x0 m2 = (z1 + z2)
x0 + x1 + x2

2
m4 = (z1 − z3)x2 m3 = (z2 − z1)

x0 − x1 + x2
2

(3)

The 1-D convolution using Winograd algorithm can be formulated
using the transformation matrices A, B and G as follows,

Y = AT[(Gf) ⊙ (BTZ)] (4)

BT =

[
1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

]
G =

[1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

]
AT = [1 1 1 0

0 1 −1 −1]

where ⊙ is element-wise multiplication (EWMM). In this paper, we
use 2D-Winograd algorithm F (m ×m, r × r), where the output tile
size is m ×m, the filter size is r × r and the input tile size is n × n
(n = m + r − 1). By nesting 1D-Winograd algorithm with itself,
2D-Winograd algorithm can be formulated as follows,

Y = AT[(Gf GT) ⊙ (BTZB)]A (5)

The number of multiplications is determined by ⊙. To compute
them×m tile in the output feature map, Winograd algorithm requires

Figure 2: Framework overview

n2 multiplications while the conventional algorithm requiresm2r2

multiplications. In this paper, we use a uniform Winograd size F (2×
2, 3 × 3).

Assuming S = 1 in Equation 1 that H = R,W = C, to apply
Winograd algorithm in a convolutional layer, feature maps are di-
vided into tiles as shown in Figure 1. Specifically, the input feature
maps are divided into multiple n × n tiles denoted by Zt ile ,where
Zt ile (t , i, j) means an n × n tile in the t th channel at the coordinates
(i, j), and the output feature maps are divided into multiple m ×m
tiles denoted by Yt ile , where Yt ile (k, i, j) means anm ×m tile in the
kth channel at the coordinates (i, j). Note that the stride of the input
tile is m, which results in (r − 1) rows/columns overlapping. Each
time Winograd algorithm is called, it generates an m ×m tile in the
output feature maps. The 2-D convolution using the Winograd can
be formulated as follows, where Qw (k),Uw (k, t) andVw (t) are n×n
tiles in Winograd domain,

Yt ile (k, i, j) = A
TQw (k)A Qw (k) =

M∑
t=1

Uw (k, t) ⊙ Vw (t)

Uw (k, t) = Gf (k, t)GT Vw (t) = BTZt ile (t, i, j)B

(6)

Here, Uw (k, t) is the transformed Winograd filter in the kth output
channel and t th input channel. Vw (t) is the transformed input tile
in the t th input channel. Qw (k) represents the results of EWMM-
accumulation in the kth output channel. In sparse Winograd convo-
lution, Uw (k, t) is pruned with sparsity.

3 SPWA FRAMEWORK
We propose SpWA to map sparse Winograd convolution onto FPGAs.
As shown in Figure 2, it takes the sparse Winograd CNN model and
specification of target FPGA as inputs and generates the bitstream
of FPGA configuration. The CNN model involves the topological
structure of the network and sparse Winograd filters of each layer.
The FPGA specification includes DSPs, logic resources and band-
width. Our framework mainly involves three components: SpWA
dataflow, SpWA architecture, efficient algorithm:

• SpWA Dataflow. We propose a new dataflow for SpWA by re-
arranging the data layout in sparse Winograd convolution. By
rearrangement, we transform the EWMM-accumulation to sparse
vector-matrix multiplications.

• SpWA Architecture. Based on SpWA dataflow, we present an
efficient architecture to perform sparse Winograd convolution
using line buffer and sparse Winograd PE designs.

Figure 3: Dataflow of SpWA

• efficient Algorithm. We propose an efficient algorithm based
on dynamic programming to minimize the total idle cycles of
multiplication of different PEs.

4 SPWA DATAFLOW
After the input tile Zt ile (t , i, j) and filter f (k, t) are transformed
to Vw (t) and Uw (k, t) in Winograd domain, they perform multiple
EWMM operations as shown in Equation 6. Then, an n × n tile
Qw (k) is generated by accumulating the EWMM results from all
the input channels. Previous architectures [4, 15, 17] that target
dense Winograd convolution are not efficient for sparse models.
This is because these architectures performed the multiplications
usin the EWMM operation in parallel, which is inefficient when the
Winograd filters have unbalanced non-zeros distribution.

