
GPLM: An 802.11ac-Capable Low-MAC
Architecture for FPGA-based SDR Systems

Boyan Ding, Jun Liu, Haoyang Wu and Tao Wang
Peking University, Beijing, China

Email: {dboyan,juneliu,wuhaoyang,wangtao}@pku.edu.cn

Abstract—802.11 is a widely-used wireless communication
standard today and is still under constant evolution. Two major
enhancements of the standard, 802.11n and 802.11ac, boost the
performance and quality of service, with the former getting
support in nearly all commercial devices today and the latter
gaining prevalence. However, there is currently no software-
defined radio (SDR) system that is capable to support the whole
802.11ac protocol stack, especially the MAC layer, in real-time,
limiting research and testing on these latest innovations. This
paper presents GPLM, a Low-MAC architectural design for
FPGA-based SDR systems that supports 802.11ac. We identify
challenges imposed by new features in 802.11ac MAC layer, and
make careful architectural choices to ensure both standard com-
pliance and flexibility. The design and implementation of critical
modules and the employment of software hardware co-design are
detailed in this paper. Paired up with an existing work on the
PHY layer implementation of 802.11ac, the implementation of
GPLM is validated from various aspects.

Index Terms—802.11, SDR, MAC, FPGA

I. INTRODUCTION

Software-defined radio (SDR) provides users with flexible
and configurable developing platform for wireless communi-
cation, upon which protocols and algorithms, either existing
or new, can be prototyped and tested. A number of SDR
platforms [1]–[5] are available for different needs, and many
of them support IEEE 802.11 [6], one of the most commonly-
used wireless communication standards today.

The increasing need for wireless communication speed and
quality elicits several extensions to the original standard, with
the most notable ones being 802.11n and 802.11ac. The former
extension, published in 2009, greatly boosted the performance
compared with original 802.11a/b/g, and is supported in nearly
every commercial device today. While the latter 2013 exten-
sion improves even further, also gradually gaining prevalence.
However, the development of SDR platforms doesn’t quite
catch up with the pace of the continuously evolving 802.11
standard. Although there have been works [7], [8] to support
802.11n/ac’s physical layer in real time, works concerned with
802.11n/ac MAC, such as [9], [10], are still limited to software
simulation. This not only limits the research in MAC itself, but
also cripples the testing of PHY layer since a full-feature and
real-time MAC is indispensable to providing a real workload
to the physical layer.

The difficulty for real-time MAC layer in SDR platforms
to catch up with the evolution of 802.11n/ac mainly comes
from the following aspects. First, real-time implementation of
MAC layer requires hardware acceleration, which has a harder

development process than pure software. More importantly, the
nature of MAC layer processing causes difficulty in hardware
MAC development. The MAC layer contains complex control
flow as dipicted in Fig. 1. More often than not, one single
functional change in the MAC layer may affect the design of
multiple modules. Finally, 802.11n/ac introduces changes that
greatly affect framing procedure, invalidating many previous
designs that are feasible to 802.11a/g.

In this paper we propose GPLM, an architectural design
of real-time MAC layer for SDR systems that supports new
features in 802.11ac. The design is based on analysis on
new features of 802.11ac MAC protocol. Besides supporting
802.11ac, GPLM also takes flexibilty and easiness of program-
ming into account. FPGA is chosen as the implementation
platform for its wide use in SDR, and we have integrated our
implementation with physical layer of existing work [8].

Our contributions in this paper can be summerized as:
• We analyze 802.11n/ac MAC protocols and identify the

challenges they impose on MAC SDR design;
• We propose GPLM, an FPGA based Low-MAC architec-

ture that can support 802.11ac MAC in real time. In our
knowledge, this is the first SDR MAC design to really
support the mandatory features in 802.11n/ac;

• We implement GPLM and integrate it with an existing
802.11ac PHY implementation [8], validating the design
and testing the performance.

The remainder of this paper is organized as follows: Sec-
tion II provides a detailed analysis of the new features in
802.11ac MAC and the challenge they impose. The design
and implementation are presented in Section III and IV re-
spectively. Section V evaluates GPLM from various aspects.
Related works are discussed in Section VI. Finally, Section VII
concludes this paper.

II. AN ANALYSIS OF 802.11AC MAC PROTOCOL

A. MAC extensions introduced in 802.11ac

We mainly focus on features that are critical to the per-
formance of 802.11ac. 802.11n is also taken into account for
backward compatibility. The main extensions introduced in
802.11n/ac include:

• QoS extension. Although not strictly part of either
802.11n/ac, it provides some fundamental basis for them,
including prioritized categories (AC) for medium access
and block acknowledgment (Block Ack).

