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Abstract—Field Programmable Gate Arrays (FPGAs) are reconfigurable architectures able to provide a good balance between energy

efficiency and flexibility with respect to CPUs and ASICs. The main drawback in using FPGAs, however, is their timing-consuming

routing process, significantly hindering the designer productivity. An emerging solution to this problem is to accelerate the routing by

parallelization. Existing attempts of parallelizing the FPGA routing either do not fully exploit the parallelism or suffer from an excessive

quality loss. Massive parallelism using GPUs has the potential to solve this issue but faces non-trivial challenges. To cope with these

challenges, this paper explores GPU-accelerated routing approach for FPGAs. We leverage the idea of problem size reduction by

limiting the single-net routing in a small subgraph rather than in an entire graph, further enabling the GPU-friendly shortest path

algorithm to be used in FPGA routing. We maintain the convergence after problem size reduction by using the dynamic expansion of

the routing resource subgraph, where the routing region of subgraph will be progressively expanded to find a feasible solution to each

net. In addition, we are based on a GPU platform to explore the fine-grained single-net parallel routing in three ways and propose a

hybrid approach to combine the static and dynamic parallelization for better speedup in FPGA routing. To explore the coarse-grained

multi-net parallelization, We propose a dynamic programming-based partitioning algorithm to parallelize the routing of multiple nets

while generating the equivalent routing results as the original single-net routing. Experimental results show that our proposed approach

can provide an average of about 21.53� speedup on a single GPU with a tolerable loss in the routing quality and maintain a scalable

speedup on large-scale routing resource graphs. To our knowledge, this is the first work to demonstrate the effectiveness of

GPU-accelerated routing for FPGAs.

Index Terms—Hardware, reconfigurable architectures, FPGAs, routing, GPU parallelization
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1 INTRODUCTION

WITH the reaching of the end of Moore’s law and Den-
nard scaling [1], computing landscape is becoming

increasingly parallel and heterogeneous, consisting of a
larger number of cores and customized accelerators. Field
Programmable Gate Arrays (FPGAs) shows particularly
promising as an acceleration technology with its reconfigur-
ability, owing to that they can improve the energy efficiency
and performance in a broad range of applications [2], [3],
[4]. For example, Microsoft’s large-scale FPGA-based cluster
has been used thus far to accelerate Bing web search engine
and deep neural network processing [5], [6]. Compared
with other competitive accelerators like GPUs, FPGAs usu-
ally offer much better energy efficiency and can still deliver
high performance in datacenters. However, the increasingly
lengthy compilation time associated with FPGA computer
aided design (CAD) algorithms has been a severe limitation
to broader adoption of this technology.

Fig. 1a shows a representative FPGA CAD flow. During
logic synthesis and technology mapping, a circuit is trans-
lated into a netlist composed of lookup tables (LUTs) and
fip-fops (FFs). In the packing stage, several LUTs and FFs
together form a basic logic element (BLE) and then several
BLEs are grouped into a configurable logic block (CLB).
After packing, placement is responsible for determining the
physical position of all CLBs in a given FPGA. Finally, rout-
ing is to assign wire segments and select programmable
switches to construct the required connections among the
logic components.

Routing is the most time-consuming stage in the FPGA
CAD flow [7]. Fig. 1b shows the average proportion of exe-
cution time using state-of-the-art academic VTR tools to
compile ten large circuit designs from VTR benchmark
suite [43]. Since the final routing quality directly affects the
maximum clock frequency and other design metrics such as
routability and power, it also becomes a critical step in the
design cycle. The PathFinder routing algorithm [9] is in
dominant use in the FPGA communities due to its superior
performance and quality of results. This algorithm enables
the nets to negotiate with each other to find a feasible rout-
ing solution. However, routing is a very lengthy process in
terms of runtime and a promising direction to overcome the
runtime challenge is through parallelization [10]. Several
recent attempts on parallelizing the FPGA routing have
been reported [11], [12], [13], [14], [15], [16]. However, there
is a lack of literature on GPU acceleration of FPGA routing.
In this paper, we explore how to use GPU efficiently for a
very fast FPGA routing approach.

Graphics Processing Units (GPUs) offers a massively par-
allel computing platform to address the time-consuming
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and tedious problems [17]. GPU acceleration techniques
have shown excellent performance in applications with the
data parallel paradigm. Several algorithms in the area of
FPGA CAD have been successful accelerated using
GPUs [18], [19], [20], [23]. However, the PathFinder routing
algorithm for FPGAs is sequential in nature. Dependencies
exist in the routing process of different nets, as well as the
routing of a single net. Such dependencies violate the
requirement of independency in data parallel paradigm
and thus, the algorithm must be thoroughly revised to take
full advantage of GPU acceleration techniques.

The kernel of FPGA routing is, in fact, a single source
shortest path (SSSP) solver. Several GPU-based approaches
have been proposed to accelerate the SSSP solver [21], [22],
but the available speedup is insignificant due to the synchro-
nization overhead is costly and the memory access is irre-
gular [23]. Also, the GPU-accelerated path-finding solvers
for video games [24] and the global routing problem for
ASICs [25] assume the routing structures as rectilinear grids.
Therefore, these parallelization techniques cannot be directly
applied to FPGA routing, whose complex routing resources
form a general graph. Among the GPU-based SSSP solvers
for general graphs, the Bellman-Ford algorithm provides the
greatest speedup so far [26], [27], although its worst-case
time complexity is inferior to the Dijkstra’s algorithm. More-
over, the serial Bellman-Ford algorithm excels when running
on a small graph [28].

In this paper, we leverage multiple techniques to enable
the usage of the GPU-friendly Bellman-Ford algorithm to
increase the speedup and restrict its weakness. Specifi-
cally, we observe that the bounding box of the final routing
tree of most nets is only slightly larger than the bounding
box of the terminal pins. Thus, we can use the Bellman-
Ford algorithm in a small subgraph defined by a limited-
size bounding box to replace the original Dijkstra or A*
algorithm in FPGA routing. We make use of such observa-
tion and idea in our GPU-accelerated routing approach.
The dynamic expansion strategy of the routing resource
subgraph is applied to control the problem size so that
we can adopt GPU-based Bellman-Ford algorithm to
achieve a better speedup to route a single net. Moreover,
we explore the fine-grained node and edge parallelism in
the routing of a single net, and we discuss the possibility
to leverage coarse-grained net parallelism to route multi-
ple nets concurrently.

In summary, we explore the novel GPU acceleration
techniques for FPGA routing. The main contributions of
this work are described as follows:

� The GPU-friendly Bellman-Ford algorithm becomes
practical for FPGA routing, attributed to our prob-
lem size reduction technique by exploiting the cover-
age estimation and dynamic expansion on the
routing resource subgraphs.

� We further improve the speedup by considering the
single-net and multi-net parallelism. On single-net
parallelization, we propose a hybrid approach that
combines the advantages of both the static and
dynamic parallelism in the SSSP solver for FPGA
routing. On multi-net parallelization, we present a
deterministic net-parallel technique that guarantees
the equivalent routing results as the original ordered
net-by-net routing.