To address this problem, we present SpWA dataflow where we
transform EWMM-accumulation operations to vector-matrix multi-
plication (VMM) operations. Figure 4 shows the dataflow of SpWA.
We first batch M channels of transformed input tiles up before
EWMM-accumulation operation. Then, we rearrange M channels of
the transformed tiles to n × n vectors with the length of M , where
Vw (t , i, j) means the pixel in the tile Vw (t) at the coordinates (i, j)
and V ′

w (i ∗ n + j, t) means the pixel in the vector V ′
w (i ∗ n + j) at the

coordinates t .

V ′
w (i ∗ n + j, t) = Vw (t , i, j) (7)

Similarly, we rearrange the sparse filters from N ×M matrices to
n × n matrices as follows, where Uw (k, t , i, j) means the pixel in the
tile Uw (k, t) at the coordinates (i, j) and U ′

w (i ∗ n + j,k, t) means the
pixel in the matrix U ′

w (i ∗ n + j) at the coordinates (k, t).

U ′
w (i ∗ n + j,k, t) = Uw (k, t , i, j) (8)

In this manner, EWMM-accumulation operation in Equation 6 is
transformed to n×n vector-matrix multiplication (VMM) operations
as follows, where p ∈ [0,n2 − 1],

Q ′
w (p) = U ′

w (p)V ′
w (p) (9)

Then we inversely rearrange the n × n vectors resulting from VMM
to Q(k) of Winograd domain as follows,

Q ′
w (i ∗ n + j,k) = Qw (k, i, j) (10)

Figure 4: re-CSC format illustration

Figure 5: Architecture overview

Finally, N channels of the output tiles are generated by transforming
Qw (k) to the spatial domain. In sparse Winograd convolution, the
matrix U ′

w (p) in Equation 9 is sparse which can be obtained after
training. In SpWA, we propose rearranged Compressed Sparse Col-
umn (re-CSC) format to store the sparse matrix U ′(p) as shown in
Figure 4. In CSC format [1], values are read column by column with
a row index stored for each value, which can reduce the memory
requirement from O(M × N) to O(2 × nonzeros + 2N). In re-CSC
format, the sparse matrix is first rearranged according the number of
nonzeros in the columns. Then the rearranged matrix is compressed
in CSC format together with the index of rearrangement.

5 SPWA ARCHITECTURE DESIGN
5.1 Architecture Overview
Figure 5 shows an overview of SpWA architecture, which mainly
consists of pre-processing element (pre-PE), computing processing
element (com-PE) and post-processing element (post-PE). The input
and output feature maps are transferred to on-chip buffer via a FIFO.
The pre-PE first loads an n × n tile from the input buffer channel
by channel, then transforms and rearranges it to several vectors.
com-PEs receive the input vector from pre-PE and load the weights
from the sparse filters buffer, then calculates the output vector. The
post-PE receives vectors from the com-PEs and rearranges them
to several tiles. Last, post-PE transforms these tiles to the output
feature maps.

5.2 Line Buffer Design
On-chip memory of FPGA is not large enough to store the entire
feature maps, so we split the feature maps in the channel dimension
with the factor 32. In Winograd convolution, the input tile slides with
a stride of m, which results in (n −m) × n data reuse between two
neighboring tiles. To increase data reuse opportunities and overlap
transfer time with convolution operations, we store (n +m) lines of
the input feature maps and 2m lines of the output feature maps as
shown in Figure 5. Specifically, when calculating the first n lines in
the input buffer, the next m lines of the input feature maps are being
loaded to input buffer. In the next iteration, the first m lines in the
input buffer will load the input feature maps.