2019 IEEE Wireless Communications and Networking Conference (WCNC)

978-1-5386-7646-2/19/$31.00 ©2019 IEEE

Tx_Coordination

Data_Pump

Backoff

Channel_State Validate_MPDU

Filter_MPDU

Rx_Coordination
ACK/RTS

NAV

IFS

Tx (From

High-MAC)

Tx (To PHY) Rx (From PHY)

Rx (To High-

MAC)

Backoff

Control

Slot Signal

CCA (From PHY)

Fig. 1. Low-MAC functional diagram

• HT extension. Two frame aggregation schemes, A-MSDU
and A-MPDU, are introduced in 802.11n. They enable
longer frames in physical layer to make better use of its
higher throughput. A-MSDU groups frame early in MAC
processing, while A-MPDU aggregates frames before
they enter physical layer. The latter is more frequently
used and requires Block Ack to function.

• VHT extension. It provides enhancements based on HT
extensions to adapt to longer aggregated frames and MU-
MIMO in 802.11ac. The format of A-MPDU delimiter is
also changed.

New features included in these extensions have to be
supported in 802.11ac-capable SDR MAC layers. While some
of them only need little change in hardware, others require
more effort, posing challenges on MAC layer design.

B. MAC model of SDR systems

Before listing challenges of 802.11n/ac features on SDR
MAC, we first discuss the MAC model of SDR systems and
how the above features map into the model.

Most MAC layer implementations of SDR system follow
the model of commercial WLAN NIC and can be devided
into two parts [11]: High-MAC (Upper MAC) that handles
high-level data and management (MLME) services and Low-
MAC (Lower MAC) that is responsible for timing-critical
protocol control and low-level transmission and rececption.
Fig. 2 depicts this division.

Of the two parts, the Low-MAC is more important and
challenging in SDR architecture. This is because Low-MAC
needs hardware acceleration and requires more design and
implementation effort. While its counterpart, the High-MAC is
often implemented in pure software, since it is less demanding
in timing and loosely-coupled with Low-MAC.

In typical SDR MAC implementations with 802.11a/g sup-
port, functions that should be implemented in Low-MAC
include: 1) Timing functions: clear channel assessment (CCA)
and backoff; 2) Control frame (ACK and RTS/CTS) genera-
tion; 3) Frame transmission and reception, including frame
check sequence (CRC32) appending and checking. Besides
above, frame retransmission is often implemented in Low-
MAC to improve performance.

Among the new features of 802.11ac, some features can
be easily implemented in High-MAC. While others impacts
greatly on the Low-MAC architecture. Take the two frame

MAC Data Service

MPDU Generation MLME

MAC Management

Service

Protocol Control

Transmission Reception

High-MAC

Low-MAC

MAC_SAP MLME_SAP

PHY_SAP_TX PHY_SAP_RXPLME_MLME_SAP

Fig. 2. The model of SDR MAC

aggregation schemes: A-MSDU and A-MPDU (Fig. 3) as an
example. In the former form, aggregated frames are encapsu-
lated in a single MAC header and is considered a single frame
in 802.11 MAC processing. So aggregation can take place in
High-MAC, and is often implemented this way. A-MPDU, on
the other hand, is quite the opposite. The frames (MPDUs) are
aggregated after all processing of traditional 802.11 MAC,
and are treated as individual frames in the receiver’s MAC
layer. Thus, paired up with Block ACK, which reports the
status of individual A-MPDU subframes, A-MPDU mandates
a hardware Low-MAC implementation.

C. Challenges of 802.11n/ac features on SDR MAC

As mentioned before, the challenges of 802.11n/ac mainly
come from the introduction of A-MPDU and Block Ack, and
can be summerized as follows:

• Complexity of A-MPDU. A-MPDU makes data-
processing of 802.11 MAC considerably more complex.
In addition to appending CRC32 checksum, frames are
grouped and separated with 4-octet A-MPDU delimiters,
involving quite a few details such as zero-padding
between frames. Greater throughput of 802.11ac also
sets a higher performance requirement for real-time
processing of A-MPDU. Without these in mind, previous
architectures can hardly meet either the functional or the
performance requirement.