� The proposed method provides an average of 21.53�
speedup on GPU. We also analyze it scalability using
large-scale routing graphs. To our knowledge, this is
the first work on utilizing GPU to accelerate the rout-
ing time for FPGAs.

The preliminary version has been presented at Interna-
tional Symposium on Field Programmable Gate Arrays
(FPGA) in 2017 [29]. Notice that in this paper, we not only
present novel insights into the GPU-friendly routing, but
also propose an optimal dynamic programming-based par-
titioning algorithm to explore multi-net parallelism for fast
FPGA routing. Evaluations have shown that the achieved
speedup is further improved significantly. Relying on GPU
acceleration, we achieves significantly greater speedups
than the publicly available VPR 7.0 router [43] and the state-
of-the-art VPR-based parallel routers. We also believe that it
will have many useful applications for fast compilations
due to the fundamental importance of routing.

The rest of the paper is organized as follows: Section 2
gives the background and motivation; Section 3 presents the
methodologies of subgraph dynamic expansion; Section 4
explores the GPU-accelerated routing techniques; Section 5.2
discusses the experimental results; Section 6 shows the
related work on parallel routing and Section 7 concludes
the paper.

2 BACKGROUND AND MOTIVATION

2.1 Routing Problem

The physical routing resources of an FPGA can be modeled
as a directed graph GðV;EÞ, named routing resource graph,
where each vertex vi represents an electrical pin or a wire
segment and each edge eij corresponds to a programmable
connection between an electrical pin and a wire segment, or
a programmable routing switch between two wire seg-
ments. Fig. 2a shows an example of a partial routing archi-
tecture and its channel width is set to two, and the routing
resource graph is shown in Fig. 2b.

The routing problem is to find disjoint paths inGðV;EÞ to
connect the pins of the source and the sinks for each net in
Fig. 2b. A net Ni has one source node si and a few sinks tij
that are logically connected to the source. Both the source
and sinks are vertices in V , and thus, the net Ni is a subset
of V . The routing of net Ni is to find a subtree in graph G
that includes all vertices in Ni, and this subtree is called the
routing tree RTi of net Ni. The source si is the root node of
RTi, and the sinks tij are the terminal nodes. The routing

Fig. 1. (a) A representative FPGA CAD flow. (b) Average proportion of
run time to each design stage.
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trees for different nets are disjoint in G, to prevent short cir-
cuits. This routing problem is NP-complete [14].

2.2 PathFinder Algorithm

A summary is described below on the negotiation-based
PathFinder routing algorithm [9]. PathFinder routes one net
at a time in each iteration, where congestions are temporally
allowed in the intermediate routing solutions. The nets
must negotiate with each other to decide who will make a
detour around the congested resource nodes in subsequent
iterations, until all the congestions are resolved to obtain a
complete legal routing solution.

Each iteration rips up an existing routing tree and
reroutes it by invoking the maze expansion [8], which com-
putes a path from the source to each sink in the routing
resource graph. It is also the most expensive task in FPGA
routing. All of the unvisited vertices are first stored in a pri-
ority queue based on their cost, and the vertex vmin with the
minimum cost is extracted during maze expansion. If vmin is
a sink, a routing path will be constructed by invoking a
backtrace procedure. Otherwise, each neighbor v of vmin,
which has not been previously visited, is inserted into the
priority queue and the maze expansion continues until a
legal routing tree is found.

The PathFinder routing, a tedious and time-consuming
process, is inherently sequential and, since it operates on
graphs, it is irregular. These make it very challenging to par-
allelize the net routing. In coarse grain, the congestion costs
are sequentially updated net after net within a routing itera-
tion. While in fine grain, the priority queue in the maze
expansion routing of a single net limits the practical concur-
rency. Such data sharing in the coarse grain and the fine
grain violates the requirement of data independency of the
GPU-friendly data-parallel paradigm. Thus, the existing
routing algorithms are not designed for GPU acceleration
and must be revisited.

2.3 Dynamic Parallelism

Dynamic parallelism is an important and useful technique
able to dynamically exploit the parallelism in irregular com-
putations such as graph algorithms. Moctar and Brisk [14]
have demonstrated the effectiveness of dynamic parallelism
with multi-threading techniques by using the operator for-
mulation [32] for FPGA routing.

The general idea of operator formulation to imple-
ment dynamic parallelism is to apply a compute operator

iteratively on a subset of nodes in a graph. At each iteration
the active nodes perform useful computations and the
rest inactive nodes are idle. A check operator determines
whether a node is active or inactive. The compute operator
often accesses neighboring nodes and can activate inactive
nodes for further processing. Execution completes when all
nodes are inactive and will not be activated again.

For example, in the Bellman-Ford algorithm, a compute
operator updates the known shortest path of a node, and a
check operator checks whether an upstream of a given node
has an updated known shortest path. The operator formula-
tion is a framework that automatically parallelizes a pro-
gram where the compute and check operators are defined.

In parallel routing exploration, the dynamic parallelism
of routing resource nodes and edges will be inspired to
accelerate GPU-based FPGA routing.

2.4 Overall Design Flow

The overall design flow of the proposed approach is shown
in Fig. 3. Note that we still preserve the negotiation-based
framework [9] that iteratively reduces the routing resource
congestions by ripping-up and re-routing the nets until to
find a feasible routing solution. In subgraph dynamic
expansion, the routing subgraph of each net is extracted
according to the initial coverage strategy at the first iteration
and its size may be expanded according to the dynamic
expansion strategy. In the GPU-based SSSP for a single net
routing, we propose multiple techniques to obtain a high
degree of parallelism and significant speedup. We explore
the node and edge parallelism and a hybrid approach is
proposed to accelerate the single-net routing on GPU. We
also leverage the net parallelism to accelerate the multi-net
routing. The kernel of the proposed approach is the GPU-
friendly SSSP algorithm to route every net inside its own
routing subgraph region.

In this paper, we explore the capability of GPU accelera-
tion for FPGA routing. The computational kernel in FPGA
routing is the single-source shortest path (SSSP) solver.
First, we present the subgraph dynamic expansion method
to enable the use of a GPU-friendly SSSP algorithm for
FPGA routing in Section 3. Second, we explore different
GPU-based parallelizations and propose an efficient hybrid
solution, followed by multi-net parallelization in Section 4.

Fig. 2. FPGA routing resource graph. (a) Architecture. (b) Partial routing
graph.

Fig. 3. The overall design flow of GPU-accelerated routing for FPGAs.
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Note that the parallel routing can guarantee deterministic
results, although it produces different results from original
serial PathFinder routing algorithm. Assuming that there is
a sequential version of our parallel approach that applies
the same subgraph dynamic expansion strategy, it is obvi-
ous that single-net parallelization is sequential equivalent,
and we will propose a multi-net parallelization that is also
sequential equivalent.

3 SUBGRAPH DYNAMIC EXPANSION

The computational kernel in FPGA routing is a solver for
the single-source shortest path (SSSP) problem, usually
using Dijkstra’s algorithm or A* search.1 Note that the fun-
damental data structure in both algorithms is a priority
queue, which causes contentions and bottlenecks in a GPU
implementation. Therefore, most existing literature and
publicly-available solvers for the GPU-accelerated SSSP
algorithm are based on the Bellman-Ford algorithm for a
greater parallelism and speedup, although the worst-case
sequential time complexity of the Bellman-Ford algorithm
is higher than the Dijkstra’s algorithm.

