
EEPC: A Framework for Energy-Efficient
Parallel Control of Connected Cars

Minghua Shen ,Member, IEEE, Guojie Luo ,Member, IEEE, and Nong Xiao, Senior Member, IEEE

Abstract—With the advanced communication sensors are deployed into the modern connected vehicles (CVs), large amounts of

traffic information can be collected in real-time, which gives the chance to explore the various techniques to control the routing of CVs in

a ground traffic network. However, the control of CVs often suffers from energy inefficiency due to the constant changes of network

capacity and traffic demand. In this paper, we propose a cost-based iterative framework, named EEPC, to explore the energy-efficient

parallel control of connected vehicles. EEPC enables the control of CVs to iteratively generate a feasible solution, where the control of

each vehicle is guided in an energy-efficient way routing on its own trajectory. EEPC eliminates the conflicts between CVs with a limited

number of iterations and in each iteration, EEPC enables each vehicle to coordinate with other vehicles for a same road resource of the

traffic network, further determining which vehicle needs the resource most. Note that at each iteration, the imposed cost is updated to

guide the coordination between CVs while the energy is always used to guide the control of CVs in EEPC. In addition, we also explore

the parallel control of CVs to improve the real-time performance of EEPC. We provide two parallel approaches, one is fine grain and the

other is coarse grain. The fine grain performs the parallel control of single-vehicle routing while the coarse grain performs the parallel

control of multi-vehicle routing. Note that fine grain adopts multi-threading techniques and coarse grain adopts MPI techniques. The

simulation results show that the proposed EEPC can generate a feasible control solution. Notably, we also demonstrate that the

generated solution is effective in eliminating the resource conflicts between CVs and in suggesting an energy-efficient route to each

vehicle. To the best of our knowledge, this is the first work to explore energy-efficient parallel control of CVs.

Index Terms—Cyber-physical system applications, connected vehicles, control and parallel control, energy-efficient control, real-time control

Ç

1 INTRODUCTION AND MOTIVATION

WITH the recent advances in electronics, sensors, and
communication techniques are increasingly deployed

in connected vehicles (CVs), modern transportation control
systems have made significant progress during the past
decade. Specifically, these advances have the ability to
make it probable for CVs to apperceive their environments
and to communicate with each other, further having more
chances to perform the safe and efficient control of CVs.
Moreover there are many companies and academic institu-
tions have also started experimenting with modern CVs on
intelligent transportation systems. While research on
energy-efficient driving techniques, such as eco-driving, has
already witnessed numerous efforts [1], it is still a challenge
to design an autonomous control system, where each vehi-
cle can coordinate with other vehicles so that the driving of

each vehicle on a road network is the energy-efficient route
with a safety guarantee.

The modern autonomous transportation control systems
in metropolitan areas generally involve several phases as
follows. First, users send their requests through the clients
installed in their vehicles to the cloud servers. These req-
uests, also called orders, mainly include the current locations
and destinations. After receiving these orders, the control
system running on the cloud servers will calculate and gen-
erate a feasible solution based on current network status and
traffic demand in a holistic environment. And at meanwhile,
the corresponding trajectory path of each vehicle will be
published through wireless networks. With the changes in
network status, the control system will update the current
solution in real-time for vehicle safety and transportation
efficiency. Although such control system has provided great
convenience for vehicle driving, it still exists some non-
negligible shortcomings. For instance, the choices are not
always themost energy-efficient ones.

It is non-trivial to estimate the energy consumption of
each vehicle in autonomous control systems [2]. The energy
consumption should be estimated on each of the different
road segments in ground traffic networks. Macroscopic and
microscopic models are broadly applied to estimate the
vehicle energy consumption [3]. In microscopic models, the
vehicle acquires a larger amount of driving data to decide a
statistical cost on each road segment. In macroscopic mod-
els, the vehicle only considers the driving time and road
grade, which are typically easier to obtain through free or

� M. Shen is with the School of Data and Computer Science, Sun Yat-Sen
University, Guangzhou, Guangdong 510275, China, and also with the Key
Laboratory of Machine Intelligence and Advanced Computing, Ministry of
Education, Guangzhou, Guangdong 510275, China.
E-mail: shenmh6@mail.sysu.edu.cn.

� G. Luo is with the Center for Energy-Efficient Computing and Applications,
School of Electronics Engineering and Computer Science, Peking University,
Beijing 100871, China. E-mail: gluo@pku.edu.cn.

� N. Xiao is with the School of Data and Computer Science, Sun Yat-Sen
University, Guangzhou, Guangdong 510275, China.
E-mail: xiaon6@mail.sysu.edu.cn.

Manuscript received 19 Dec. 2018; revised 12 July 2019; accepted 16 July
2019. Date of publication 23 July 2019; date of current version 18 Dec. 2019.
(Corresponding author: Minghua Shen.)
Recommended for acceptance by B. He.
Digital Object Identifier no. 10.1109/TPDS.2019.2930500

64 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4747-8020
https://orcid.org/0000-0003-4747-8020
https://orcid.org/0000-0003-4747-8020
https://orcid.org/0000-0003-4747-8020
https://orcid.org/0000-0003-4747-8020
https://orcid.org/0000-0003-4932-3655
https://orcid.org/0000-0003-4932-3655
https://orcid.org/0000-0003-4932-3655
https://orcid.org/0000-0003-4932-3655
https://orcid.org/0000-0003-4932-3655
mailto:
mailto:
mailto:

commercial historical databases. Specifically, the road-
based macroscopic models depend heavily on the longitudi-
nal dynamics of the vehicles and they are easier to calibrate
using vehicle construction parameters [4]. And thus in
this work, we mainly leverage the macroscopic road-based
energy consumption model to explore the control of CVs
so that each vehicle routes from one road segment to the
adjacent ones.

Benefiting from the real-time updated data and informa-
tion, we present EEPC, a cost-based iterative framework to
provide the energy-efficient parallel control of CVs for
autonomous control systems. EEPC maintains the energy-
efficient control of CVs and supports the parallelization to
obtain a good real-time performance. In EEPC framework,
our control approach can balance the competing goals of
eliminating conflicts among CVs and minimizing energy
consumption of routing paths. The basic idea is to initially
allow CVs to occupy the same road segment resource of
ground traffic networks, but subsequently must coordinate
with each other to determine which vehicle needs the occu-
pied resource most. Note that our control approach imposes
and adjusts the costs to the road resources to obtain a good
resource assignment to these CVs. In addition, our EEPC
supports parallelization to meet the real-time performance
requirements of our control approach to CVs. Note that
there are two grained parallel approaches, one is fine grain
and the other is coarse grain. The fine grain focuses on the
control of single-vehicle routing while the coarse grain stud-
ies the control of multi-vehicle routing. The contributions of
this work are as follows:

� To the best of our knowledge, this is the first work to
explore the energy-efficient parallel control of CVs
for autonomous control systems.

� We present a cost-based iterative framework that
supports energy-efficient control and its paralleliza-
tion to CVs.

� We propose a conflict-aware control approach that
not only eliminates the resource conflicts between
vehicles but also provides an energy-efficient route
to each vehicle.

� We present two multi-core parallel approaches, both
of which enable the parallel control of CVs to obtain
real-time performance improvement.

� We provide a simulation evaluation demonstrating
the advantages of our EEPC framework over the
widely used dataset.

This paper is an extension of our previous work1 pub-
lished at International Symposium on Low Power Electron-
ics and Design (ISLPED) in 2017. Note that in this paper, we
not only present novel insights into the initial control
approach but also explore its parallelization to improve the
real-time efficiency requirement of control approach for
autonomous control systems.

The rest is organized as follows. The background and
related work are in Section 2. The energy consumption

model is described in Section 3. The framework is detailed
in Section 4. The control approach is presented in Section 5
and its parallel exploration is shown in Section 6. The simu-
lation results are given in Section 7 and the discussion is
presented in Section 8, followed by the conclusion in
Section 9.

2 BACKGROUND AND RELATED WORK

2.1 Vehicle Control and Associated Terminology

The control of CVs is an important problem in modern
autonomous transportation systems. It consists in assigning
ground traffic resources to each vehicle of the autonomous
control system in order to connect its current location to the
destination. The resources in a ground traffic network and
their connections are represented by a graph G ¼ ðV;EÞ.
The set of vertices V corresponds to the road segment
resources in the ground traffic network and the edges E to
the feasible links that connect these nodes.

Typically, given a graph of ground traffic network, the
weight associated with each node v is either the length of
the road segment or vehicle travel time. In the energy-
driven control study, each node of the graph is assigned a
weight that represents the travel energy expenditure. Thus,
we define a weighting function w : V !W , which associ-
ates each node of the graph with a weight.

Given a vehicle i in the ground traffic network graph, the
vehicle trajectory path Ti is the set of terminals, including
the source terminal si and destination di. Ti forms a subset
of V . A feasible solution to the control problem for vehicle i
is the trajectory path Ti mapped onto the graph G and con-
necting si with its di.