Figure 6: com-PE Architecture

5.3 PE Architecture
Figure 6 shows the architecture of com-PEs. In re-CSC format, the
row indices are discontinuous, which leads to the irregular access
pattern of the input vector. Therefore, multiplexers are inserted to
select certain pixel in the input vectors. The values in the column
are continuous in re-CSC format, so the weights are fed into com-
PEs in stream. Then the selected input pixel and the weights from
sparse filters perform multiplications and the multiplication results
are added via an adder tree. At the end of the com-PE, there is
an accumulator to update the final output pixel. In re-CSC format,
the sparse matrix is rearranged by sorting the columns according
to the number of nonzeros, to balance the workload of each com-
PE, the matrix is partitioned into several groups with each group
corresponding to a PE. All com-PEs work in parallel and each
column in the same group is computed in parallel. The details of
how to partition the columns into groups will be discussed in Section
6. After all com-PEs complete computation, the output pixels are
concatenated and rearranged to the final output vector according to
the rearrange index as shown in Figure 4.

Based on our PE architectures, we employ two level pipeline
design: intra-PE pipeline and inter-PE pipeline. Intra-PE pipeline.
For pre/post-PEs, the process for the tiles is pipelined via different
channels. Specifically, the execution of transformation for the ith

channel is overlapped with the operation that loading the tile from
the (i+1)th channel. Inter-PE pipeline. We use double buffers among
pre-PE, com-PE and post-PE to overlap transformation operations
and computations.

6 EFFICIENT ALGORITHM
In the implementation of SpWA, double buffer design is used be-
tween PEs and the latency of pre/post PEs is relatively short com-
pared to com-PEs. So to improve the performance of SpWA, we
focus on minimizing the latency of com-PEs. In Figure 6, the sparse
matrix is partitioned into T groups and each group corresponds to
a com-PE. All com-PEs work in parallel and the allocation of mul-
tipliers for each com-PE is proportionate to the maximal nonzeros
of the column in the corresponding group. Each column in the PE
is computed in parallel with the same number of multipliers, so
the latency of a com-PE is always bounded by the column with the
maximal nonzeros. For example, in Figure 7, the black bar means
the number of nonzeros of the column in a rearranged sparse matrix.
In Figure 7(d), the matrix is partitioned into 4 groups by 5 points
k0,k1,k2,k3,k4. The columns from the first to the sixth are in the
first group with one multiplier for each column. Assuming it takes

Table 1: Parameter Description

M, N height of the matrix, width of the matrix
Num the number of rearranged sparse matrices

nr [Num][N] the number of nonzeros in each column
T the number of groups
ki partition point where k0 = 1, kT = N
si j the shaded area summation between point i and j

Figure 7: Different cases in dynamic programming: (a) the end point is
32 and there is one group; (b) the end point is 25 and there is one group;
(c) the end point is 32 and there are two groups; (d) the end point is 32
and there are four groups.

one cycle for a multiplier to perform one multiplication, it takes 1
cycle for the first column to finish computation, and the sixth column
needs 9 cycles, which leads to 8 idle cycles in the multipliers for
the first column totally. As a consequence, the irregular distribution
of nonzeros in the columns leads to imbalanced workload for each
com-PE. To solve the problem, we propose an algorithm to minimize
the total idle cycles. The parameter descriptions are shown in Table
1.

DEFINITION 1. Given Num rearranged sparse matrices with the size
of M×N and nr[Num][N] denoted as the number of nonzeros in each column
for Num matrices, we define the si j as the idle cycles between between point
i and point j .

For example, in Figure 7(d) the total idle cycles between point k0
and k1 is 20 (= 8 + 5 + 3 + 2 + 2). For all Num matrices, si j can be
formulated as follows,

si j =
k≤Num∑
k=1

(nr [k][j] ∗ (j − i) −

t ≤j∑
t=i+1

nr [k][t]) (11)

Our goal is to minimize the total idle cycles, so the partition
problem can be described as follows,

PROBLEM 1. Given Num rearranged sparse matrices with the size of
M × N, nr[Num][N], the goal is to find an partition strategy k0, k1, k2 ...kT
to minimize the total idles.

We develop a dynamic programming algorithm to solve Problem
1. Ideally, the total idle cycles will drop as we increase T . However,
the hardware complexity will also increase with T . To strike a
balance, we set T to 4 in this paper. Let L(e, l) represent the partition
strategy with minimal idle cycles, where e is the endpoint in the
matrix meaning that the problem interval is [0, e] and l is the number
of groups between [0, e]. Figure 7 shows some examples of L(e, l). In
Figure 7, the gray area means the idle cycles of multipliers caused by
the discrepancy between different numbers of nonzeros in a group.