To take full advantage of the existing GPU-based SSSP
solvers for FPGA routing, our basic idea is to alleviate its
time complexity by reducing the problem size. In general,
there are at least two approaches to doing so:

1) One is to perform global routing in a coarsened rout-
ing graph.

2) The other is to restrict the search scope for the SSSP
algorithm.

The global routing approach is useful for ASIC routing,
but it is less effective for FPGA routing [30]. It may be

possible to obtain a pseudo-rectilinear structure from the
FPGA routing graph by clustering the routing segment
nodes inside the same channel. Taking Fig. 2 as an example,
one may cluster the nodes a and b, c and d, e and f , g and h,
respectively, so that the clustered nodes form a rectilinear
structure for global routing. However, this conversion is not
accurate to model the congestion, because it cannot distin-
guish the congestion cost of the segment nodes in the same
channel. According to our analysis of the final routing
results of the PathFinder algorithm across several bench-
marks, we observe that the routing cost of some segment
nodes in the same channel differ significantly. The maxi-
mum difference (e.g., 24) of the routing cost for the nodes in
the same channel usually greater than the mean (e.g., 9)
plus one standard deviation (e.g., 10) among the nodes with
non-zero costs. Therefore, the global routing approach is
not the best choice to reduce the problem size, and we resort
to the other approach by restricting the routing scope.

To ensure the correctness and convergence of FPGA
routing algorithm, we propose the method of subgraph
dynamic expansion to limit the search space. It contains three
essential steps to mitigate the disadvantages of the GPU-
friendly Bellman-Ford algorithm.

– Step 1: subgraph extraction, which is implemented
efficiently based on a labeling system that relates the
coordinates to the routing resource nodes.

– Step 2: initial coverage, which is preprocessed by
analyzing the routing results of existing circuits. Our
estimation of the initial routing subgraphs provides
sufficient routing nodes (e.g., for 98.5 percent nets in
existing circuits), so that each net only needs to
explore its routing tree in a small subgraph instead
of the overall routing graph.

– Step 3: dynamic expansion, which is complementary
to initial coverage using a detection strategy to adap-
tively expand the routing subgraph in a next routing
iteration until a feasible solution is found.

Notice that the key idea of subgraph dynamic expansion
is to estimate and find a large-enough routing subgraph for
every net to obtain its own feasible route. In the initial cover-
age, we first determine the initial routing subgraphs to cover
a significant portion of nets, and then we perform dynamic
expansion in case that a few nets need a larger subgraph to
find their legal routing trees. This method effectively bounds
the number of nodes during the routing exploration, and
thus alleviates the complexity overhead of the Bellman-Ford
algorithm compared to the Dijkstra’s algorithm.

The usage of subgraph dynamic expansion in proposed
design flow is illustrated in Fig. 4. We first begin by a
straightforward estimation of the routing subgraph is the
one within the bounding box of source, sink1 and sink2 in
Fig. 4a. Using the bounding box to estimate the initial sub-
graph does not provide enough routing resources in many
cases, and thus, We then determine a good-enough sub-
graph at the initial coverage stage, as shown in Fig. 4b. The
static estimation is unlikely 100 percent accurate, and a
detour path outside the initial coverage may be necessary
for a legal routing solution. So we apply a dynamic strategy
to expand the subgraph, whenever a detour path touching
the boundary of the current routing subgraph is detected,

Fig. 4. The three steps of subgraph dynamic expansion in proposed design
flow: (a) Obtain the net bounding box before routing, (b) Estimate the initial
coverage that provides most nets a sufficiently large subgraph to route,
and (c) Perform boundary detection to trigger the (d) Dynamic expansion
to guarantee that the routing subgraph is eventually large enough.

1. Dijkstra’s algorithm and A* search have similar data structures
and algorithmic flow. Thus, we only mention Dijkstra’s algorithm to
compare with the GPU-friendly Bellman-Ford algorithm in the rest of
this paper for conciseness.
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as illustrated in Fig. 4c. Finally, we can find a routing solu-
tion inside the estimated and expanded subgraph as shown
in Fig. 4d. Evaluations show that this approach effectively
reduces the problem size without affecting the quality of
the routing solution.

3.1 Subgraph Extraction

As discussed earlier, due to the limitations of the global rout-
ing approach for FPGAs, we resort to the method of restrict-
ing the search space (i.e., the routing subgraph) for the GPU-
based SSSP solvers. The ideal restricted search space with
the minimum number of routing resource nodes should let
an SSSP algorithm generate the same or similar result as in
the original search space. However, this very ideal case is
non-trivial to obtain. In addition, extracting an irregular sub-
graph requires some timing-consuming graph traversals
that affect the efficiency. Thus, we relax the ideal routing
resource subgraph to be a NET-SPECIFIC BOUNDING BOX, which
contains sufficient routing resource nodes for the given-net
routing. In the following, we present the details how to
extract a routing resource subgraph inside a bounding box.

We make the following assumptions for the proposed
subgraph extraction. The entire routing graph consists of
pin nodes and segment nodes. A pin node corresponding to
a pin of a logic block is assigned with the placement coordi-
nates of this logic block. For every segment node, there
exists an edge connecting to a pin node, and this segment
node shares the same coordinates with its neighboring pin
node. Since some segment nodes are neighbors of two or
more pin nodes with different coordinates, these segment
nodes have multiple coordinates. Note that these coordi-
nates of routing resources including nodes and edges are
given after placement. Further, with the coordinates of
source and sink nodes, we can determine the bounding box
of subgraph and enable the single-net routing in the small
box rather than entire graph.

Fig. 5 shows the subgraph corresponding to a bounding
box in the FPGA routing region includes all the pin nodes
and segment nodes with coordinates inside this box, as well
as the routing edges between these nodes. Given any box in
the FPGA routing graph, we can efficiently determine the
subgraph in the box defined above. In the next two sections,
we will discuss how to determine the size of such box for
any given net and guarantee the convergence of the routing
algorithm.

3.2 Initial Coverage

The routing subgraph defined in the previous section
reduces the problem size. The next question is how to find

the dimension of the box for the subgraph extraction, given
any net to be routed.

As discussed earlier, to ensure the correctness and con-
vergence of the routing algorithm, the box should contain
sufficient routing resources for a given net, and its size is
expected to be as small as possible. A simple choice is the
minimum bounding box of the pins in a given net, which is
available before routing. But this simple choice rarely pro-
vides enough routing resources. Another choice is the mini-
mum bounding box of the final routing tree, which is of
course only available after the routing finishes. This choice
provides sufficient routing resources but is impractical and
not implementable. To get a good-enough initial subgraph
before routing, we propose the initial coverage in proposed
router to estimate the initial boxes to cover a significant por-
tion of nets with enough routing resources. The idea of this
estimation is based on the statistical data from existing
routed circuits.