2.2 Problem Statement

The goal of this work is to explore the energy-efficient con-
trol of CVs for modern autonomous transportation systems.
Thus, the weight assigned to each node of the graph repre-
sents only the associated energy consumption. Furthermore,
this weight can be easily extended to consider travel time as
well, and the optimization would search then for a tradeoff
solution between energy consumption and travel time mini-
mization. In this paper, we solely focus on energy consump-
tion aspects.

The control problem of CVs consists in theminimization of
the energy consumption to route from a selected origin to a
destination in the road network while eliminating the
resource conflicts between vehicles. Minimization of an
energy cost in a graph can be solved by means of a standard
shortest path algorithm. However, it is challenge to eliminate
the conflicts between vehicles in the same time to guarantee
the traffic safety. Note that the control problem of CVs is a
technology-specific variation of the disjoint path problem
from graph theory, which is one of Karp’s original NP-com-
plete problems [7]. In a graph, two trajectory paths are disjoint
if they do not occupy the same resource such as node or edge.

2.3 Parallel Programming Models

Multi-threading techniques enable parallel processing of
multiple tasks within a shared memory. Multiple threads
may operate at the same memory location, resulting in a
conflict behavior. Synchronization is used to manage the

1. Minghua Shen and Guojie Luo. Tiguan: Energy-Aware Collision-
Free Control for Large-Scale Connected Vehicles. in proceeding of IEEE/
ACM International Symposium on Low Power Electronics and Design
(ISLPED), 2017.

SHEN ET AL.: EEPC: A FRAMEWORK FOR ENERGY-EFFICIENT PARALLEL CONTROL OF CONNECTED CARS 65

access of multiple threads to the shared memory and ena-
bles each thread to perform the processing of its own tasks
at a specific program point. To explore the parallel control
of single-vehicle routing, we can create the threads rapidly
and synchronize the context between threads on a multi-
core processor.

MPI techniques enable parallel processing of multiple
tasks within a distributed memory. Each participated MPI
process performs its own tasks and communicateswith other
MPI processes throughMPImessages between different pro-
cessor cores. During the communication, each MPI process
sends and receives blocking or non-blocking MPI messages.
The blocking message enables the MPI process to wait for
the responds from other MPI processes and then performs
the data synchronization between differentMPI processes.

2.4 Related Work

Existing efforts related to our work are multi-agent control
problem. Different from our work, these works leverage the
idea of region partitioning and coverage control to control
the routing of agents to perform the tasks in their specified
regions [8], [9], [10]. Also, these works cannot fully over-
come the challenge of conflicts between multiple agents,
and the scale of agents is relatively small as well. Other
works include multiple vehicles routing without communi-
cations and robust traffic flow management under uncer-
tainty [11], [12]. Their task models and objectives are
different from our energy-aware control problem. More-
over, these works do not consider the advances in commu-
nication techniques to enable the vehicle to real-time
coordinate with each other to drive itself on a road with con-
flict free. Recently, the model predictive control has also
been widely used to solve the problem of process control,
task scheduling, cruise control, and multi-agent transporta-
tion networks [13], [14], [15]. These works provide solid
results for related mobility scheduling and control prob-
lems. However, none of these works incorporates both the
current and historical mobility patterns into their vehicle
control design, leveraging the iteration scheme to solve the
conflicts between vehicles.

In this paper, we focus on vehicle energy consumption
model and design a cost-based iterative framework that can
minimize energy consumption while eliminating conflicts
between vehicles. Moreover, our framework supports the
parallelization to improve the real-time performance of the
autonomous transportation control systems.

3 MACROSCOPIC ENERGY CONSUMPTION MODEL

Macroscopic road-based energy consumption model is the
effective way to estimate the energy consumption of each
vehicle in autonomous control systems [4]. We focus on
electric vehicles and develop an energy-efficient design
scheme. In terms of electric vehicles, energy consumption
model is required to capture the regenerative braking and
electric drive efficiency. In general, the vehicle longitudinal
dynamical model may be written as [5].

m _vðtÞ ¼ Fw � Fa � Ff � Fs; (1)

where m is the vehicle mass, _vðtÞ is the vehicle acceleration,
Fw is the force at the wheels, Fa denotes the aerodynamic

force, Ff represents the rolling resistance force, and Fs is the
gravity force. Thus, we have the vehicle model

_xðtÞ ¼ vðtÞ
m _vðtÞ ¼ Fw � 1

2 raAfcdvðtÞ2 �mgcr �mgsinðaðxÞÞ;

(
(2)

where ra is the external air density, Af is the vehicle frontal
area, cd is the aerodynamic drag coefficient, cr is the rolling
resistance coefficient, aðxÞ is the road slope as a function of
the position, and g is the gravity.

Note that the sum of aerodynamic and rolling frictions,
named road load force, is generally approximated as a sec-
ond order polynomial in the speed v. Thus, we have

Fa þ Ff ¼ a2vðtÞ2 þ a1vðtÞ þ a0; (3)

where a0 , a1 and a2 are the constant parameters identified
for given a considered vehicle. Thus, the force at the wheels
can be also expressed as followed.

Fw ¼ m _vðtÞ þ a2vðtÞ2 þ a1vðtÞ þ a0 þmgsinðaðxÞÞ: (4)

For each node n 2 V of the graph, it is possible that
we can obtain road segment length ln and average traffic
speed vn of vehicle on this road. Because we can obtain
the time of the day, and the road grade anðxÞ, both of
which varies within the used road segment depending
on the position.

Specifically, since the time-variant speed or accelera-
tion profile is not available, the energy consumption
model can not be directly used to assign the weights to
each node of the graph. Thus, we leverage average traffic
speed v to replace the time-variant speed vðtÞ. All the
vehicles on node n are supposed to travel at average
traffic speed vn. Note that while it exists difference, it
can efficiently reflect real driving conditions. The previ-
ous work [6] also give a validation analysis to verify the
accuracy. Thus, the force expression in (4) is modified
for each node n as follows:

Fw;n ¼ a2v
2
n þ a1vn þ a0 þmgsinðanðxÞÞ; (5)

with no acceleration term. The torque requested from the
electric motor to meet the force demand at the wheels is
given as:

Tm;n ¼
Fm;nr

rtht
; if Fw;n � 0

Fm;nrht
rt

; if Fw;n < 0

8><
>: ; (6)

where r is the wheel radius, rt and ht are the transmission
ratio and efficiency, respectively. The electric motor rota-
tional regime is also constant over time if constant speed is
assumed:

wn ¼ vnrt
r

: (7)

Thus, the mechanical power available at the electric motor is
written as followed.

Pm;n ¼
Tm;max � wn; if Tm;n � Tm;max

Tm;n � wn; if Tm;min < Tm;n < Tm;max

Tm;min � wn; if Tm;n � Tm;min

8><
>: : (8)

66 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

In the following, we assumed that the saturation torque is
independent from the motor regime. Finally, the power
demand at the battery of the electric vehicle, considering
the electric drive efficiency hb constant, can be written as:

Pb;n ¼
Pm;n

hb
; if Pm;n � 0

Pm;n � hb; if Pm;n < 0

8<
: ; (9)

and ultimately, we have the battery energy consumption
over the generic travel time Tn.

Eb;n ¼
Z Tn

0

Pb;ndt ¼ Pb;nTn; (10)

where Tn ¼ ln=vn is the travel time on segment node nwhen
traveling at the average traffic speed vn.

4 OUR EEPC FRAMEWORK

Our proposed EEPC framework is performed on the cloud
server of autonomous control system. It is able to real-time
simulate the vehicle routing process to fast generate a feasi-
ble control solution to guide the routing of CVs. As a result,
each vehicle is based on its own available route and can
drive from a selected origin to a destination in the current
traffic network. Note that the route of each vehicle is the
energy-efficient and all the participated CVs have no con-
flicts guaranteeing the traffic safety.

Specially, there are many impact factors resulting in the
traffic safety problem, and the resource conflict is probably
the most important factor in modern transportation control
systems. The control of connected cars typically occupies
the same routing resources of ground traffic network form-
ing resource conflict. Such a conflict would cause collisions
between connected cars, further resulting in a safety prob-
lem. Thus, the resource conflict is unacceptable especially in
the macro-scale. Therefore, we devote to eliminate the
resource conflict and propose the EEPC framework. In addi-
tion, our framework supports two different grained paral-
lelism to improve the real-time performance.

Fig. 1 shows the overview of our EEPC framework to
CVs of autonomous control system. Given a network graph
and the participated CVs, EEPC generates a feasible solu-
tion so that each vehicle has a legal and energy-efficient
route on the graph. EEPC consists of an inner layer and an
outer layer which invokes the inner layer to implement a
feasible solution for CVs. In inner layer, we perform the
local control of CVs and we first control one vehicle rout-
ing and then update the local cost and then control the
next vehicle routing until completing the routing of all the
participated CVs. Note that each vehicle routing adopts
the Dijkstra’s search algorithm to find the shortest path
measured by the costs of energy and conflict. If this solu-
tion is feasible, we will use it to guide the routing of CVs
and otherwise, we perform the global control of CVs in
outer layer. In the global control step, we first rip-up the
previous routes of all CVs and then update the global cost
so that we perform the next local control in inner layer.
With global and local control steps, EEPC iteratively refines
the route of each vehicle until generating a feasible control
solution. In their respective iterations, EEPC performs the

rip-up in global control step and performs the route or
re-route in local control step for all the participated CVs
in order to completely eliminate the resource conflicts
between CVs. The implementation details will be demon-
strated in Section 5.