• Data manipulation in Block Ack and other features. In
the original 802.11a/g MAC, frames generated in Low-
MAC (ACK, RTS/CTS) have mostly fixed format except
MAC address field, so most previous solutions use fixed-
function modules to generate these frames. In 802.11ac,
more kinds of frames with a greater degree of variance
are generated from Low-MAC, with Block ACK being a
notable example. Thus, the old way is no longer viable in
802.11ac and a more generic means of frame generation
should be devised in the new architecture.

• Retaining programmability. The purpose of SDR is to
facilitate prototyping and testing, so programmability
is always a primary goal. There are two aspects of
programmability here: less developing effort and easier
customization. However, previous functional and perfor-
mance requirements often tend to make design complex

2019 IEEE Wireless Communications and Networking Conference (WCNC)

DA SA Length MSDU Pad

6 6 2 variable 0~3

Subframe Header

Subframe 1 Subframe 2 … Subframe N

MAC Header A-MSDU FCS

Subframe 1 Subframe 2 … Subframe N

delimiter MPDU (original MAC frame) Pad

4 variable 0~3Bytes:

Signature, length,

checksum

A-MPDU

Fig. 3. Comparison of aggregation schemes: A-MSDU and A-MPDU

and fixed-function, hurting programmabilty. So retaining
reasonable programmability under such requirements is
not a trivial task and requires careful design.

Any Low-MAC implementation for SDR systems that sup-
ports 802.11ac should settle these challenges in its design and
implementation. Our approaches to these challenges will be
discussed in the following two sections.

III. DESIGN OF GPLM

In order to properly address the challenges stated above,
several design choices are carefully made, constituting the
highlight of GPLM design. The complexity of A-MPDU
is tackled with descriptor FIFO design and HLS written
processing module; a versatile memory architecture ensures
the feasibility of Block ACK and other data manipulation;
a high degree of programmabilty is achieved with SW/HW
co-design techniques including the employment of processor-
accelerator architecture and HLS. Details of the design and
implementation are discussed in this and the following section.

A. Overall Architecture

The Low-MAC of GPLM consists of a microprocessor
(MCU) and several custom accelerators implemented with
programmable logic as peripherials. The microprocessor is
responsible for general control flow operations and config-
urations, running real-time operating system (RTOS). While
accelerators implement individual logics that require high
throughput (framing/deframing), low latency (carrier sensing)
or implement specialized functions that are not feasible for the
microprocessor. The architecture is shown in Fig. 4.

The approach GPLM adopts is an example of HW/SW
co-design, effectively combining the versatility of software
and the efficiency of programmable logic. Users only need
to tend to the hardware design flow when customizing those
specialized logic. While at other times, only adaptation in
software is necessary.

This approach also enables modular design. Logics that have
to be implemented as hardware are divided into independent
modules. Each hardware module is wrapped with standard
interfacing logic, with most control interfaces exposed as
memory-mapped registers on AXI4 bus [12] and streaming
data intefaces implemented with AXI-Stream or FIFO, all
of which are standard and widely-used interfaces. Besides
Verilog, we also support high-level synthesis (HLS) in the
development of modules (section IV-B). These efforts simplify

MCU AXI bus

Backoff

Host

interface
Tx RAM

Tx AMPDU

(HLS)

Rx AMPDU

(HLS)

Host

interface

PHY

interface
Timer

RF

interface

Host

RF

PHY

Host

PHY

PHY
Rx RAM

DMA

DMA

DMA

Engine

Fig. 4. GPLM’s Low-MAC architecture

hardware development for Low-MAC by providing a standard
framework for accelerator logic and interfaces. Users can
develop or debug any accelerator independently with ease.

According to their functions, peripherial modules in Fig. 4
can be divided into the following categories: interface modules
that provide connection with other components (i.e., host
PC, PHY, RF) to form a complete SDR system; control
modules that are responsible for Low-MAC control logics;
memory subsystem that holds the frame data in Low-MAC;
and A-MPDU processing modules that handle aggregation.
Among these, the memory subsystem and A-MPDU processing
modules stand out in GPLM because they play important roles
in solving the challenges discussed in Section II and require
novel design. The design of memory subsystem modules are
detailed in the following subsections.

B. Memory Subsystem

GPLM’s memory subsystem consists of two parts that are
similar in structure, one for transmission, and the other for
reception. Fig. 5 depicts the architecture of either part of the
memory subsystem. The following discussion in this section
applies to both Tx and Rx part unless explicitly specified.

Either part of the memory subsystem contains a dual-port
random access memory (RAM) used to hold frame data. The
main reason to use RAM instead of other memory primitives,
such as FIFO, is the consideration of programmability. RAM
provides easier and more flexible ways to manage and manip-
ulate frame data, which is crucial to generation of Block ACK
and other custom frames.