When finding the solution L(e, l), as long as the last previous point
is determined, the problem shrinks to find the solution L(e .pre, l − 1).

Observing that, we derive the following recursion formula,

L(e, l) =

{
s0e if l = 1
min

0<i<e
{L(i, l − 1) + sie } if l > 1 (12)

Using the recursion formula, we can solve the Problem 1 using
dynamic programming as shown in algorithm 1.

Algorithm 1: Algorithm for Problem 1
Input: T , s[N][N]
Output: k [T]

1 for int i = 1; i ≤ N ;++i do
2 L[i][1].sum = s[0][i]
3 L[i][1].pre = −1
4 for int i = 2; i ≤ T ;++i do
5 for int j = i ; j ≤ N ;++j do
6 L[j][i].sum = ∞

7 L[j][i].pre = −1
8 for int k = i − 1;k < j ;++k do
9 if L[j][i].sum < L[k][i − 1].sum + s[k][j] then

10 L[j][i].sum = L[k][i − 1].sum + s[k][j]
11 L[j][i].pre = k
12 int pre_e = N
13 for int i = T − 1; i ≥ 1;−−i do
14 pre_e = L[pre_e][i + 1].pre
15 k [i] = L[pre_e][i]

In algorithm 1, L(e, l).sum means the summation of the shaded
area and L(e, l).pre means the previous partition point of e. we first
set the initial cases that the group size is 1 with endpoint ranging
from 1 to N (Line 1-3). When the endpoint and group numbers are
determined, we search the previous partition point that minimizes
the summation of the shaded area then mark the point (Line 9-11).

7 EXPERIMENTAL EVALUATION
7.1 Experiments Setup
In this work, we first use Xilinx Vivado HLS (v2017.1) tool chain to
transform C code into RTL implementation. Then, we employ Xilinx
SDSoC (v2017.1) to compile the source code into bitstream. We
evaluate our techniques on Xilinx ZC706 platform. ZC706 platform
consists of a Kintex-7 FPGA and dual ARM Cortex-A9 processors.
The external memory is 1GB DDR3. The bandwidth between on-
chip memory and external memory is 4 GB/s. We use 16-bit fixed
data type in our design. The operating frequency of our implemen-
tation is 166MHz. In the experiments, we compare our design with
[15], the state-of-art Winograd implementation on FPGAs. However,
[15] ignores sparsity, which may cause unbalanced execution in the
pipeline. We profile the Winograd kernel execution time using Xilinx
SDSoC (v2017.1).

7.2 Experiments of Synthetic Sparse Matrices
In this subsection, we test the performance by using synthetic sparse
matrices. We use a typical input feature map size: 224 × 224 with
M = N = 32 and the stride is 1. We randomly generate the sparse
matrices with different sparsity and deviation. Here, the deviation
refers to the standard deviation of the number of nonzeros in each

Table 2: Resource utilization

BRAM18K DSP48E FF LUT
[15] 540(50%) 532(59%) 91874(21%) 89628(41%)
Ours 732(67%) 768(85%) 153020(35%) 155206(71%)

Figure 8: Speedup of sparse Winograd implementation

Figure 9: Comparison between prior work and ours on VGG16

column. Since the maximal number of nonzeros in a column is 32,
we set three deviation values {3, 7, 10}.

Figure 8 shows the comparison between SpWA and previous
Winograd implementation on FPGAs[15]. When sparsity is low, the
speedup among different deviations shows almost the same. Because
the patterns of nonzeros in the columns are always continuous, differ-
ent cases can show the similar speedup after partition. When sparsity
becomes higher, there are many zeros. A lower deviation case can
achieve higher performance after partition than a higher deviation
case. Because a high deviation shows less continuous.

7.3 Case study of VGG16
We first compare our design to state-of-the-art work proposed by
[15] using VGG16 [20]. VGG16 consists of 5 convolution groups
with different input size and all convolutional layers use 3 × 3 filters.
We implement [15] and our design using F (2 × 2, 3 × 3) Winograd.
The sparsity is pruned to 80% based on [12]. As shown in Figure 9,
we achieve 2.9x performance speedup on average.