In addition, our EEPC framework has a unique feature to
allow parallel processing of control of CVs and has the
potential to obtain a better real-time performance. EEPC
supports fine- and coarse-grained parallelism. The fine
grain is used to perform the parallelization of local control
while the coarse grain performs the parallelization of global
control. In fine-grained parallel scheme, we parallel control
the vehicle routing one-by-one and specifically, we parallel-
ize the low-level shortest-path exploration of ground traffic
network graph. Multi-threading techniques are used as the
fine-grained parallel programming paradigm running on
the multi-core shared-memory platform. In coarse-grained
parallel scheme, all the CVs are partitioned into several sub-
sets and the routing of each subset is controlled by its own
processor core. Note that the number of subsets is equal to
the number of processor cores. MPI techniques are used as
the coarse-grained parallel programming paradigm running
on the multi-core distributed-memory platform. The imple-
mentation details will be demonstrated in Section 6.

In the EEPC framework, we assume that the real-time
capacity of each resource node of traffic network graph is
set to one, conflicting behaviours could occur at such a
resource where more than one vehicle tries to route through
this resource. If such a conflicting behaviour does occur, the
idea of both the rip-up of global control and the re-route of
local control will be employed to progressively release these
conflicting resources occupied by the different vehicles in
simulation process. In practice, the occupation of same
resource should be less than or equal to the capacity to guar-
antee the conflict removal.

Fig. 1. The overview of our EEPC framework. In inner layer, we perform
the local control to find a energy-efficient route to each vehicle. In outer
layer, we perform the global control to eliminate the conflicts between
CVs. Both of them have been combined to generate a feasible solution to
control the routing of CVs. In addition, the local control can be parallelized
in fine-grained scheme while the global control can be parallelized
in coarse-grained scheme, both of which can improve the real-time
performance of our EEPC framework.

SHEN ET AL.: EEPC: A FRAMEWORK FOR ENERGY-EFFICIENT PARALLEL CONTROL OF CONNECTED CARS 67

5 ENERGY-EFFICIENT CONTROL

In the proposed EEPC framework, the control of CVs is
based on cost function to minimize the energy consumption
of each vehicle and to eliminate the conflicts between differ-
ent vehicles. We first demonstrate the cost function design
motivated by an example and then we apply it into the
EEPC framework. At last, we discuss the tradeoffs between
energy consumption and conflict elimination when control-
ling the routing of CVs in our EEPC framework.

5.1 Cost Function Design

We start with an example to describe the control problem
motivating the cost function design. Consider the example
depicted in Fig. 2, we need to control two vehicles routing
from their sources S1 and S2 to their destinationsD1 andD1,
respectively. Assuming that we adopt the basic shortest path
algorithm, there is a conflict resource node A and this solu-
tion cannot satisfy the design requirements of control sys-
tems. To solve this problem, we consider designing the cost
function to guide the control of CVs. The idea of imposing
cost function is motivated by the other fields [16], [17], [18].

The proposed cost function consists of base cost, local
cost, and global cost. These three terms can be iteratively
updated to spread the conflicting resources between differ-
ent vehicles for a feasible solution. In the ith iteration, the
cost function for a resource v is given as follows:

cv ¼ ðbv þ givÞ � lv; (11)

where bv is the base cost of using a road resource v, which
can be used to reflect the basic energy consumption of the
road resource. A reasonable choice for bv is the intrinsic
energy consumption ev of the resource v, since minimizing
the energy consumption of a vehicle is equal to minimize
the road resources of a vehicle in nature. Thus in the
remainder of our work, we set bv ¼ ev. The local cost term lv
denotes the number of vehicles occupying the resource v in
the local control. The global cost term gv denotes the con-
flicts at a road resource v in the global control. Here we
enable the global cost gv to be increased in a fixed amount2

iteration when a vehicle is re-routed through an already
occupied resource node. In other words, this global cost gv
grows monotonically with each iteration in which the road
resource is occupied.

By imposing three cost terms to each resource, and
updating these costs within each iteration, the alternative
routes can be explored to release conflicts between CVs.
Essentially, in local control, the lv enables the conflict
vehicles to perform the coordination with each other for
using an occupied resource. In global control, the gv enable
the non-conflict vehicles to release a legal resource for con-
flict vehicles. Our basic idea is to permit the conflicts ini-
tially and then iteratively update the cost until there are no
conflicting resources.

Given a weight graph and CVs, we leverage the above
cost function to obtain a feasible solution, further guiding
the routing of CVs. We continue to select the example
shown in Fig. 2 to demonstrate how to eliminate the con-
flicts between CVs. In this example, we need to perform
two iterations so that each vehicle has its own route. In the
first iteration, we use shortest-path fashion to control the
routing of CVs on the graph within basic cost, thereby
resulting in a conflict resource A between two CVs. In the
second iteration, the cost function is to update the costs of
the graph and we have three steps to guide the control of
CVs. In the step �1 , we rip-up the routes of previous itera-
tion and perform the update of global cost gA. The value of
global cost gA is increased from 0 to 1 while the total cost cA
of a conflict resource A is increased from 1 to 2. Note that
the value of global cost adds 1 in each iteration. In the
step�2 , we perform the local control and route the first vehi-
cle and then update the local cost lA. The local cost is gradu-
ally increased, depending heavily on how many vehicles
occupy the resource A, in current iteration. Thus for second
vehicle, the total cost to use the resource A is increased from
2 to 4 which is large than the basic total cost 3. Thus in the
step �3 , when we continue to use shortest-path fashion to
route the second vehicle, the alternated path will be selected
for a feasible solution.

5.2 Routing Order Arrangement

The control of CVs involves assigning resources so that the
destination is reachable from the source for each vehicle.
When we control the routing of all participated CVs, the
routing order becomes a very critical problem since some
resources needed by a vehicle may be occupied by other
vehicles, further resulting in the resource conflicts between
different vehicles. To release the conflicts, the imposed cost
function forces some vehicles to make a detour to select the
alternative routes on the network graph. The conflicted
vehicles adopt the alternative routes generating the longer
paths, further impacting the total energy consumption.

To mitigate this problem, we focus on routing order and
in our EEPC framework, we have the basic routing order
arrangement as follows. All participated CVs are sorted first
according to their distance from source to destination and
we control the routing of CVs in such an order of decreasing
distance. The longest distance vehicles are routed first
because they tend to cross the whole region and moreover,
they are much easier to route when there is no existing con-
flict. Short distance vehicles tend to be localized, so routing

Fig. 2. An example of how to control the routing of CVs using cost
function. There are two iterations to implement the feasible solution. In
the first iteration, the initial solution is infeasible due to the conflict
resource between two vehicles. In the second iteration, the subsequent
solution is feasible due to the updates of global and local costs. The
value of global cost increases 1 each iteration while the value of local
cost is increased, depending on how many vehicles occupy the
resource, in current iteration.

2. Here, gv ¼ gv þ 1 if the resource v has a conflict in each iteration.

68 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

them later in the control process is not too difficult even in
the presence of conflict.

In addition, when generating the resource conflicts
between different vehicles, we perform the rip-up and re-
route fashion for all participated CVs rather than the con-
flicted vehicles. Note that this rip-up and re-route fashion is
executed at each iteration in the EEPC framework. Typically
our EEPC framework can find the feasible solution with the
limited number of iterations. To avoid the infinite iteration of
EEPC framework, the total number of iterations is set to 50 in
our simulation evaluation. Actually, our EEPC framework
always uses the small number of iterations to find a feasible
solution. It is effective to leverage cost-based rip-up and re-
routed engine to eliminate the conflicts between vehicles.

5.3 Conflict-Aware Routing Control

Benefiting from conflict-based cost function above, our EEPC
framework can generate the feasible solution so that each
vehicle has its own route. In this framework, CVs are allowed
to occupy the same resources and then iteratively performs
the cost-based coordinate with other vehicles to determine
which vehicle needs the resource most. The cost update is
performed at each iteration to employ pressure continuously
to control the routing of CVs. We gradually adjust the costs
of resources to obtain a good resource assignment to CVs.