The flexibilty is further ensured by arrangements of the
ports. One port of the RAM is connected to the AXI bus
with an adaptor IP, which means both host interface and
microprocessor can easily access frame data through this port.

2019 IEEE Wireless Communications and Networking Conference (WCNC)

Frame RAM AMPDU
gen/parse

BRAM FIFO PHY
Tx/Rx

Frontend Backend

AXI Bus

MCU

DMAEPEE

Fig. 5. Memory subsystem of GPLM’s Low-MAC

Tx RAM

BRAM
interface

A-MPDU
Tx

AXI FIFO

To
PHY

Descriptor
FIFO

MCU

AXI Register
Interface

①

②

③

④

Fig. 6. Tx A-MPDU Processing

Normal frame data are transferred between RAM and host
interface module (a wrapper around PCIe, USB or Ethernet IP
that provides host access) through a DMA engine, which guar-
antees high throughput with little microprocessor interaction.
Meanwhile, the microprocessor can access frame data in the
same manner as accessing normal memory. Thus generating
Block ACK or other custom frames are as easy as writing
to main memory. The other port is provided exclusively for
A-MPDU generation or parsing modules in the Tx or Rx side.

An extra bonus of this memory subsystem design is the
extensive usage of common IP provided by FPGA design tools.
Except host interface and A-MPDU processing modules, all
other components in Fig. 5 can be found in IP repository in
tools such as Vivado [13]. This substantially reduces develop-
ing effort of GPLM.

C. A-MPDU Processing

The complexity of A-MPDU in 802.11ac comes from the
fact that frames are aggregated after all other MAC layer
processing in the transmitter and should be deaggregated and
processed individually in the receiver. Thus both process must
happen in real time in Low-MAC. Moreover, various details
and backward compatibility with legacy 802.11 or 802.11n
have to be taken into account.

Our solution to this complexity is to define an A-MPDU
descriptor queue as the control interface between the micro-
processor and A-MPDU processing module. A legacy or A-
MPDU frame can be represented as one or more A-MPDU
descriptor(s) where one descriptor represents a legacy frame
or a A-MPDU subframe. The A-MPDU descriptor queue can
be implemented with the AXI-Stream FIFO IP.

In the transmitter, after deciding what MPDUs are aggre-
gated, the microprocessor writes a set of A-MPDU descriptor
into the descriptor queue. The A-MPDU generation module
reads descriptors from the queue and fetch frame data from Tx
RAM to aggregate frames. The aggregated frame is then sent
to physical layer for transmission. This process is shown in
Fig. 6. The A-MPDU deaggregation module in the receiver, on

Listing 1
SIMPLIFIED HLS SOURCE OF TX A-MPDU MODULE

void tx_ampdu_gen(
hls::stream<txdescdata_t> &desc_din,
data_t tx_ram[TXBUFFER_DEPTH],
hls::stream<txfifo_t> &dout)

{
txdescdata_t desc_data;
txdesc_t desc;
addr_t addr;
do {

desc_din >> desc_data;
parse_tx_desc(desc_data, desc);
addr = desc.addr;
if (desc.ampdu)

dout << mpdu_delim(desc);
for (int i = 0; i + 3 < desc.flen; i += 4){

dout << tx_ram[addr++];
// ... CRC calculation here

}
output_tail_crc();
for (int i = 0; i < desc.padcnt; i++)

dout << empty_mpdu_delim();
} while (!desc.last_mpdu);

}

the other hand, reads received frame data from physical layer
and deaggregates A-MPDU into single MPDUs, checking the
validity of each subframe in the process. The content of
MPDUs is written into the Rx data RAM while descriptors
is written in the descriptor queue. The microprocessor further
processes the received frames accroding to the descriptors.

IV. IMPLEMENTATION OF GPLM

A. Platform and Dependencies

We implement GPLM on Xilinx 7-series FPGA. Currently
VC707 and ZC706 evaluation boards are supported. The ARM
processor core is used on ZC707 (Zynq) platform, and we use
Microblaze IP as the microprocessor on VC707.

Besides utilizing IPs provided by Vivado design tool men-
tioned in Section III, we also use an updated version of
EPEE [14] in the host communication interface module, pro-
viding PCIe or USB 3.0 interface with the host PC.

Physical layer and RF frontend are also needed to form
a complete SDR platform. We integrate the works from [8]
and [4] into our system for 802.11ac and 802.11a/g support
respectively. They are used in the evaluation in Section V.