An important observation is that for most nets, the size of
the bounding box of the final routing tree is only slightly
greater than the bounding box of the net pins, as illustrated
in Fig. 6. Based on this empirical relation based on existing
routed circuits, we can statistically estimate the size of the
boxes for the routing subgraphs during the initial coverage.
The box of a given net in the initial coverage is expanded
from the four sides of the bounding boxes of net pins by a
distance of DC , as illustrated in Fig. 4b. The estimation of DC

relates to the FPGA size, as well as a user-defined percent-
age of coverage.

Here we describe an example flow to estimate DC given a
few circuits with known routing solutions. The distance DC

is the difference in the left, right, top and bottom boundary
coordinates between the bounding box of the net pins and
the bounding box of its final routing tree, which can be col-
lected from these existing circuits. If the user-defined
percentage of coverage is 98.5 percent, we find the smallest
coverage that is not less than 98.5 percent of the nets in
every given circuit. We observe that by dividing this value
of DC by the FPGA array size, we obtain a similar ratio,
0.021 on average, among many circuits. We call this ratio
the initial expansion factor. Examples of this initial expansion
factor are shown in Table 1.

Therefore, given a new circuit, we can multiply the FPGA
array size by the initial expansion factor and round it up to
the next integer to obtain DC for the initial coverage. By
applying this rule, we can estimate how much we should
expand the bounding box to be the initial coverage when
constructing of the initial routing resource subgraphs.

Fig. 5. Routing a single net in bounding box of the subgraph which can
be extracted by the terminal nodes (source and sinks). Fig. 6. The bounding box of the final routing tree is only slightly larger

than the bounding box of the net pins for DC.

SHEN ETAL.: EXPLORING GPU-ACCELERATED ROUTING FOR FPGAS 1335



3.3 Dynamic Expansion

Though the initial coverage can provide enough routing
resources for most nets, there are still some outliers. A sim-
ple fix is to expand the subgraphs continuously to ensure
sufficient routing resources eventually. However, such
strategy will increase the routing time due to some unneces-
sarily large subgraphs. In GPU-friendly router, we use the
dynamic expansion strategy, which contains a detection
method to expand a subgraph only when necessary.

Dynamic expansion is based on a boundary detection
strategy, as shown in Fig. 4c, which is used to decide
whether we will continue to expand the box size for the
routing subgraph of a net. A net is likely to use more routing
resources when its routing tree occupies a node located on
the boundary of the current routing region of subgraph.
Once detected, we expand the bounding box of its routing
subgraph on the four sides by a distance of DD

2 in the next
routing iteration. With this boundary detection strategy in
dynamic expansion, this GPU-friendly router can converge
using a similar number of iterations as the original Path-
Finder algorithm. Fig. 7 shows the dynamic expansion pro-
cess of routing resource box of a single net during routing
iteration. In previous iteration, a single net can not find a
feasible path due to the congestion happens. With the
expansion in the following iteration, the single net can
detour to find a legal path in larger subgraph box.

The subgraph dynamic expansion consists of subgraph
extraction, initial coverage, and dynamic expansion. Its main
purpose is to reduce the problem size to mitigate the worst-
case time complexity of the Bellman-Ford algorithm,which is
GPU-friendly and has efficient GPU-based implementations.
Before discussing the GPU acceleration in the next section,
here we evaluate the impact of subgraph dynamic expansion
on the routing quality and the routing time, as well as the
impact of replacing the Dijkstra’s algorithm by the Bellman-
Ford algorithm. Three approaches are evaluated and com-
pared, including: the original PathFinder router (Baseline),
the original PathFinder router optimized with subgraph
dynamic expansion (PRSE), and the original PathFinder
router optimized using the Bellman-Ford algorithm and sub-
graph dynamic expansion (BSDE). Note that the kernel of
original PathFinder router is based onDijkstra’s algorithm.

Fig. 8 shows the normalized routing time of these two
serial routing approaches. Benefiting from the subgraph
dynamic expansion, all of them can reduce the routing time
and the PRSE is faster than the BSDE approach. Though the
worst-case time complexity of the Bellman-Ford algorithm
is greater than the Dijkstra’s algorithm, the runtime of BSDE
approach is obviously better than the baseline with a negli-
gible impact on the routed wirelength. Fig. 9 reports the
normalized routed wirelength of the two approaches, where
the routed wirelength is increased by about 2.7 percent on
average using BSDE approach, and detailed explanation
will be presented in Section 5.2.

Figs. 8 and 9 illustrate the effectiveness of the Bellman-
Ford algorithm combined with subgraph dynamic expan-
sion for FPGA routing. This computational kernel is GPU-
friendly and is, therefore, a good candidate for the GPU-
accelerated FPGA routing.

4 GPU-ACCELERATED ROUTING EXPLORATION

In this section, we first explore the GPU parallelization of
Bellman-Ford algorithm for single-net routing. We focus on

TABLE 1
An Example of the Initial Expansion Factor of 0.021

for a 98.5 Percent Coverage

Bench. DC array DC
ffiffiffiffiffiffiffiffiffiffiffi
array

p
coverage

diffeq2 1 34� 34 0.029 100%
mkDelayW. 1 48� 48 0.021 99:8%
blob_mer. 1 51� 51 0.020 100%
mkPKtMer. 1 58� 58 0.017 100%
or1200 1 65� 65 0.015 100%
LU8PEEng 1 53� 53 0.019 99:3%
bgm 2 73� 73 0.027 99:5%
mcml 2 101� 101 0.020 98:7%

average — — 0.021 —

Fig. 7. The details of dynamic expansion of a single net box at each
iteration.

Fig. 8. Comparisons of the sequential routing time between the baseline
and PRSE/BSDE.

Fig. 9. Comparisons of the wirelength degradation between the baseline
and PRSE/BSDE.

2. This parameter is empirically set to one, which is sufficient to find
a legal routing solution according to our experiments.
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three strategies: static node parallelization, dynamic node
parallelization, and dynamic edge parallelization. Accord-
ing to the net features, we then design a hybrid approach
enabling a better parallelism in routing a single net. We
finally explore the multi-net parallelization to obtain a fur-
ther speedup for FPGA routing.

4.1 Fine-Grained Single-Net Parallelization

Considering that the specific structure of routing resource
graphs, the previous experiences of parallelization strate-
gies for general graphs cannot be directly applied to the
routing resource graphs, especially for a small subgraph.
Thus, it is very necessary for single-net routing to explore
and examine the effectiveness of different kinds of paralleli-
zation in the GPU-based Bellman-Ford algorithm.

Typically, there are two practical approaches enabling
the irregular Bellman-Ford algorithm to GPU, one is static
node parallelization and the other is dynamic node paralle-
lization. Fig. 10 gives the implementation details on static
and dynamic node parallelization. Both of them iteratively
apply a set of operators on a subset of elements in the data
structure which are referred to as active nodes. The check
operator determines whether or not the element assigned to
the thread is an active node or not. The compute operator
performs the actual work required for the algorithm to
progress and can generate more work by activating inactive
nodes. Execution completes when all nodes are inactive. As
shown in Fig. 10, there are two examples about the static
and dynamic node parallelization.

In addition, we also focus on dynamic edge paralleliza-
tion and exploit Merrill’s optimization method [33] for better
parallelism. Thus, we have the following three approaches to
accelerate the Bellman-Ford algorithm with GPU for single-
net routing.