Algorithm 1. The Algorithm to Control the Routing of
CVs

1: Given(Graph G ¼ hV;Ei, CVs fig)
2:
3: Global-Control-Routing(G, fig)
4: while incomplete or conflict exists do
5: Local-Control-Routing(fig)
6: update global costs fgvg of the resources in V
7: end while
8: end Global-Control-Routing
9:
10: Local-Control-Routing(vehicles fig)
11: for each uncontrolled or conflict vehicle i do
12: rip-up Ti if exists
13: Ti fsig
14: Ti Find-Shortest-Path(Ti; di)
15: update local costs flvg of the resources in Ti

16: end for
17: end Local-Control-Routing
18:
19: Find-Shortest-Path(Ti; di)
20: for each resource node v in Ti do
21: enqueue v onto Qwith key 0
22: end for
23: while a sink of di has not been found do
24: dequeue node, pwith lowest key from Q
25: if pwas not previously dequeued then
26: for each neighbor v of p do
27: enqueue v on Qwith cost of v + key of p
28: end for
29: end if
30: end while
31: backtrace from sink to a node of Ti that is reached
32: return this path Ti

33: end Find-Shortest-Path

The algorithm to control the routing of CVs is shown in
Algorithm 1. This algorithm can be divided into three nested
iterations. In outermost iterations, we perform the global
control of CVs. All of the participated CVs are encouraged to
perform the cost-based coordination with each other to
decide who will explore alternate route around the conflict
resources, until all the conflicts are resolved to obtain a com-
plete legal control solution. In middle iterations, we perform
the local control of CVs. The vehicle route Ti from the previ-
ous outermost iterations is ripped-up and can be initialized
to the vehicle source. and at themeanwhile, it will invoke the
shortest-path algorithm, which computes a path from the
source to the sink in the network resource graph. In inner-
most iterations, it employs the single source shortest path
algorithm, which is implemented by Dijkstra’s algorithm.
After a sink is found, all nodes along a backtraced path from
the sink to source are added to Ti, and at last, if the solution
is feasible, the algorithm is complete.

In addition, the resources chosen by this algorithm is a
challenge problem. Note that choosing the optimal or even
near-optimal resources is not essential in this algorithm.
The key of algorithm is successfully feasible in adjusting
costs to eliminate the conflicts between CVs, further guiding
the routing of CVs on the road with a safety guarantee.

5.4 Analysis of the Energy Consumption and
Conflict Removal Tradeoffs

The idea of EEPC framework trades energy consumption for
conflict removal. The emphasis of our algorithm is to adjust
the costs of resources in a gradual and semi-equilibriumway
to ensure a reasonable distribution of resources for all the
participating CVs. Thus we analyze the tradeoffs of energy
consumption and conflict removal whenwe control the rout-
ing of CVs in the EEPC framework. Thus we re-define the
cost function of using resource vwhenwe control the vehicle
i routing from source si to destination di. The new cost func-
tion is given as follows:

Cv ¼ siev þ ð1� siÞcv; (12)

where cv is defined in (11) and si is the balance ratio.

si ¼ Ei=Emax; (13)

where Ei is the longest route from si to di, and Emax is the
maximum over all routes, and here, we call critical path
energy consumption. Thus, 0 < si � 1. The first term in
Equation (12) is aware of the energy consumption. The sec-
ond term is aware of conflict. Note that the long routing
path will take more energy consumption when we control
the vehicle routing. Fig. 3 shows that the vehicle may select
the alternative path to route due to that there is a conflict
existed in the shortest routing path. Actually in EEPC meth-
odologies, we eliminate the resource conflict by imposing
penalty cost to force the vehicle to explore the alternative
path instead of selecting the original shortest path. Depre-
cating the shortest path is an efficient approach to eliminate
the conflict of resources.

Our Equations (12) and (13) build an appropriate mix of
minimum-energy and minimum-cost route, further forming a
completing tradeoffs between energy consumption and con-
flict removal. If a source-sink pair relies on the critical route,

SHEN ET AL.: EEPC: A FRAMEWORK FOR ENERGY-EFFICIENT PARALLEL CONTROL OF CONNECTED CARS 69

then si ¼ 1 and the cost function for using resource v is sim-
ply energy term. Thus, a minimum-energy control scheme
will be used and the conflict termwill be ignored. If a source-
sink pair belongs on a routing path whose energy is much
smaller than the energy of critical route, its si will be small
and the conflict term will dominate, resulting in a solution
which avoids conflict at the expense of extra energy.

To adapt to the energy consumption, Algorithm 1 can be
changed as follows. First, the si is initialized to 1 and the
algorithm searches the minimum-energy route for every
vehicle during the first iteration. In addition, the si is re-cal-
culated in each subsequent iteration. Second, the destination
is reached in the decreasing order of si. Third, the priority
queue is initialized to Ti at cost siei. The effect of this ini-
tialization is that nodes that belong to the partial route will
have only the energy consumption component. These modi-
fications will be referred in the algorithm to control the rout-
ing of CVs in the EEPC framework.

The algorithm terminates when no conflict resource
exists. By re-calculating the si, we have kept a tight domina-
tion on the critical route. Over the process of iterations, the
critical route increases only to the situation that requires to
resolve the conflict. The algorithm first reduces the energy
consumption and then attempts to resolve the conflicts by
re-executing the control of vehicle routing.

5.5 Energy Consumption Analysis

It is effective to trade the energy consumption for conflict
removal and the problem is that how much is the bounds of
energy consumption when we control the routing of CVs in
the EEPC framework. Thus we need to analyze the bounds
of energy consumption when employing the Algorithm 1
into the EEPC framework.

Here we consider that if global cost gv is constrained by
the base cost ev, the Algorithm 1 will generate a worst-case
energy-consumption route, which is the same to the mini-
mum-energy critical route. It means that Algorithm 1 selects
the fastest implementation in the network graph. In prac-
tice, the global cost gv is allowed to increase in a gradual
way until finding a complete solution. While the global cost
gv maybe exceed the base cost ev in very difficult network
graphs, Algorithm 1 still comes very close to this constraint
in practice. Thus, when Algorithm 1 is adopted in the EEPC
framework, we have the following theorem for the bounds
of energy consumption.

Theorem 1. If gv � ev for all nodes of graph, the energy
consumption of any vehicle route is constrained by Emax,
the energy consumption of the longest minimum-energy route
in the graph.

Proof. When Algorithm 1 terminates successfully, the local
cost lv term in equation (12) is 1 and thus, cv ¼ ev þ gv. Let
R represents the most critical used route and S denotes
the shortest-route energy consumption for R. The cost of
S is given by:

CS ¼
X
v2S

Cv (14)

¼
X
v2S
ðsiev þ ð1� siÞðev þ gvÞÞ (15)

¼
X
v2S

ev þ ð1� siÞ
X
v2S

gv: (16)

According to our assumption gv � ev,

CS �
X
v2S

ev þ ð1� siÞ
X
v2S

ev (17)

¼ Ei þ ð1� siÞEi (18)

¼ ð2� siÞEi (19)

¼ ð2� siÞsiEmax: (20)

Since 0 � si � 1, we have 0 � ð2� siÞsi � 1 and

CS � Emax: (21)

The cost of R must be less than the cost of S, thus, the
energy consumption of R must be less than the cost of S,
which is less than Emax. tu

6 EXPLORATION OF PARALLEL CONTROL

The energy-efficient conflict-free control of CVs discussed in
the previous section allows EEPC to progressively generate
a feasible control solution such that each vehicle has its
own energy-efficient route while eliminating the conflicts
between CVs. In this section, we study the parallel control
problem and our goal is that EEPC has a better real-time
performance when controlling the routing of CVs, espe-
cially for large-scale CVs. In addition, the parallel control of
CVs should be scalable support for multiple processor cores
and the energy consumption should be small with the
increasing number of processor cores.

It is non-trivial to perform the parallel control of CVs in
the EEPC framework as it exhibits a dependent problem
resulting in the inherent sequential processing order. To
develop a good parallel control approach running on the
multi-core processor system, we discuss several important
problems as follows.

(1) How to parallelize the inherently sequential control
of CVs and what is the granularity when performing
the parallel control of CVs?

(2) How to synchronize the intermediate information
between various processor cores to guarantee that
the parallel control of CVs has a feasible solution as
well?

(3) How to scale the available speedup and reduce the
energy consumption when adopting the increasing
number of processor cores?

Fig. 3. The conflict of resources shows that there is a collision road. At
that time, the route of vehicle selects the red alternative path rather than
the blue shortest path.

70 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

The EEPC framework performs the sequential control of
CVs, consisting of global control and local control. The
global control focuses on multi-vehicle routing while the
local control focuses on single-vehicle routing. In global
control, multiple CVs perform the cost-based coordination
to eliminate the resource conflicts. In local control, each
vehicle is based on the shortest-path algorithm to explore
the alternative route. The parallelization of global control is
at the task level and it means that we control the routing of
multiple CVs in a concurrent way. The parallelization of
local control is at the resource level and it means that we
control the routing of single vehicle in a concurrent way.
The former forms coarse-grained parallel scheme running
on the multi-core distributed-memory platform using MPI
techniques. The latter forms fine-grained scheme running
on the multi-core shared-memory platform with multi-
threading techniques.