B. HLS-based A-MPDU Processing

It is previously mentioned that A-MPDU processing in
802.11ac is complicated and constitutes one of the challenges
in Low-MAC design and implementation. While the design
of A-MPDU processing modules is discussed in Section III,
its implementation is still not easy. In implementing A-
MPDU processing modules, we take advantage of High-
Level Synthesis (HLS) to convert algorithmic description of
the modules in C++ into HDL design. We found that HLS
can meet our requirements in resource and efficiency and
greatly reduce the programming effort in A-MPDU processing
modules compared with traditional HDL such as Verilog.

2019 IEEE Wireless Communications and Networking Conference (WCNC)

TABLE I
RESOURCE UTILIZATION OF 802.11AC SYSTEM

Versions LoC
Resource Throughput

(100MHz clock)LUT FF
Verilog 802.11a/g 377 340 193 0.8Gbps

HLS 802.11a/g 141 462 325 0.8Gbps
HLS 802.11ac 238 669 532 1.6Gbps

1) Difference between HLS and HDL: When designing
hardware modules with HDL, developers should design the
timing, state machine, interface logic besides the intended
functionality of the module. The source code is often long
and complex with all of the above mixed together. In HLS,
however, the source code contains only algorithmic description
of the module. The HLS compiler, on the other hand, takes
the responsibility of resolving other details. Although HLS is
not suitable for all hardware design problems and might lead
to suboptimal design, it is an ideal choice for the case of A-
MPDU processing module.

2) A-MPDU Processing in HLS: Take the Tx A-MPDU
generation module as an example. A simplified version of the
source code for this module is shown in Listing 1.

The arguments of tx_ampdu_gen correspond with the
interfaces of the A-MPDU generation module and the function
body describes its logic. This plain C++ code is enough
to produce logically correct A-MPDU processing module,
however, some tuning is needed to ensure ideal performance.
For example, by applying “pipeline” directive on the CRC
calculation loop, the performance can increase by nearly 33%.

3) Analysis on HLS: To evaluate the effect HLS brings to
the development of A-MPDU processing module, we made a
comparison among three implementations using either tradi-
tional Verilog or HLS, shown in Table I.

The third row represents the HLS implementation of A-
MPDU processing module in the transmitter. Due to the lack
of Verilog implementation of A-MPDU processing module,
we choose its corresponding module in 802.11a/g—the check-
sum appending module from [4], which is much simpler in
functionality. We also reimplement an equivalent of the latter
module in HLS to ease comparison.

As is indicated in the table, two HLS implementations need
considerably less lines of code, even for more functionally
complex 802.11ac modules. The difference between the two
HLS modules lies in more complicated A-MPDU processing
logic and more efficient checksum calculation, which doubles
the throughput to fit 802.11ac better. The downside of HLS is
that it takes more FPGA resources (LUT and FF in Table I).
But considering the convenience it brings to development, the
moderate increase in resource consumption is acceptable.

C. Microprocessor Control
The control program that is executed on GPLM’s micropro-

cessor core (Microblaze or ARM) is responsible for the general
control flow and the configuration of Low-MAC. The control
of Low-MAC consists of several individual execution flows
(Tx, Rx, Backoff, etc.) and each of them has rigid requirement
on timing.

system intialization

Dispatcher task:
evaulate activa-
tion condition

Any activation
condition is met?

Activate corre-
sponding task

Execute task

YN

Fig. 7. Task dispatch on MCU

TABLE II
RESOURCE UTILIZATION OF GPLM ON VC707

Resource
GPLM Full 802.11ac

Util % Util %
LUT 46742 15.40 141703 46.67

LUTRAM 3408 2.61 4425 3.38
FF 45910 7.56 164818 27.14

BRAM 158 15.34 322 31.26
DSP 4 0.14 264 9.43

To meet the requirement in timing while maintaining a clear
program structure to facilitate customization. GPLM utilizes
FreeRTOS [15], an open-source real-time operating system.
Each control flow is divided into one or more FreeRTOS tasks
which implement a part of the control flow without sleep or
polling with dead loop. Each task also has an “activation
condition” to judge whether the task is ready to run. A
low-priority dispatcher task evaluates the tasks’ activation
condition and activate the corresponding task when condition
is met. This procedure is depicted in Fig. 7.