Table 2 shows the resource utilization of our design and [15]. In
[15], Look Up Tables (LUTs) are mainly used to implement constant
multipliers and adders for transformation, since multiple tiles are
transformed together. In our design, the transformation in pre/post-
PE is conducted tile by tile, LUTs are mainly used to implement
multiplexers to fetch the address in com-PEs. The difference of
DSP utilization comes from different parallel computing strategies.
Our design requires more BRAMs, because the filters are stored
in transform format and additional memories are required to store
indices in re-CSC format.

7.4 Case study of YOLO Network
You only look once (YOLO) is a state-of-the-art network for real-
time object detection system [18]. We use Tiny-YOLO version to
evaluate our design. Tiny-YOLO consists of 9 convolutional layers
and 6 max pooling layers. All convolutional layers use 3 × 3 filters.

Figure 10: Comparison between prior work and ours on YOLO net-
work

Figure 10 shows the comparison results. The speedup in the first few
layers is not significant. Because the number of channels is small
(16, 32, 64), which means a small sparse matrix in Equation 9. In
SpWA architecture, we apply pipeline technique in com-PEs. When
the workload is small, the latency of com-PE can be bounded by the
length of pipeline. For the rest layers, they have higher performance
speedup than other layers. This is because these layers are with more
channels, leading to more effective design when pipeline is enabled.
On average, our design shows a 3.1x speedup.

8 RELATED WORK
The pursuit of faster deep learning FPGA accelerators never stops,
there have been many efforts to explore different architectures for
CNNs.

Architecture for dense CNNs using spatial convolution. Prior
efforts to accelerate CNNs using spatial convolution have shown
substantial successes on FPGAs. Zhang [25] et al. proposed a design
space exploration technique to optimize the throughput from compu-
tation resources and bandwidth aspects. Wei et al. [23] implemented
CNN on an FPGA using a systolic array architecture, which can
achieve high clock frequency under high resource utilization. Zhang
et al. [27] proposed a performance model that optimized the OpenCL
kernels to efficiently utilize the hardware resources.

Architecture for dense CNNs using fast algorithm. Recently,
the implementations of fast algorithms have been explored on FP-
GAs. Zhang et al. [26] implemented FFT with the size of 8 on
FPGA platform for CNN. Ko et al. [11] proposed an FFT-based
architecture for CNN model, which can be used for training and
inference process. In [11] design, the training process is completed
in frequency domain. Podili et al. [17] proposed a novel data layout
to reduce the required memory bandwidth in the implementation
of Winograd. Aydonat et al. [4] applied Intel OpenCL tool chain to
map 1-D Winograd algorithm on Arria 10 FPGA platform. Lu et al.
[15] proposed a performance model for Winograd convolution to
optimize implementations and predict resource utilization.

Architecture for sparse CNNs using spatial convolution. Re-
cently, there are a few accelerators that exploit sparsity of CNNs
on ASICs. Eyeriss [6] gated computation cycles for zeros in the
input feature maps to save energy and the data is stored in compress
format in DRAM. Han et al. [10] proposed EIE CNN accelerator
which operated directly on compressed networks and enables the
large neural network models to fit in on-chip SRAM. EIE exploits
sparsity both in input feature maps and filters but only focused on
the fully-connected layer. Parashar et al. [16] proposed SCNN accel-
erator based on Cartesian-product operation in which all nonzeros
have to be multiplied with one another. Zhang et al. [28] presented
Cambricon-X accelerator which applied step indexing techniques.

In Cambricon-X design, the nonzeros in the same row are divided
into multiple segments with the same size in subsequent addresses.
9 CONCLUSIONS
In this work, we propose sparse Winograd CNNs accelerator (SpWA)
on FPGAs which exploits Winograd fast algorithm and sparsity. We
first present the dataflow of SpWA in which we rearrange data order.
Based on the dataflow, we design an efficient architecture, which
employs line buffer design and sparse Winograd PEs. Then we
develop an efficient algorithm based on dynamic programming to
guide our implementation strategy. Finally, we evaluate our design
on Xilinx ZC706 platform and the results show a 2.9x∼3.1x speedup
compared with state-of-the-art work.