A modern autonomous control system has more than
thousands of CVs, so the sequential control algorithm can
be parallelized if all the CVs’s routing can be parallel con-
trolled, thus, the available speedup will be limited only by
the number of vehicles. The challenge is that the route used
by each vehicle depends heavily on the knowledge of the
other vehicles’s routes since the traffic resources cannot be
real-time occupied in vehicle routing. If the routes of two
vehicles occupy the same resources in real-time in parallel
control process, they will result in real-time conflicts and
cannot generate a feasible solution. Thus, each processor
core must have an up-to-date view of the intermediate
results when performing the parallel control of CVs. Thus,
each processor core requires to perform the synchronization
to communicate the intermediate results, further avoiding
the resource real-time sharing between different vehicles.

According to the discussions and analyses above, We
leverage the coarse- and fine-grained schemes to explore

the parallel control of CVs to further improve the real-time
performance of the EEPC framework.

6.1 Coarse-Grained Parallel Control

Coarse-grained parallel control performs on the multi-core
distributed-memory platform. Message passing interface
(MPI) is used to synchronize the intermediate routes between
processor cores when we parallel control the routing of CVs.
Thus in the coarse-grained scheme, all the vehicles need to be
assigned to several subsets and the number of subsets should
be equal to the number of processor cores, further guarantee-
ing that each subset is executed on its own processor core.
Thus, assignment becomes a critical step in the coarse-grained
scheme. In order to design a good assignment approach, we
define the control of single-vehicle routing as a task.

Basic Task Assignment and Parallelization. Fig. 4 gives an
example of the coarse-grained scheme to parallelize the
global control of the EEPC framework. This approach con-
sists of assignment and parallelization. In assignment we
distribute the tasks into different subsets and each subset
has the roughly equal number of tasks for having a good
load balance between processor cores. In parallelization we
concurrent control the first task batch and synchronize their
intermediate results and then concurrent control the next
task batch until completing all the tasks. The intermediate
results between processor cores can be communicated using
MPI messages, further enabling each processor core to syn-
chronize its own view of the overall control state. By using
MPI messages, we not only avoid the resource conflicts
between vehicles but also maintain most of the data struc-
ture used in sequential control approach.

Algorithm 2. Coarse-Grained Parallel Approach

1: while task incomplete or conflict exists do
2: assign the tasks to N subsets evenly
3: for k such that k 6¼ local do
4: task[k] = first_task(subset[k])
5: end for
6: for local task 2 subset[local] do
7: process the local task local task
8: synchronize the picture of local task
9: for k such that k 6¼ local do
10: the picture is obtained from core k for task[k].
11: task[k] = next_task(subset[k])
12: end for
13: end for
14: end while

Algorithm 2 gives the pseudocode of our coarse-grained
parallel approach and specifically, it only describes the key
parallel portion of the implementation. In addition, this algo-
rithm is from the perspective of one of N processor cores to
perform its own subset of tasks. The variable k is the index of
processor core and the variable local is the index of the mas-
ter processor core when performing the parallel approach.
subset½k	 is a subset of tasks assigned to the processor core k
for processing. The array task½k	 is used to record which task
is currently being processed by each processor core. The
first_task() function extracts the first task from the subset of
processor core k to process. The next_task() function gives
the next task to be processed by processor core k.

Fig. 4. The coarse-grained scheme is used to parallel control the routing
of CVs. We assign the CVs to different processor cores and perform the
parallel control of CVs. We use the MPI techniques to communicate with
each other.

SHEN ET AL.: EEPC: A FRAMEWORK FOR ENERGY-EFFICIENT PARALLEL CONTROL OF CONNECTED CARS 71

The while loop is an iteration of parallel control approach
and in task assignment, we distribute the tasks into N sub-
sets in a load balance way, where N is the total number of
processor cores. Each processor core is aware of the subset
of tasks processing in every other processor core. In terms
of each processor core k, besides the local processor core, we
employ the first task of subset[k] to initialize the variable
task½k	. In the following outer loop, we process a task each
time and this task is in the subset of tasks of local processor
core. We first process the local task local task and then syn-
chronize the up-to-date picture to all other processor cores
containing the path information and conflict state of
local task. In the inner loop, we perform once for each pro-
cessor core, k, beside from local. This loop is used to receive
any update message pictures from other processor cores
that have already been sent. Once we receive an update
message, the next task will be extracted from subset[k] to
update the task½k	 and to process this task.

In this basic task assignment and parallelization, each
processor core processes a task and synchronizes its results
and then processes the next task and synchronizes its results
until completing all tasks of its own subset. It is obvious that
this approach has very frequent synchronization operations
and its long communication time between processor cores
will have an impacts on the available parallelism, further
severely affecting the real-time performance of the EEPC
framework. To reduce the expensive synchronization over-
heads, we leverage the region partitioning to guide the task
assignment for parallelization.

Region-based Task Assignment and Parallelization. The basic
idea is to partition the region R into two subregions (R1, R2)
which forms three groups (G1, G0, G2). The first group G0

consists of tasks where its start and destination coordinates
distribute in two subregions. The remaining two groups
(G1, G2) consist of tasks where their start and destination
coordinates are located in their own respective subregions.
As the tasks of group G0 are distributed in two subregions,
they are processed in sequential. Correspondingly, as the
tasks of group G1 and the tasks of group G2 are located in
their own respective subregions, they are processed in par-
allel. The load balance can be maintained by ensuring that

group G1 and group G2 have the roughly equal number of
tasks. Note that load balance enables region partitioning to
obtain an even distribution of tasks for better parallelism.3

In addition, these subregions can be further partitioned in a
recursive way and this recursive partitioning process forms
a perfect binary tree which provides the opportunity to
explore the parallelization.

Fig. 5 gives an example of region-based partitioning to
guide the task assignment for parallelization. Fig. 5a shows
the first-level partitioning for parallelization. The generated
three groups form a binary tree where the parent node
represents the group G0 and the left child and right child
represent the group G1 and group G2, respectively. The
combination of groupG0 and groupG1 is regarded as a sub-
set subset 1 while the group G2 is regarded as the other sub-
set subset 2, both of which are parallel processed on two
processor cores using MPI techniques. The master MPI pro-
cess first processes the group G0 of subset 1 and synchro-
nizes these results, and then, combining with the slave MPI
process, to parallel process the group G1 of subset 1 and the
group G2 of subset 2. In this way, we perform the group-
level synchronization only, thereby reducing the synchroni-
zation overheads significantly. Fig. 5b shows the second-
level partitioning in a recursive way. The group G1 is parti-
tioned to form three groups (G11, G10, G12) and the group
G2 are partitioned to form three groups (G21, G20, G22), fur-
ther creating a two-level perfect binary tree for paralleliza-
tion on four processor cores. As shown in Fig. 5c, we
perform the third-level recursive partitioning to form a
three-level perfect binary tree for parallelization on eight
processor cores. Note that the number of leaf nodes of per-
fect binary tree is equal to the number of processor cores.

In this way, the generated perfect binary tree is used to
guide the task assignment for parallelization using MPI
techniques on multi-core processor systems. Comparing
with the previous basic assignment approach, this approach
performs the group-level synchronization only and reduces
the communication overheads significantly, further having
the opportunity to obtain the better real-time performance
for the EEPC framework.

6.2 Fine-Grained Parallel Control

Fine-grained parallelization focuses on the local control of
CVs running on multi-core shared-memory platform. In the
fine-grained scheme, we parallelize the shortest-path rout-
ing of each vehicle. Specifically, we parallelize aspects of
the local-level path exploration on the ground traffic net-
work graph. Threads are used to implement the fine-
grained parallel programming paradigm. Actually, this is
the parallelization of shortest-path algorithm in our EEPC
framework.

Fig. 6 gives an example of the fine-grained approach to
parallelize the single-vehicle routing of local control. Given
the available N processor cores, we build one master thread
and N � 1 slave threads. In addition, we use N priority
queues so that each thread only updates nodes in its own
priority queue. In terms of thread-level parallelism, the
master thread extracts the smallest cost node from the

Fig. 5. The recursive partitioning is performed three times which forms a
three-level perfect binary tree, further scaling to eight MPI processes for
parallelization on multi-core processor systems. (a) The master MPI
process processes the tasks of group G0 of subset 1 and then, combin-
ing with the slave MPI process, to parallel process the tasks of group G1

of subset 1 and the tasks of group G2 of subset 2. (b) and (c) The initial
binary tree can be recursively partitioned to support the scalable parallel
processing.

3. If the vehicles are not distributed evenly, the available parallelism
is very limited.

72 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

priority queue and leverages the round-robin fashion to
partition its neighbor nodes between all threads for paralle-
lization. Once the master thread updates the costs and puts
the nodes into its priority queue, it communicates in the sec-
ond barrier with all other slave threads before extracting the
smallest cost node and repeating the loop. Two barriers are
used to synchronize the intermediate state. The first syn-
chronization indicates that the slave threads is ready while
the second is used to indicate that the slave threads have
completed their respective works.

7 SIMULATION AND EVALUATION

In this section, we conduct the extensive simulations to eval-
uate the impacts of the EEPC framework on the energy con-
sumption and real-time performance when controlling the
routing of CVs.