1. Static node parallelization (SNP), where every node,
no matter active or not, is assigned to a thread to pro-
cess in parallel.

2. Dynamic node parallelization (DNP), where only
the active nodes, i.e., the nodes whose known shortest

distances to the source node have recently been
changed, are assigned to threads to process in parallel.

3. Dynamic edge parallelization (DEP), which is similar
to DNP but considers assigning active edges to
threads instead of active nodes. This approach is
optimized by Merrill’s method [33].

In SNP, every thread first checks whether its responsible
node is active. If active, it then applies the compute operator
to update the known shortest path of the active node in each
superstep. Every kernel execution on the GPU forms a super-
step, and the kernel is invoked again in the next superstep
when active nodes exist. All nodes, including active and inac-
tive, are statically assigned to the threads through a block
decomposition during the parallelization in every superstep.

In DNP, a centralizedworklist3 with atomicmemory oper-
ation (AMO) is used to manage the dynamic parallelism [32].
First, an initialization step pre-checks all the nodes and popu-
lates the active nodes into the worklist for parallel processing.
For example, to route a net, the worklist is initialized with the
source node. Second, every thread pulls an active node from
the worklist using AMO and then applies the compute opera-
tor to the corresponding active node. The newly activated
nodes are pushed onto the worklist with AMOs such that
only active nodeswill be visited in the next iteration. This pro-
cess is repeated until the worklist becomes empty. Compared
with SNP, DNP exposes more parallelism and improves the
efficiency by mapping threads to useful computation work.
However, the DNP also present its weakness with highmem-
ory contentionwhen accessing a sharedworklist.

A better implementation can be obtained by exploring
the DEP using Merrill’s method [33]. Besides focusing on
the edges instead of nodes, DEP use a prefix scan to allocate
a chunk of memory for each thread to maintain the active
nodes so that it relieves the contention of atomic accesses by
avoiding AMO. These chunks of memory are assigned to
the CUDA blocks, which work in parallel to check the edges
in their assigned chunks, using various heuristics to trade-
off time and space for a high throughput.

Fig. 10. The Implementations of example kernel on static and dynamic node parallelization, where N is the number of nodes, M is the maximum
number of hardware threads, and wl is a worklist class. In static node parallelization, we are based on thread index to determine the work and all the
nodes are visited whether they are active or not. Note that the number of threads spawned is equal to the number of nodes. In dynamic node paralle-
lization, we access the shared worklist to determine the work and only active nodes are visited. Note that the number of threads spawned is equal to
the number of hardware threads.

3. The worklist is a variant of priority queue.
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4.2 Fine-Grained Hybrid Approach

Either static or dynamic parallelism has its merits and
demerits. Although slower than DNP and DEP for large
graphs, the static SNP method achieves greater speedup for
the low-fanout nets than the dynamic DNP and DEP meth-
ods. Our explanation is that the routing subgraph of a low-
fanout net only has a small number of routing nodes and
thus, the static assignment of GPU threads to these nodes is
efficiently executed on the hardware. In single-net parallel
routing, we present a hybrid approach to exploit the merits
of both the static and dynamic parallelisms.

To seek higher speedup for FPGA routing, we analyze
how different attributes of a net affect the runtime of differ-
ent methods. Fig. 11 shows the percentage of the nets with a
different number of sinks on four representative circuits.
The number of low-fanout nets is significantly higher than
the high-fanout nets. Thus, there is an opportunity to
improve the speedup using a net-specific parallelization
strategy. Fig. 12 shows the speedup using the SNP, DNP,
and DEP methods of the nets with a different number of
sinks in the or 1200 circuit. For this specific circuit, we
observe that the static SNP method is better than the
dynamic methods for the nets with fewer than three sinks,
and the dynamic DEP method is superior to the others for
the nets with more than thirteen sinks. Moreover, we
explore the speedups from the SNP, DNP and DEP methods
with respect to the half perimeter wirelength (HPWL) of the
nets and observe similar results, as shown in Fig. 13. We
also observe similar patterns for other circuits by conduct-
ing the same set of experiments.

These results reveal the opportunity to combine different
methods to improve the speedup. We propose an efficient
hybrid approach that uses SNP for the nets with less than or
equal to three sinks and uses DEP for the remaining nets.
Though there is a possible gain using the DNP method for

the netswith amoderate amount of sinks, these nets only con-
tribute to a small percentage of runtime, andwe simply apply
DEP instead. We will present experimental evaluations in
Section 5.2, which will show that our hybrid approach is as
efficient as an “optimal” combination of SNP, DNP, andDEP.

4.3 Coarse-Grained Multi-Net Parallelization

In the above sections, we exploit SNP, DNP, DEP, and their
hybrid approach to explore the fine-grained node- and
edge-level parallelization for a single-net routing on a GPU
platform. In this section, we attempt to explore the coarse-
grained net-level parallelization for multi-net routing to
obtain a further speedup on the GPU. Specifically, during
the multi-net parallelization, we can maintain the equiva-
lent routing results as the single-net routing parallelization.

According to previous works [35], the routing order of the
nets will affect the final routing quality. To exploit net-level
parallelism while maintaining the deterministic results, we
need to satisfy a requirement that the routing results are
equivalent to the single-net routing according to the original
net order. Maintaining the original net order is also to ensure
the convergence of the iterative parallel routing and avoid
the degradation in the routing quality. At the meanwhile,
only the independent nets can be partitioned for multi-net
parallelization. Thuswe give the definitions as follows:

Definition 1 (Independent Net). There is a independent net
if the bounding box of its subgraph does not overlap with the
bounding box of other net, i.e.,

ðxb
i þ wb

i4xb
jÞ _ ðybi þ hb

i4ybjÞ_

ðxb
j þ wb

j4xb
iÞ _ ðybj þ hb

j4ybiÞ _ :

In terms of each net ki, we have an unique bounding box
bi, which can be determined according to the coordinates of
the terminal nodes of net routing subgraph mentioned in
Section 3.1. This subgraph box is used to limit the routing
scope of single net and for each subgraph box bi, the width
and height are wb

i and hb
i , respectively, and the lower-left

cornet position is at (xb
i ; y

b
i ).

Definition 2 (Net Order). A net ki is the basic processing ele-
ment in coarse-grained multi-net parallel routing. All of the
nets can be labeled to form a set N ¼ fk1; k2; . . . ; kng, and we
partition these nets in an increasing net order as k1; k2; . . . ; kn.

Notably, the increasing net order is the same to the origi-
nal net order of serial VPR router. With the requirements of

Fig. 11. Percentage of nets with different number of sinks.

Fig. 12. Speedup with respect to the number of sinks.

Fig. 13. Speedup with respect to the HPWL.
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net order, we start to explore the partitioning of multiple
nets to enable that our coarse-grained parallel router does
not have an impact on the final routing results.

In addition, to make our parallel router has the equivalent
results as the corresponding serial router, we introduce a
strictly-ordered feature to the partitioning exploration. It is
meaning thatwhen finishing the partitioning ofmultiple nets,
we have the strictly-ordered subsets and in each subset we
have the independent netswhich can be routed in parallel.