V. EVALUATION

A. Experiment Setup

We use Xilinx VC707 evaluation board as our FPGA
platform on which GPLM and corresponding physical layer
are built. The design is built with Vivado Design Suite 2016.4,
including the high-level synthesis (HLS) compiler and the
software development environment (SDK). Ubuntu 16.04 is
used on both development and experiment PCs. The host PC
and FPGA are connected with USB 3.0 connection provided
by EPEE communication library. We use ADRV9371 as RF
front-end, which, coupled with physical layer of Tick, provides
80MHz 802.11ac PHY implementation.

B. Resource Utilization

Table II lists the resource consumption of the standalone
GPLM project and a complete 802.11ac system with physical
layer from Tick and RF. The names in the first column,
including LUT (look up table), FF (flip-flop), etc., stand for
various kinds of logical resource on FPGA.

According to the tables, GPLM has a modest consumption
of FPGA resources, only occupying a small fraction compared
with the 802.11ac physical layer in Tick. This ensures enough
space for physical layer implementations and/or other appli-
cations on FPGA.

2019 IEEE Wireless Communications and Networking Conference (WCNC)

TABLE III
ACK LATENCY OF GPLM SYSTEM

GPLM
(ACK)

GPLM
(Block ACK)

Original Tick
(ACK)

Latency (µs) 20.96 21.45 19.70

C. Functional and Performance Evaluation

1) Functional Verification: Multiple levels of verification
were made on the system design. Core functional modules,
such as A-MPDU processing module, went through functional
simulation to ensure correct behavior. Then a Low-MAC
system project were built with a loopback physical layer for
overall functional testing of the whole MAC layer. Finally, we
integrated the Tick’s 802.11ac physical layer into the GPLM
project and verify the design with live communication in the
air. The final version of the GPLM project passed functional
verifications and can support both the legacy 802.11a/g and
the newer 802.11n/ac.

2) Latency: We use the interval between a data frame and
its corresponding ACK by the GPLM+Tick to evaluate the
processing latency of GPLM platform. The time interval is
measured from the RF trace data of a third Tick system.
Table III lists the ACK latency of the new 802.11ac system.
The latency of the original Tick [8] is also listed as a reference.

According to the table, the latency of legacy ACK of GPLM
increased by 1.26µs compared to the original MAC. But
GPLM has its own advantages: 1) It supports A-MPDU and
Block ACK in 802.11n/ac, which the original system cannot.
2) Compared to the original system, more components in Low-
MAC processing can be done software, such as ACK frame
format, making the system configurable.

We also measured the ACK latency of commercial WiFi
NICs. Traces are collected with Intel’s IWL7265 card on Linux
in monitor mode and analysed with Wireshark. The average
legacy ACK latency is 18.8µs, while the average Block ACK
latency is 23.3µs. Thus the ACK latency is generally on the
same level of commercial products.

3) Throughput: We tested the communication throughput
of GPLM with Tick’s 802.11ac physical layer under various
conditions. All tests uses the MCS6 (64-QAM, 3/4 coding rate)
coding scheme because it achieves the best balance between
coding effectiveness and robustness (The limitation of PHY
decoding of Tick [8] causes performance degradation in higher
MCSs). The throughput data are all measured in Mbps.

Table IV and V list the measured throughputs of legacy
frame and A-MPDU frame transmission respectively. A com-
parison with Intel IWL7265 NIC is listed in Table VI.

As can be seen in Table IV, in legacy transmission, the
throughput increases significantly as the data frame becomes
longer. Nevertheless, the effiency of the longest frame is still
a small fraction of the 263.3Mbps theoratical value. This is
caused by the overhead of 802.11ac communication.

The protocol overhead includes preambles, inter-frame
spaces (IFS), ACK frames, etc. With the advance of 802.11
protocols, the time used for data transmission drastically
decreases. For a normal frame transmission, the overhead can

TABLE IV
THROUGHPUT OF LEGACY FRAME TRANSMISSION

Frame length (bytes) 1000 1500 2000 3000 4000

Throughput (Mbps) 18.98 24.21 34.68 48.58 58.30

Theoratical % 7.2 9.2 13.2 18.4 22.1

TABLE V
THROUGHPUT OF A-MPDU FRAME TRANSMISSION

MPDU length
aggr. size

x3 x4 x5

1000 35.93 39.32 42.81
2000 59.68 74.78 84.11
4000 91.26 121.93 120.60

TABLE VI
THROUGHPUT OF LEGACY FRAME TRANSMISSION

Real (Mbps) Theoretical (Mbps) Efficiency
GPLM legacy 58.3 263.3 22.1%

GPLM A-MPDU 121.93 263.3 46.3%

Intel NIC 222.31 360.0 61.8%

be hundreds of microseconds. Meanwhile, in 802.11ac with
80MHz bandwidth, the data duration of a 1500 byte (the
common ethernet length) frame in MCS6 modulation is only
48 microseconds. So only a small fraction of air time is used
transmit the actual data. Thus, aggregation, which can increase
the amount of data in a single frame by merging several frame
into one, becomes important in 802.11n/ac to unleash the full
potential of high-speed physical layer.