ACKNOWLEDGMENTS
This work is supported by Beijing Natural Science Foundation (No. L172004)
and National Science Foundation China (No. 61672048).

REFERENCES
[1] https://en.wikipedia.org/wiki/Sparse_matrix. 2018.
[2] Intel Math Kernel Library. https://github.com/01org/mkl-dnn. 2018.
[3] NVIDIA CuDNN. https://developer.nvidia.com/cudnn. 2018.
[4] U. Aydonat et al. An OpenCL Deep Learning Accelerator on Arria 10. In FPGA,

2017.
[5] A. Canis et al. LegUp: high-level synthesis for FPGA-based processor/accelerator

systems. In FPGA, 2011.
[6] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architecture for Energy-

Efficient Dataflow for Convolutional Neural Networks. In ISCA, 2016.
[7] J. Cong et al. High-Level Synthesis for FPGAs: from Prototyping to Deployment.

In TCAD, 2011.
[8] S. Han et al. Deep Compression: Compressing Deep Neural Networks with

Pruning, Trained Quantization and Huffman Coding. In ICLR, 2015.
[9] S. Han et al. Learning both Weights and Connections for Efficient Neural Network.

In NIPS, 2015.
[10] S. Han et al. EIE: Efficient Inference Engine on Compressed Deep Neural Network.

In ISCA, 2016.
[11] J. H. Ko et al. Design of an Energy-Efficient Accelerator for Training of Con-

volutional Neural Networks using Frequency-Domain Computation. In DAC,
2017.

[12] S. Li et al. Enabling Sparse Winograd Convolution by Native Pruning. In arXiv
preprint arXiv:1702.08597, 2017.

[13] Y. Liang et al. High-Level Synthesis: Productivity, Performance, and Software
Constraints. In Electrical and Computer Engineering, 2012.

[14] B. Liu et al. Sparse Convolutional Neural Networks. In CVPR, 2015.
[15] L. Lu et al. Evaluating Fast algorithms for Convolutional Ceural Networks on

FPGAs. In FCCM, 2017.
[16] A. Parashar et al. SCNN: An Accelerator for Compressed-Sparse Convolutional

Neural Networks. In ISCA, 2017.
[17] A. Podili, C. Zhang, and V. Prasanna. Fast and Efficient implementation of

Convolutional Neural Networks on FPGA. In ASAP, 2017.
[18] J. Redmon et al. You Only Look Once: Unified, Real-Time Object Detection. In

CVPR, 2016.
[19] B. C. Schafer et al. Machine Learning Predictive Modelling High-Level Synthesis

Design Space Exploration. In IET computers & digital techniques, 2012.
[20] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-

Scale Image Recognition. In arXiv preprint arXiv:1409.1556, 2014.
[21] N. Suda et al. Throughput-Optimized OpenCL-based FPGA Accelerator for

Large-Scale Convolutional Neural Networks. In FPGA, 2016.
[22] S. Wang et al. FlexCL: An Analytical Performance Model for OpenCL Workloads

on Flexible FPGAs. In DAC, 2017.
[23] X. Wei et al. Automated Systolic Array Architecture Synthesis for High Through-

put CNN Inference on FPGAs. In DAC, 2017.
[24] Q. Xiao et al. Exploring Heterogeneous Algorithms for Accelerating Deep Convo-

lutional Neural Networks on FPGAs. In DAC, 2017.
[25] C. Zhang et al. Optimizing FPGA-based Accelerator Design for Deep Convolu-

tional Neural Networks. In FPGA, 2015.
[26] C. Zhang and V. Prasanna. Frequency Domain Acceleration of Convolutional

Neural Networks on CPU-FPGA Shared Memory System. In FPGA, 2017.
[27] J. Zhang et al. Improving the Performance of OpenCL-based FPGA Accelerator

for Convolutional Neural Network. In FPGA, 2017.
[28] S. Zhang et al. Cambricon-X: An Accelerator for Sparse Neural Networks. In

MICRO, 2016.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20180419081402
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 28.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