Definition 3 (Strictly-Ordered). For a set of nets N ¼ fk1;
k2; . . . ; kng through partitioning, we have a series of strictly-
ordered subsets M ¼ fs1; s2; . . . ; smg if sp ¼ fkip ; kipþ1; . . . ;
kipþ1�1g, where 1 ¼ i1 < i2 < � � � < imþ1 ¼ nþ 1.

We have these strictly-ordered subsets, because for
i < j, every net in subset si is routed before a net in subset
sj according to the original net order. In terms of the gener-
ated subsets, we perform the parallel routing of the nets in
the first subset s1, and then after synchronization, we per-
form the parallel routing of the nets in the second subset s2,
and until to finish the parallel routing.

Note that the strictly-ordered feature is a necessary con-
dition in partitioning and the independent nets is a suffi-
cient condition in parallelization, both of which enabling
the parallel router to generate the equivalent routing results
as the serial router. With the above definitions, we formally
formulate this partitioning problem to implement this paral-
lel router.

Problem Formulation. Given a set of nets N = {k1,
k2; . . . ; kn}, our goal is to find a partition to generate a series
of strictly-ordered subsets M = {s1, s2; . . . ; sm} and each sub-
set consists of independent nets so as to minimize the total
parallel routing time.

Consider that the total routing time depends heavily on
the number of subsets, this motivates us to minimize the
number of subsets in partitioning to obtain the minimum
parallel routing time. Further, we can solve this partitioning
problem in a dynamic programming algorithm. All of the
nets k1, k2; . . . ; kn are partitioned into a series of subsets s1,
s2; . . . ; sm, respectively. Note that k1 + k2 þ � � � þ kn = n and
the original net order are maintained to these partitioned
subsets.

Fig. 14 demonstrates an example about the dynamic pro-
gramming-based partitioning approach. According to the
original net order, all of the nets are partitioned into several
strictly-ordered subsets and in each subset there are inde-
pendent nets. We perform the parallel routing of multiple
independent nets in same subset, thereby having the equiva-
lent results as the above single-net parallel routing. Based on
the bounding box of subgraph of each net, we can judge

whether two adjacent boxes are overlaps or not, further
determining the dependencies between two adjacent nets to
implement the partitioning of multiple nets. Thus, this parti-
tioning approach is effective and precise in parallel routing.

The bounding box of net subgraph and its expansion
approach mentioned in Section 3 provide an effective detec-
tion to determine whether two adjacent nets are dependent
or not. The partitioning approach starts to route the first net
in current subset, and gradually adds the next independent
nets to the subset, until there is a overlap with the next adja-
cent nets in this subset. It is obvious that the nets in same
subset can be routed in parallel while obtaining the same
results as the single-net parallel routing. Therefore, the
multi-net parallelization can further provide a significant
speedup for FPGA routing.

The dynamic programming-based partitioning algorithm
is performed in a quadratic time. We analyze the details
about the time complexity of the partitioning algorithm as
follows. Table 2 shows the critical notations involved to the
partitioning algorithm.

Specifically

F ½j�½i� ¼ 1; independent
þ1; otherwise:

�

This algorithm consists of two steps: precomputation and
dynamic programming. In precomputation, we adopt the
simple pair-wise testing algorithm to calculate the value of
F ½j�½i� and the worst-case complexity is a quadratic time.
But in practice, it is very fast to perform this simple algo-
rithm due to that the number of strictly-ordered subsets is
very small.

According to the value of F ½j�½i�, we start to perform the
dynamic programming algorithm. The minimal number of
subsets of the first i net satisfies

D½i� ¼ 1; i ¼ 0
mini�1

j¼0fD½j� þ F ½jþ 1�½i�g; i � 1:

�

The solution to the problem is D½N �. It is obvious that for
given F ½i�½j� value, its time complexity of calculating the
value of D½N � is OðN2Þ. Thus, the time complexity of the
overall partitioning algorithm is quadratic.

Correctness. This dynamic programming algorithm ena-
bles the partitioning is strictly-ordered. It also can be proved
by induction that the strictly-ordered partitioning generates
the minimal number of subsets.

Effectiveness. In practice, this algorithm is to perform the
partitioning of nets and the total number of nets is relative
small. Further, the j value that needs to be enumerated is
significantly smaller than the total number of nets. Thus, it

Fig. 14. The dynamic programming-based partitioning forms a series of
subsets and each subset has multiple independent nets for parallel rout-
ing. The red connection denotes that there is a overlap between two
adjacent boxes.

TABLE 2
Notations for the Partitioning Problem

Notation Description

F ½j�½i� The feasible indicator whether these elements
kj; kjþ1; . . . ; ki are independent nets or not.

D½i� The minimum number of subsets for the nets
from k1 to ki under the requirements of strictly-
ordered and independent properties.
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is very fast to perform the dynamic programming-based
partitioning algorithm. In addition, due to the sparseness of
routing resource graph, there will be much fewer strictly-
ordered subsets than the independent nets used to be
routed in parallel. Thus, it is effective to employ the parti-
tioning algorithm to our multi-net parallel router.

The above partitioning algorithm generates a series of
strictly-ordered subsets to maintain the final quality, com-
bined with the independent nets in each subset, to obtain the
same results as the single-net parallel routing. Moreover,
our parallel router is clearly scalability based on strictly-
ordered partitioning.

Fig. 15 shows that the multiple independent nets are
routed concurrently on GPU. To unify the single-net and
multi-net routing, a virtual source node is imposed to
directly connect to the actual source nodes of the indepen-
dent nets. Thus, the independent nets can be combined into
a single pseudo net, which can be routed on GPU leveraging
the single-net acceleration techniques as discussed previ-
ously. Fig. 16 explains the sources of speedup when routing
multiple nets in parallel. The vertical axis reveals how the
size of the worklist, which is the number of edges processed
concurrently in the GPU-based SSSP algorithm, varies with
respect to the execution time. The speedup comes from the
reduction of the filling time of the worklist at the beginning
and the evicting time near the end. So that when we route
multiple nets as a single pseudo net, some overheads in
these two phrases are eliminated to further improve the
available speedup.

5 EXPERIMENTAL STUDY

In this section, we evaluate all the proposed parallel
approaches introduced in the previous sections in terms of

quality of results and runtime of the routing. We also dem-
onstrate the effectiveness of the proposed parallel router
when processing on a routing resource graph with increas-
ing scales.

5.1 Experimental Setup

We adopt the state-of-the-art VTR 7.0 CAD compilation tool
flow [43] in these experiments as shown in Fig. 17. This flow
takes a benchmark Verilog circuit and an FPGA architecture
description file as input. The flow maps the circuit to the
architecture described in that file, then outputs statistics
about that final mapping. We use Odin II for elaboration,
ABC for logic synthesis, AAPack for packing, and VPR for
placement and routing. VPR is left at default values [43]
and the original router will be accelerated in proposed par-
allel approaches.