7.1 Simulation Setup

The proposed EEPC framework is implemented in the C++
programming language performing on the Intel Xeon 8-core
processor system. The simulation study and experiments
are conducted on ten different test cases, all of which are
extracted from the ground traffic network graph of the
California state (i.e., about 1,965,206 nodes and 2,766,607
links) [19]. Because there exists no available free dataset
about the road segment length, road grade, and current
traffic conditions as previously discussed in Section 3, we
design a random algorithm to generate these data, including
the corresponding average traffic speed of each vehicle, the
number of vehicles with different origin-destination pairs in
the considered network graph. By this way, we can calculate
the energy-consumption weight of each node in traffic
resource graph while it is synthetic.

Table 1 shows the extracted ground traffic network graph
benchmarks. Specifically, the size of network graph is
increased in a gradual manner, because the scalability of
parallel control approach is very crucial to large-scale con-
nected vehicles. In our simulation study, we mainly focus
on the results of runtime and energy consumption of control
approach of the EEPC framework. In general, we leverage

the usage of road segment resources to evaluate the energy
consumption.

7.2 Sequential Control Study

Our EEPC is a cost-based iterative framework and in the
EEPC framework, our sequential control approach attempts
to balance the competing goals in terms of minimizing the
energy consumption of CVs and eliminating the conflicting
resources between CVs. In addition, the runtime of EEPC
framework has the direct impact on the real-time perfor-
mance of autonomous control systems. Thus in the first set
of experiments, we focus on the conflicting resource, energy
consumption, and runtime of sequential approach. Thus we
study the iterative process of EEPC framework and analyze
three metrics above at every iteration.

Our EEPC framework consists of global control and local
control. In local control, the iteration is used to control the
routing of each vehicle. In global control, the iteration is
used to find a feasible control solution so that each vehicle
has its own route. In this experiment, the number of itera-
tions of global control is used as the total number of itera-
tions of EEPC framework. Table 2 shows the total number
of iterations to find a feasible solution for each case in the
EEPC framework. In addition, we also give the total number
of conflicting resource nodes of each iteration. In the first
iteration, the network graph is weighted only by the basic
cost of energy consumption. When performing the original
shortest-path algorithm, there are large number of conflict-
ing nodes. In the following iterations, the weight of graph is
continually updated by global cost and local cost to find a
feasible route to each vehicle. Note that the small number of
iterations is sufficient to implement the feasible solution in
the EEPC framework. On average, our EEPC framework
takes about ten iterations to completely eliminate the
resource conflicts between CVs, especially for large-scale
CVs. We believe that the cost-based iterative scheme is
effective to completely eliminate the resource conflicts, fur-
ther guaranteeing the traffic safety.

Energy consumption is a second critical metric and to
have a better comparison in this experiment, we focus on
the total energy consumption of each case and we leverage
the energy consumption ratio to demonstrate the effectiveness
of our EEPC framework. Note that the ratio is between the
sum of energy consumption of all participated CVs and the
available energy provided by its own overall network
graphs. Table 3 shows the energy consumption ratio to
implement a practical solution for each case in our EEPC
framework. We also give the ratio of each iteration. In the
first iteration, we use the shortest-path algorithm to control
the route of each vehicle on the original graph. After several
iterations, the original route is updated to the new route in

Fig. 6. The fine-grained scheme is used to parallelize the local control
of the routing of CVs. We assign the resources in a round-robin way
to different processor cores and perform the parallel control of single-
vehicle routing. We use the multi-threading techniques to communicate
with each other.

TABLE 1
Road Network Information

Bench. #Nodes #Vehicles Bench. #Nodes #Vehicles

case 1 27120 788 case 6 283792 5224
case 2 76386 1946 case 7 305082 6606
case 3 43872 2380 case 8 283338 7154
case 4 104176 3710 case 9 311112 7474
case 5 110250 3953 case 10 492570 8078

SHEN ET AL.: EEPC: A FRAMEWORK FOR ENERGY-EFFICIENT PARALLEL CONTROL OF CONNECTED CARS 73

order to eliminate the resource conflict. And note that the
ratio of last iteration is slightly larger than the ratio of first
iteration. The solution of last iteration is used as the final
solution and thus, the final energy consumption ratio is the
same to the ratio of last iteration. The results show that our
approach not only completely eliminates the conflicts but
also minimizes the energy consumption, further generating
an energy-efficient route to each vehicle.

The execution time is the third critical metric and it is
directly involved in the real-time performance of the control
framework. In this experiment, we analyze the execution
time of the EEPC framework, including graph construction
and initialization, algorithm execution. Meanwhile, we also

analyze the execution time of each iteration when perform-
ing the EEPC framework. Table 4 shows the execution time
of each iteration and the total execution time of the EEPC
framework. In the first iteration, the executing time is the
shortest-path algorithm running on the original graph. With
the iteration proceedings, some vehicles need to explore the
alternative routes to avoid the resource conflicts. Note that
in general, the length of new route is longer than the length
of original routing path. Thus, the execution time of each
iteration increases as the length of routing path increases. In
terms of small-scale cases, it is very fast to find a practical
solution, where each vehicle has its own route running on
the network graph with a conflict-free guarantee. In terms

TABLE 2
Analyses of the Conflicting Resource Nodes of Each Iteration Across Ten Different Benchmarks

Name The Number of conflicting Resource Nodes at Every Iteration. Total

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 Num. of Ite.

case 1 743 253 97 24 9 7 5 2 0 — — — — 9
case 2 1,127 674 226 22 9 3 0 — — — — — — 7
case 3 865 376 152 95 41 16 8 3 1 0 — — — 10
case 4 1,754 742 313 154 85 27 9 7 4 2 1 0 — 12
case 5 2,572 855 428 217 96 22 11 2 0 — — — — 9
case 6 1,836 438 271 112 65 21 13 8 5 2 0 — — 11
case 7 8,375 5,421 3,629 1,753 223 32 7 3 0 — — — — 9
case 8 7,581 3,612 1,095 833 506 317 25 9 6 0 — — — 10
case 9 9,765 2,241 853 242 73 19 2 0 — — — — — 8
case 10 13,563 5,423 2,117 564 233 98 42 21 10 7 3 1 0 13

TABLE 3
Analyses of the Energy Consumption of Each Iteration Across Ten Different Benchmarks

Name The Ratio of Energy Consumption of Each Iteration. Final Ene.

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 Con. Rat.

case 1 0.21 0.23 0.24 0.24 0.24 0.24 0.25 0.26 0.26 — — — — 0.26
case 2 0.26 0.28 0.28 0.29 0.32 0.32 0.33 — — — — — — 0.33
case 3 0.11 0.14 0.14 0.14 0.16 0.16 0.15 0.17 0.17 0.17 — — — 0.17
case 4 0.30 0.32 0.32 0.32 0.33 0.33 0.33 0.34 0.34 0.34 0.35 0.35 — 0.35
case 5 0.28 0.31 0.32 0.33 0.33 0.34 0.35 0.35 0.36 — — — — 0.36
case 6 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.09 0.10 — — 0.10
case 7 0.32 0.34 0.34 0.35 0.35 0.37 0.38 0.38 0.39 — — — — 0.39
case 8 0.33 0.34 0.34 0.35 0.35 0.36 0.37 0.38 0.38 0.38 — — — 0.38
case 9 0.29 0.30 0.31 0.32 0.32 0.33 0.34 0.35 — — — — — 0.35
case 10 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.26 0.26 0.26 0.27 0.27 0.27 0.27

TABLE 4
Analyses of the Runtime of Each Iteration Across Ten Different Benchmarks (Time: second)

Name The Execution Time of Each Iteration. Total

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 Runtime

case 1 0.27 0.46 0.52 0.53 0.53 0.42 0.47 0.48 0.46 — — — — 4.59
case 2 2.11 4.26 4.42 3.75 4.01 4.73 3.82 — — — — — — 32.31
case 3 0.53 0.72 0.61 0.56 0.57 0.61 0.61 0.60 0.56 0.58 — — — 7.15
case 4 3.15 5.06 5.77 4.28 5.61 5.63 5.72 4.72 4.55 5.10 5.34 4.92 — 64.86
case 5 5.71 8.23 7.55 8.19 8.43 7.27 9.46 8.91 8.44 — — — — 79.36
case 6 10.58 26.72 28.44 29.35 29.46 30.07 38.22 31.15 32.43 33.61 32.07 — — 353.54
case 7 37.26 52.65 58.72 56.66 55.31 57.81 61.52 59.31 53.17 — — — — 544.73
case 8 16.43 22.71 26.66 28.52 31.95 33.73 35.71 37.07 37.34 39.48 — — — 360.03
case 9 12.25 23.46 24.72 25.11 27.73 26.24 28.03 29.64 — — — — — 275.73
case 10 36.32 42.73 48.61 55.42 61.74 65.45 71.33 73.42 77.06 79.41 82.35 83.57 84.26 878.63

74 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

of large-scale cases, it needs to take a slightly longer time to
find a feasible solution impacting the real-time efficiency of
autonomous control systems. While there is a slightly
impact on the real-time performance, our control approach
is effective to minimize the total energy consumption of all
CVs and to completely eliminate the resource conflicts
between vehicles, especially for large-scale CVs.