Whereas in Table V, although at the same frame length,
the A-MPDU transmission performance isn’t as great as that
of legacy transmission caused by the overhead of fragmented
data exchange between host PC and FPGA (solving this will
be our future work), we still get impressive performance boost
when frame and aggregation length get larger. The last 4000x5
case is an exception, in which the frame is too long and the
variation of channel lower the chance of successful decoding,
offseting the improvements in longer frames.

As for the data in Table VI. The IWL7265 was connected
to a 40MHz band 2x2 MIMO 802.11ac WiFi network (so
the throughput would be nearer to our situation). And the
throughput was obtained from iperf3 UDP test. The Intel NIC
gets nearly double throughput than GPLM+Tick. There are
mainly two reasons contributing to the phenomenon. The first
reason is that the decoding performance of Intel NIC is much
better than Tick’s physical layer, and it can successfully use
MCS9 modulation scheme, with a much higher theoratical
throughput compared with MCS6 used in our system. And this
is outside the scope of MAC layer. While GPLM’s MAC layer
is designed for SDR programming so it is normal to be less
efficient than commercial NIC. Taking these two reasons into
account, the performance of GPLM+Tick can be considered
reasonable and there is still space for improvement.

VI. RELATED WORKS

SDR platforms. Recent years have witnessed the emerge of
several SDR platforms with different characteristics and use-

2019 IEEE Wireless Communications and Networking Conference (WCNC)

cases. They can be divided into two types: pure software and
hardware-accelerated.

Pure software implementations focus on programmability
and are mostly used in simulation or low-speed testing due
to limitation in throughput and latency, GNU Radio [1] is a
typical example. Sora [3] uses SIMD instructions to accelerate
802.11a/g’s PHY layer computation. However, the latency be-
tween CPU and device still makes real time MAC impossible.

Other works, including [2], [4], [5], [8], take advantage of
hardware accelerators, mostly FPGA, and have the potential
to realize real-time communication. However, none of them
fully supports 802.11n/ac. WARP [2] and Tick [8] claim to
have support for 802.11n and 802.11ac respectively. But their
focuses are mainly in the physical layer and both lack the
features, even mandated ones, of 802.11n/ac.

Independent works on SDR MAC. There also exist works
that focus on SDR MAC implementation. [11] leverages the
reverse-engineered MAC processor of Broadcom NIC and
explores its programmability. It is able to support TDMA
instead of the original CSMA/CA in 802.11. [16] is a SystemC
implementation of MAC layer that highlights low latency
and low jitter for industrial use. THUMP [17] uses compiler
technique to convert a custom meta-language to MAC design
on WARP [2]. These works are all based on 802.11a/g model
and none of them supports the new features of 802.11n/ac.

Studies on 802.11n/ac MAC. Due to the lack of real
time SDR support of the 802.11n/ac MAC, studies on these
protocols are conducted on commercial product or offline
simulation. [9] builds a software simulation model that sup-
ports both frame aggregation (A-MPDU and A-MSDU) and
block acknowledgment as mandated in 802.11n. Studies on
802.11n/ac MAC mainly focus on the performance impact in-
troduced by new extensions. [18] and [10] studies the influence
of frame aggregation in 802.11n and 802.11ac respectively.
However, due to their simulation nature, how their results
match real-world situations can’t be guaranteed.

VII. CONCLUSION

Wireless protocols such as 802.11 are constantly evolving,
with the recent 802.11ac gaining prevalance. However, the de-
velopment of SDR platforms doesn’t quite catch up, especially
in the case real-time MAC layer implementation.

The work presented in this paper, GPLM, offers a archi-
tectural solution for 802.11ac MAC layer support for FPGA-
based SDR systems. In designing GPLM, the challenges
of 802.11ac MAC support are identified, namely A-MPDU
support, flexible data manipulation and programmability. To
solve these challenges, GPLM proposes various architectural
designs, including the microprocessor and accelerator archi-
tecture, the organization of memory subsystem and descriptor
queue as control interface to A-MPDU processing modules.
HLS and RTOS-based microprocessor control framework are
also employed to ease programming in GPLM’s implementa-
tion. We make resource and functional evaluations on GPLM,
integrating it with existing SDR physical layers that supports
802.11a/g or 802.11ac.