We use the commonly used VTR 7.0 benchmarks for our
experiments. The VTR 7.0 benchmarks are a standard set of
Verilog circuits that come from a variety of different appli-
cations including computer vision, medical, math, soft pro-
cessors, etc. These circuits contain heterogeneous elements,
such as memories and multipliers, which differ from older
small-scale MCNC benchmarks. Table 3 summarizes the
characteristics of these circuits, including the application

Fig. 15. Concurrent routing on GPU.

Fig. 17. The experimental CAD flow.

Fig. 16. Sources of speedup.

TABLE 3
Benchmark Summary

Circuit Domain Architecture Size Nets CLBs

ch_int. Memory Init k4_N4_90nm 20x20 788 497
sha Cryptog k4_N4_90nm 29x29 1946 866
boundt. Ray Trace k4_N4_90nm 19x19 2380 724
diffe.2 Math k4_N4_90nm 34x34 3710 1296
diffe.1 Math k4_N4_90nm 35x35 3953 1450
mkDela. Packet Proc k4_N4_90nm 48x48 5224 1554
blob_m. Image Proc k4_N4_90nm 51x51 6606 2702
mkSMAd. Packet Proc k4_N4_90nm 53x53 7154 3126
mkPKtM. Packet Proc k4_N4_90nm 58x58 7474 3767
or1200 Soft Proc k4_N4_90nm 65x65 8078 3648
stereo.0 Comp Visi k6_N10_40nm 39x39 9312 1492
stereo.1 Comp Visi k6_N10_40nm 39x39 13523 1401
LU8PEE. Math k6_N10_40nm 53x53 16278 2373
bgm Finance k6_N10_40nm 73x73 27853 4225
stere.2 Comp Visi k6_N10_40nm 86x86 36479 2802
mcml Med Phys k6_N10_40nm 101x101 81282 7934
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domain, the array size of the routing region generated, the
number of nets, and the number of configuration logic
blocks (CLBs) used. Across all runs, each circuit is routed
using a channel width of 1:3� the minimum channel width
needed by VPR router, following the same configurations as
in the previous works [13], [14], [15].

We conduct all experiments on a Linux server with a
8-core Intel Xeon CPU at 2.2 GHz and 32 GB shared mem-
ory, equipped with a Tesla K40c GPU having 2,880 cores in
15 streaming multiprocessors and 12 GB video memory.
The baseline for comparisons is the original VPR 7.0
router [43], which is a sequential program implemented
in C. The academic VPR 7.0 router is faster than commercial
router [7] and it is always used for comparisons in parallel
routing research. Some of the GPU implementations of the
SSSP algorithm are adapted from the source code in the
LonestarGPU collection [31].

The state-of-the-art serial VPR 7.0 router has two differ-
ent optimization goals, one is routability-driven router and
the other is timing-driven router. The former is used to opti-
mize the total routed wirelength and the latter is used to
optimize the critical path delay. In this paper we leverage
the proposed parallel approaches to accelerate the routabil-
ity-driven router and evaluate the available speedup and
total routed wirelength. Note that these two kinds of serial
routers have the same data structure and algorithmic flow,
thus our proposed parallel approaches are suitable for the
timing-driven router as well.

5.2 Runtime and Available Speedups

Fig. 18 shows the runtime and achieved speedup using four
different parallelization techniques to accelerate single-net
routing in one by one. The runtime and speedup of each
benchmark are shown in each column. The leftmost column
is the baseline, and the next four columns show the runtime
and available speedup of SNP, DNP, DEP, and the hybrid
approach. To illustrate the effectiveness of our hybrid
approach, we include the available speedups of an optimal
hybrid approach in the last column. The average speedups
over all benchmarks are shown in the last row. On average
we achieve a speedup of about 4.15�, 5.82�, 9.75�, and
10.86� with the SNP, DNP, DEP, and Hybrid, respectively.
The runtime of the optimal hybrid approach is estimated by
summing up the fastest possible runtime of each net using
either SNP, DNP, or DEP, assuming there is an oracle to
predict the optimal selection. The 10:86� speedup of our

hybrid approach is only slightly less than the speedup of
the optimal hybrid approach, 11:57� on average.

We can observe in Fig. 18 that the hybrid approach in our
router achieves more speedup than other parallel methods
of SNP, DNP, and DEP. The reason is that our hybrid
approach invokes SNP to route a significant number of low-
fanout nets, and routes the timing-consuming multi-sink
nets using DEP. Moreover, the hybrid approach is compati-
ble with the previous coarse-grained parallel methods [13],
[15] to achieve a further speedup.

Fig. 19 presents the available speedups of parallelization
of multi-net routing on GPU using the hybrid approach.
It can be seen that this approach produces an average
speedup of about 21.53� using a single GPU. This is a
3.94� improvement over the recent fine-grained parallel
router [14], and a 3.05� enhancement over the recent
coarse-grained parallel router [15]. We do obtain notable
speedups for the four largest benchmarks on the right in
the figure, owing to that more independent nets can be
combined into a single pseudo net, further resulting in
more acceleration on GPU. Moreover, this approach is
promising to be extended with the multi-GPU paralleliza-
tion to improve the speedup greatly [33].

Finally, we list the speedups of previous coarse-grained
and fine-grained parallel FPGA routers, compared to the
sequential VPR router in Fig. 20. By taking advantage of
GPU acceleration, we proposed parallel router can provide
significant speedups. It is the first work to accelerate FPGA
routing using GPU. It is also the first work to achieve near
20� speedup for the FPGA routing problem.

According to the above experimental results, we can con-
clude that the subgraph dynamic expansion enables the

Fig. 18. The single-net parallelization on GPU using SNP, DNP, DEP, and Hybrid approach.

Fig. 19. The multi-net parallelization on GPU using the hybrid approach.
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single-net parallel routing approaches on GPU to provide a
good speedup, especially for the proposed hybrid approach.
With the dynamic programming-based partitioning, we
leverage the hybrid approach to perform the parallel rout-
ing of multiple nets on GPU to obtain a further improve-
ment to the available speedup. In addition, our final parallel
router is very faster than the previous parallel routers in
terms of total speedup.

5.3 Quality of Results

In this experiment, we evaluate the final routing quality of
the multi-net parallel routing approach due to that its
speedup is faster than other proposed parallel routing
approaches. Our approach is used for routability-driven
router to evaluate the total routed wirelength. Moreover,
our approach is also integrated into the timing-driven
router to evaluate the critical path delay. Figs. 21 and 22
give the quality of results about the total routed wirelength
and critical path delay, respectively.

In Fig. 21, we compare the routing quality of multi-net
parallelization with the routability-driven serial VPR 7.0
router regarding the total routed wirelength. This router
only introduces about 2.73 percent degradation in wire-
length on average, compared to the original VPR router. In
Fig. 22, we present the results of critical path delay when
comparing the multi-net parallel router with the timing-
driven serial VPR 7.0 router. On average, there is about
1.68 percent degradation in critical path delay. Their degra-
dations mainly come from the multi-sink nets. The original
VPR router performs the Dijkstra’s algorithm many times to
obtain a final routing tree. Our router directly combines the

shortest paths from the single source to the multiple sinks
in a single round of the Bellman-Ford algorithm into a full
routing tree.