From Tables 2, 3, and 4, EEPC uses the limited number of
iterations to find a feasible control solution in that each vehicle
has its own non-conflicting route. With the basic shortest-path
control scheme, each vehicle has the shortest route further
generating the minimum energy consumption and execution
time. It is a pity that the route has the resource conflict pro-
blem, impacting the traffic safety. To solve the problem, EEPC
imposes cost function to encourage the conflicted vehicle to
make a detour to select the alternative route. The alternative
route typically is longer than the original shortest route, further
increasing the energy consumption and execution time. Com-
paring with the basic shortest-path control scheme, the nature
of EEPC trades the energy consumption and execution time
for conflict elimination, further guaranteeing the traffic safety.

In addition, the execution time of EEPC to find a feasible
solution is relatively real time especially for large-scale CVs
in real-time traffic applications. To obtain a better real-time
performance, we further accelerate the execution time of
EEPC by multi-core parallel techniques. Actually, the execu-
tion time of EEPC is typically better than the traffic jam time
of time-variant traffic applications. Because the time-variant
traffic applications are uncontrollable and their traffic jam
time is very length and unacceptable in practical scenarios.

In summary, in the EEPC framework, our cost function
can iteratively update the weight of the network graph to
determine which vehicle needs the resource most, further
avoiding the conflicts between vehicles. Moreover, the core
of EEPC framework is the shortest-path algorithm, which is
used to connect the original node to the destination node,
further minimizing the energy consumption. The shortcom-
ing is to take a slightly longer time to implement the feasible
solution in the EEPC framework. To improve real-time effi-
ciency, we adopt multi-core parallel techniques to accelerate
the runtime of EEPC framework.

7.3 Coarse-Grained Parallel Control Study

Our coarse-grained parallel approaches enable our EEPC
framework running on the multi-core distributed-memory

computing platforms. In the coarse-grained scheme, all the
tasks are assigned to different processor cores and the data
communication between processor cores is performed by
MPI-based messages. In the second set of experiments, we
focus on the basic task assignment approach and evaluate
its impacts on the speedup and energy consumption of par-
allel control approach in the EEPC framework.

Considering that our used multi-core processor system is
equipped with eight cores, we select two, four, and eight
cores to parallelize the control approach, respectively. Fig. 7
shows the available speedups of parallel control approach
using basic task assignment, comparing to the total runtime
of the sequential control approach. In terms of two cores,
our parallel control approach can provide about 1.3�
speedup on average. The achieved speedup is slow when
the size of benchmark increases. In terms of four cores, our
parallel control approach achieves about 2.1� speedup on
average. This is a slightly improvement comparing with the
speedup of two cores and its speedup is still slow when we
increase the benchmark size. In terms of eight cores, the
speedup of about 3.2� is achieved on average and it is about
2.5� faster than the speedup of two cores. Notably, the max-
imum speedup is about 4.5� using eight cores. These results
show that the basic task assignment is effective to parallelize
the control approach in the EEPC framework, although its
scalable speedup is slow.

Next we compare the energy consumption results of
coarse-grained parallel control approach with two, four,
and eight processor cores, respectively. Fig. 8 shows their
energy consumption results normalized to the original
sequential control approach. Our parallel approach has the
impacts on the final energy consumption and in general, it
increases about 2%
 10% energy consumption. Note that
in terms of two cores, its energy consumption is smaller
than the results of four cores as well as the results of eight
cores. With the increasing number of cores, the energy con-
sumption is worsening. On average, the energy consump-
tion of four cores is about 1.1� larger than the energy
consumption of two cores. And in terms of eight cores, on
average, its energy consumption is about 1.3� higher than
the energy consumption of two cores. These results display
that the energy consumption increases when the number of
used cores increases in the EEPC framework. It means that

Fig. 7. Speedups of coarse-grained parallel approach using 2, 4, and 8
cores, respectively. This approach uses basic task assignment running
on multi-core distributed-memory platform. Fig. 8. The normalized energy consumption results of coarse-grained

parallel approach using 2, 4, and 8 cores, respectively. This approach
uses basic task assignment running on multi-core distributed-memory
platform.

SHEN ET AL.: EEPC: A FRAMEWORK FOR ENERGY-EFFICIENT PARALLEL CONTROL OF CONNECTED CARS 75

our basic parallel control approach reduces the execution
time of EEPC framework at the cost of energy consumption.

In this experiment, we leverage the basic task assignment
to control the routing of CVs in parallel. We demonstrate the
effectiveness of parallel control approach to reduce the run-
time, further improving the real-time performance. It is a pity
that the basic task assignment enables the parallel control
approach to perform task-level synchronization generating
the expensive communication overheads, thereby impacting
the scalable speedup. In addition, using basic task assignment,
our parallel approach has an impact on energy consumption.
To improve the parallel approach, the region-based task
assignmentwill be discussed in the following section.

7.4 Region-Based Parallel Control Study

In the EEPC framework, the region-based parallel control
approach is the other coarse-grained scheme and it lever-
ages the region-based recursive partitioning to guide the
task assignment. In the next series of experiments, we study
the region-based task assignment approach and evaluate its
impacts on the speedup and energy consumption of parallel
control approach in the EEPC framework.

It is the same to the basic coarse-grained scheme, we still
select two, four, and eight cores to perform the parallel con-
trol of CVs. Fig. 9 shows the available speedups of the
coarse-grained region-based parallel control approach when
comparing to the total runtime of the sequential control
approach. On average, our region-based parallel control
approach achieves about 1.4�, 2.3�, and 3.6� speedups
using two, four, and eight cores, respectively. Benefiting
from region-based recursive partitioning, the tasks in their
respective subregions are parallelized without task-level
synchronization. This is due to that each subregion has the
independent tasks. Thus, we perform the region-level syn-
chronization rather than task-level synchronization, further
reducing the communication overheads. Thus, the available
speedup is improved significantly. We believe that leverag-
ing region recursive partitioning to guide the task assign-
ment is an attractive approach to parallel control the routing
of CVs in the EEPC framework.

We then study and evaluate the energy consumption of
region-based parallel control approach using two, four, and

eight processor cores, respectively. Fig. 10 gives their nor-
malized energy consumption to the sequential control
approach. Overall, the region-based partitioning has also a
slightly impact on the energy consumption results of paral-
lel control approach. This impact is the similar to the basic
task assignment of parallel control approach. In terms of
two cores, our region-based parallel approach increases
about 3.5 percent energy consumption on average. When
adding the number of cores, the energy consumption is
slightly increased only. We believe that this impact is still
acceptable when improving the real-time performance in
large-scale autonomous transportation systems. Comparing
with basic task assignment, it is more efficient to leverage
the region-based recursive partitioning to guide the task
assignment so that we control the routing of CVs in parallel.
Thus in the EEPC framework, our region-based parallel
control is more effective to improve the real-time perfor-
mance with an acceptable energy consumption.

Figs. 9 and 10 demonstrate the effectiveness of our
energy-efficient parallel control approach by exploiting
region-based recursive partitioning. In this experiment, our
approach scales to eight processor cores to achieve about
3.6� speedup on average. In terms of large-scale case10, it
can achieve the maximum speedup of 5� using 8 cores and
it only takes about 170 seconds to find an energy-efficient
conflict-free control solution in the EEPC framework. We
believe that it is very attractive to deploy our EEPC frame-
work into the modern autonomous transportation systems
to control the routing of large-scale CVs.

7.5 Fine-Grained Parallel Control Study

Our fine-grained scheme enables the EEPC running on the
multi-core shared-memory platform. In the scheme, the task
of controlling a single-vehicle routing is parallelized using
multi-threading techniques. In the following series of
experiments, we evaluate the available speedup and energy
consumption of fine-grained parallel control approach in
the EEPC framework.

Fig. 11 shows the speedup as a function of the number of
threads for fine-grained parallel control approach. In terms
of two threads, a speedup of about 1.2� is achieved on aver-
age. We also observe that the available speedup is slow
down with the number of threads increases. Note that our

Fig. 9. Speedups of region-based parallel control approach using 2, 4,
and 8 cores, respectively. This approach uses region-based partitioning
to guide the task assignment running on multi-core distributed-memory
platform.

Fig. 10. Normalized energy consumption of region-based parallel control
approach using 2, 4, and 8 cores, respectively. This approach uses
region-based partitioning to guide the task assignment running on the
multi-core distributed-memory platform.

76 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

fine-grained scheme achieves about 1.7� and 2.3� speed-
ups on average using four and eight threads, respectively.
The results show that the scalable speedup of the fine-
grained scheme is very slow, depending heavily on the
memory architecture of multi-core processor systems. In
fine-grained scheme, pairs of cores will share the data in the
same memory. When we use two threads, one thread will
communicate with the other thread through the shared
cache. When we adopt four or eight threads, the communi-
cation between threads will be probably occur at the main
memory, severely impacting the available speedup. The
speedup of fine-grained scheme is poor in comparison with
the speedup of coarse-grained scheme. Coarse-grained
scheme is the more attractive parallel approach to provide a
better speedup in the EEPC framework.