ACKNOWLEDGMENT

The work is funded by National Key Research and
Development Plan of China (2017YFB0801702) and key
research project of National Natural Science Foundation
(No. 61531004).

REFERENCES

[1] E. Blossom, “GNU radio: tools for exploring the radio frequency
spectrum,” Linux journal, vol. 2004, no. 122, p. 4, 2004.

[2] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and E. W.
Knightly, “WARP: a flexible platform for clean-slate wireless medium
access protocol design,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 12, no. 1, pp. 56–58, 2008.

[3] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker,
“Sora: high-performance software radio using general-purpose multi-
core processors,” Communications of the ACM, vol. 54, no. 1, pp. 99–
107, 2011.

[4] T. Wang, G. Sun, J. Chen, J. Gong, H. Wu, X. Li, S. Lu, and J. Cong,
“GRT: a reconfigurable SDR platform with high performance and
usability,” ACM SIGARCH Computer Architecture News, vol. 42, no. 4,
pp. 51–56, 2014.

[5] J. Zhang, X. Zhang, P. Kulkarni, and P. Ramanathan, “OpenMili: a
60 GHz software radio platform with a reconfigurable phased-array
antenna,” in Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking. ACM, 2016, pp. 162–175.

[6] IEEE Standards Association and others, “802.11-2012-IEEE Standard
for Information technology–Telecommunications and information ex-
change between systems Local and metropolitan area networks–Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications,” IEEE Std, vol. 802, 2012.

[7] J. Declerck, P. Raghavan, F. Naessens, T. Vander Aa, L. Hollevoet,
A. Dejonghe, and L. Van der Perre, “SDR platform for 802.11n and
3-GPP LTE,” in 2010 International Conference on Embedded Computer
Systems (SAMOS). IEEE, 2010, pp. 318–323.

[8] H. Wu, T. Wang, Z. Yuan, C. Peng, Z. Li, Z. Tan, B. Ding, X. Li,
Y. Li, J. Liu et al., “The Tick programmable low-latency SDR system,”
in Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. ACM, 2017, pp. 101–113.

[9] H. Loeb and C. Sauer, “A modular reference application for IEEE
802.11n wireless LAN MACs,” in IEEE International Conference on
Communications. IEEE, 2009, pp. 1–5.

[10] B. Bellalta, J. Barcelo, D. Staehle, A. Vinel, and M. Oliver, “On
the performance of packet aggregation in IEEE 802.11ac MU-MIMO
WLANs,” IEEE Communications Letters, vol. 16, no. 10, pp. 1588–
1591, 2012.

[11] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless mac processors: Programming mac protocols on
commodity hardware,” in Proceedings of IEEE INFOCOM. IEEE,
2012, pp. 1269–1277.

[12] “AMBA Specifications – ARM,” https://www.arm.com/products/silicon-
ip-system/embedded-system-design/amba-specifications.

[13] “Vivado Design Suite,” https://www.xilinx.com/products/design-tools/
vivado.html.

[14] J. Gong, T. Wang, J. Chen, H. Wu, F. Ye, S. Lu, and J. Cong,
“An efficient and flexible host-FPGA PCIe communication library,”
in 24th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2014, pp. 1–6.

[15] R. Barry, “FreeRTOS-a free RTOS for small embedded real time
systems,” 2006.

[16] K. Tittelbach-Helmrich and Z. Stamenkovic, “Hardware implementation
of a medium access control layer for industrial wireless LAN,” in IEEE
19th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS). IEEE, 2016, pp. 1–6.

[17] X. Zhang, J. Ansari, G. Yang, and P. Mähönen, “Trump: Efficient and
flexible realization of medium access control protocols for wireless
networks,” IEEE Transactions on Mobile Computing, vol. 15, no. 10,
pp. 2614–2626, 2016.

[18] D. Skordoulis, Q. Ni, H.-H. Chen, A. P. Stephens, C. Liu, and A. Ja-
malipour, “IEEE 802.11n MAC frame aggregation mechanisms for next-
generation high-throughput WLANs,” IEEE Wireless Communications,
vol. 15, no. 1, 2008.

2019 IEEE Wireless Communications and Networking Conference (WCNC)