The multi-net parallel router introduces about 2.73 and
1.68 percent degradations in wirelength and critical path
delay respectively when comparing to the original VPR 7.0
router. This impact is negligible for the scenarios such as
the synthesis of reconfigurable FPGA accelerators in data-
centers and fast design iterations in early design stages. In
the former case, the delay degradation is insignificant com-
pared to the orders of magnitude speedups introduced by
FPGA acceleration. And in the latter case, the design quality
is not as important as the design productivity.

5.4 Parallel Scalability

With FPGA integration density scales, routing resource
graph will continue to grow every generation. Thus, a scal-
able routing algorithm becomes essential to provide similar
speedup when the size of routing graph grows. Here, we
evaluate the multi-net parallelization on large-scale routing
graphs. We construct synthetic designs on large-scale rout-
ing graphs based on given benchmarks. The locations of the
sources and sinks of the nets in a benchmark are linearly
stretched when we extend the FPGA array size from
100� 100 to 1000� 1000. The routing resource graph for the
1000� 1000 array size is at the same scale as the largest
benchmark in Titan [7].

Fig. 23 gives the speedups obtained on three representa-
tive benchmarks over the sequential VPR router. We
achieve the best speedup for the FPGA array size around
500�500. While the speedup decreases slowly when the
FPGA array size grows, the multi-net parallel router still

Fig. 21. Impacts on the total routed wirelength using the multi-net
parallelization.

Fig. 22. Impacts on the critical path delay using the multi-net
parallelization.

Fig. 23. Scalability analysis with different FPGA array sizes.

Fig. 20. Speedups of SNP, DNP, DEP, Hybrid, and multi-net parallel rout-
ing approach compared to existing works.
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scales well. The scalability of parallel router is attributed to
two reasons: 1) The subgraph dynamic expansion strategy
effectively reduces the problem size. 2) The GPU-based
SSSP is a variant of the Bellman-Ford algorithm, which
makes use of the worklist that behaves similarly to a
queue. Actually, in many practical cases, the Bellman-Ford
algorithm converges faster than the worst-case analysis [37],
[38], and there exist examples [39] that the queue-based
Bellman-Ford algorithm spends less computation than the
Dijkstra’s algorithm. Here we provide another example, the
variant of queue-based Bellman-Ford algorithm, is practical
for FPGA routing. We observe the same trends for other
benchmarks and thus, these results can indicate that the
proposed parallel router is promising to maintain a similar
speedup for large-scale routing graphs.

6 RELATED WORK

Most of the previous works on parallelizing FPGA routing
are motivated by the acceleration of the overall synthesis
time. The first parallel PathFinder algorithm is proposed by
Chan and Schlag [11]. By modeling the routing problem
into a graph or hypergraph matching problem, they analyze
how and when the history and present congestion cost of
the PathFinder routing algorithm should be synchronized
across the processors to ensure convergence while improv-
ing parallelism [34]. Although their method is highly sensi-
tive to the order of the nets to be routed, it is still an open
problem to determine the best net ordering [35]. Quite
noticeable is that a speedup of 2.5� is attainable using three
processors on a distributed cluster.

The fine-grained parallelization avoids the influences
of net ordering in the PathFinder routing algorithm. Dehon
et al. [36] propose the design of a hardware accelerator for
FPGA routing. Their simulations predict a speedup of
up to three orders of magnitude over PathFinder with
5-25 percent loss in solution quality. Zhu et al. [12] attempt
to partition the high-fanout nets into several low-fanout
subnets to be routed in parallel. They achieve a speedup of
1.9� on a quad-core processor platform with 2.3 percent
loss in solution quality. And then Moctar and Brisk [14]
explore the dynamic parallelism using the Galois API.
They achieve a good speedup of 5.4� using eight threads.
Recently, Hoo et al. [16] propose a fully parallel router
based on Lagrangian relaxation to decompose the original
routing problem into independent subproblems. This app-
roach can produce an average speedup of 7� using eight
threads, compared to its sequential version.

While the coarse-grained parallelism is sensitive to
the net order, Gort and Anderson [13] propose a deter-
ministic parallel PathFinder routing algorithm. They par-
tition the nets into subsets, and these subsets are routed
in parallel with an efficient synchronization scheme to
guarantee the deterministic results. Although they did
not emphasize the scalability, it is the first deterministic
parallel routing algorithm and achieves a 2.8� speedup
using eight cores. Another deterministic parallel router is
proposed by Shen and Luo [15], using a partitioning-
based parallel routing method. They leverage a dynamic
programming algorithm to determine the optimal recur-
sive partitioning strategy. Although it degrades the

quality of routed wirelength, the parallel router exploits
more parallelism and can scale to a 32-core cluster with
an average speedup of 7�.

Design reuse is also an attractive strategy to reduce the
FPGA synthesis time. HMFlow [40] attempts to reuse pre-
compiled logic, called hard macros, to reduce the routing
time. BPR [41] then focuses on larger macros to permit
greater speedups. Intermediate fabrics [42] exploits the reuse
of precompiled virtual FPGA architecture to reduce the syn-
thesis time. The integration of parallelization and design
reuse is a promising direction for an ultra-fast FPGA router.

In this paper, we explore subgraph dynamic expansion
combined with GPU-accelerated SSSP algorithm for parallel
FPGA routing. Notice that some of the previous approaches
can be adopted in proposed approaches to achieve a greater
speedup. Moreover, This is the first work to leverage GPU
to accelerate FPGA routing efficiently.

7 CONCLUSION AND FUTURE WORK

In this paper, we explore GPU-accelerated routing for FPGAs.
We first use the approach of subgraph dynamic expansion
to obtain convergent routing results with a reduced problem
size. This approach enables the efficient application of
the GPU-friendly Bellman-Ford algorithm to replace the
Dijkstra’s algorithm in PathFinder. We empirically observe
that for most nets, the bounding box of the final routing tree is
only slightly larger than the bounding box of the net pins so
thatwe can estimate the routing subgraphs formost nets effec-
tively. The process of dynamic expansion is also helpful to
obtain a routing subgraph with sufficient routing resources
for the exceptional cases. We then perform systematic experi-
ments and comparisons among different GPU accelerations of
the Bellman-Ford algorithm, including the SNP, the DNP, and
the DEP approaches. We point out that we can combine the
static SNP and dynamic DEP methods for a greater speedup
and exploit the multi-net parallelism, where we achieve an
average of 21:53� speedup on GPU. Although our approach
increases the wirelength and critical path delay by about 2.73
and 1.68 percent respectively, it is still meaningful for fast
design iterations and the design of FPGA-based accelerators.

In this paper, We demonstrate the effectiveness of GPU
acceleration for FPGA routing. Specifically, the subgraph
dynamic expansion is also applicable to the problem size
reduction for other shortest path algorithms. In the future, our
work can be enhanced in multiple ways, including 1) using
multipleGPUs for further acceleration, 2) improving the accu-
racy of the subgraph estimation (e.g., a congestion-aware esti-
mation) in the initial coverage, 3) exploring the techniques to
extract independent nets for the acceleration ofmulti-net rout-
ing onGPU, and 4) leveraging similar ideas to explore the par-
allelization techniques for an FPGA-accelerated FPGA router.
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