Fig. 12 shows the energy consumption of fine-grained par-
allel control approach normalized to the original sequential
control approach. The fine-grained scheme has also a slightly
impact on the final energy consumption and we observe that
in all cases, the maximum change to energy consumption is
less than 6 percent. The results demonstrate that the fine-
grained scheme is feasible to generate the energy-efficient
control solution. In terms of small-scale cases, from case 1 to
case 4, the maximum energy consumption is less than
2 percent. In terms of all the cases, the fine-grained scheme
does not significantly impact the final results of energy con-
sumption with more than two threads. In comparison with
coarse-grained scheme, the fine-grained scheme has the

better results of energy consumption. Fine-grained scheme is
the more attractive parallel approach to provide a smaller
energy consumption in the EEPC framework.

In the EEPC framework, our control approach and its
parallel techniques are very effective to large-scale CVs. our
sequential control approach can enable each vehicle to have
an energy-efficient conflict-free route and it requires to take
a long time to iteratively find a feasible control solution,
especially for large-scale CVs. Our parallel techniques can
accelerate the runtime to improve the real-time performance
with a slightly energy degradation.

7.6 Comparison Study on Parallel Control in EEPC

EEPC performs the sequential cost-based iterative control
process to eliminate the resource conflicts while minimizing
the energy consumption. The execution time is relatively
long especially for large-scale CVs. This motivates us to
leverage multi-core parallel methodologies to accelerate the
execution time to improve real-time performance. As shown
in Tables 5 and 4, all of the proposed parallel control
approaches have a better performance speedup comparing
to the proposed sequential control approach. And at the
meanwhile, these parallel control approaches have the
slight degradation on energy efficiency. Here we provide
more detailed analysis.

The sequential control approach is heuristic and this
results in noise in the sequential control approach. Thus the
parallel approaches are difficult to generate the same energy

Fig. 11. The available speedups of fine-grained parallel control approach
using 2, 4, and 8 threads, respectively. This approach is performed on
the multi-core shared-memory platform.

Fig. 12. The normalized energy consumption results of fine-grained par-
allel control approach using 2, 4, and 8 threads, respectively. This
approach is performed on the multi-core shared-memory platform.

TABLE 5
The Total Runtime of Proposed Parallel Control Approaches Across Ten Different Benchmarks (Time: second)

Methods Coarse-Grained Parallel Approach Region-Based Parallel Approach Fine-Grained Parallel Approach

Name 2-process 4-process 8-process 2-process 4-process 8-process 2-thread 4-thread 8-thread

case 1 4.67 3.04 2.13 4.17 3.06 2.09 4.78 3.26 2.85
case 2 28.83 20.32 13.46 28 20.19 12.92 28.86 21.54 17.01
case 3 7.85 4.76 3.8 7.15 5.1 3.58 7.74 5.11 4.47
case 4 55.76 34.14 24.85 54 38.17 24.9 57.38 43.26 32.43
case 5 57.93 41.55 27.43 52.82 35.24 27.37 61.06 49.55 36.07
case 6 235.69 139.75 93 207.86 117 88.32 252.57 196.41 135.92
case 7 336.25 226.03 155.6 341.4 209.52 147.22 363.15 302.63 217.71
case 8 229.32 134.81 84.17 200.3 112.47 80 257.16 180.5 120.4
case 9 182.6 113.94 81.82 183.46 102.2 82.5 212 153.18 102.12
case 10 539.04 348.66 195.57 455.25 266.39 171.61 627.37 439.32 283.49

SHEN ET AL.: EEPC: A FRAMEWORK FOR ENERGY-EFFICIENT PARALLEL CONTROL OF CONNECTED CARS 77

consumption as the sequential approach. In sequential
control approach, EEPC routes a current vehicle and then
routes the next vehicle and so on. Note that before routing
the next vehicle, EEPC knows which resources are used by
the previous vehicles. In coarse-grained approach, EEPC
concurrently routes a batch of current vehicles and then per-
forms the data synchronization and then concurrently
routes the next batch of vehicles and so on. Note that in a
batch of vehicles, EEPC does not know which resources are
used each other, resulting in some detours. This lengthens
the routes of some vehicles, further increasing the energy
consumption. Similarly, in fine-grained approach, EEPC
uses multiple threads to parallelize the control of a single-
vehicle routing and they also lengthen the single-vehicle
route increasing energy consumption. Moreover, the energy
consumption of fine-grained approach is slightly smaller
than coarse-grained approach. Thus it is difficult to design
other parallel approaches to keep same energy efficiency as
the sequential approach.

8 DISCUSSION AND POSSIBLE LIMITATIONS

The simulation results show that our EEPC framework is a
desirable choice for autonomous control systems in the con-
text of cyber-physical systems applications. The EEPC
framework can iteratively eliminate the resource conflict
while minimizing the energy consumption. Benefiting from
multi-core parallel techniques, EEPC also performs better in
terms of processing time. It is convincing that our EEPC
framework is an attractive choice for modern intelligent
transportation systems.

Our key goal is to reduce the energy consumption while
eliminating the conflicts between CVs in autonomous con-
trol systems. We leverage a cost function to iteratively
update the resource weight and further to determine which
vehicle needs the resource most. Since the iterative process
is time-consuming especially for large-scale CVs, our sec-
ond goal is to reduce the processing time to improve the
real-time performance of the EEPC framework. We present
two parallel approaches: coarse-grained scheme and fine-
grained scheme. In coarse grain we explore the task assign-
ment to parallelize the multi-vehicle routing while in fine
grain we parallelize the task of controlling a single-vehicle
routing. Coarse-grained scheme has better speedup and
fine-grained scheme has smaller energy consumption. We
can believe that the EEPC framework meet the requirement
of autonomous control systems for cyber-physical systems
applications very well.

There are some limitations about our cost-based iterative
EEPC framework at this stage. First, we use average speed
to replace the practical time-variant speed for building the
energy consumption model. This enables us to have the
chance to explore the energy-efficient conflict-free control
solutions. Our framework can fast generate the feasible
solution and the processing time typically is on the order of
seconds or minutes. While it is probably different from the
practical solutions, it is still meaningful to guide the control
of CVs in modern transportation systems. In the future
work, we attempt to deploy the EEPC framework into the
intelligent transportation system of Guangzhou city, China.
Second, our work is based on macroscopic model and it

does not consider much about other features of CVs run-
ning on the ground traffic network. We simplify the net-
work graph construction and explore how to reduce the
conflict and energy consumption. Thus, the technical contri-
bution in this paper is rather limited. We improve the basic
EEPC framework considering the microscopic features of
the network graph in our future work. Third, developing
the efficient autonomous control system is non-trivial. Pre-
vious work focus on the time-variant control approach and
they cannot always generate the most energy-efficient solu-
tions. Moreover, they also cannot completely eliminate the
conflicts between CVs. In addition, the traffic jam time is
very length and unacceptable in practical time-variant sce-
narios. In contrast, our work does not consider the time-var-
iant problem in the EEPC framework. Thus we improve the
EEPC framework considering the time-variant problem in
our future work. We believe that our EEPC framework will
be an important part of autonomous control systems in the
context of modern cyber-physical systems applications.

9 CONCLUSION

It is a very important problem to control the routing of CVs
in the cyber-physical system applications. We propose a
cost-based iterative control framework able to generate
the energy-efficient route, eliminate the conflict, and lever-
age the multi-core parallel techniques to improve the real-
time performance for autonomous control systems. We
leverage cost function to iteratively eliminate the resource
conflicts between vehicles, further ensuring the safety driv-
ing. At the meanwhile, energy-efficient route is obtained by
minimizing the usage of road segment resources. In addi-
tion, we explore the different grained parallel approaches to
accelerate the processing time, further improving the real-
time performance. Simulation experiments demonstrate the
effectiveness of our control framework.

ACKNOWLEDGMENTS

We appreciate the insightful comments and feedbacks from
anonymous reviewers. This work is partly supported by the
National Natural Science Foundation of China (NSFC)
under Grant No. 61433019 and No. 61802446. This work is
also partly supported by the Projects for Guangdong Intro-
ducing Innovative and Entrepreneurial Teams under Grant
No. 2016ZT06D211, and Guangdong Basic and Application
Basic Research Teams under Grant No. 2018B030312002.

REFERENCES

[1] A. Sciarretta, G. Nunzio, and L. Ojeda, “Optimal ecodriving con-
trol: Energy-efficient driving of road vehicles as an optimal con-
trol problem,” IEEE Control Syst. Mag., vol. 35, no. 5, pp. 71–90,
Oct. 2015.

[2] M. Kubicka, J. Klusacek, A. Sciarretta, A. Cela, H. Mounier,
L. Thibault, and S. Niculescu, “Performance of current eco-routing
methods,” in Proc. IEEE Intell. Vehicles Symp., 2016, pp. 472–477.

[3] C. Guo, B. Yang, O. Andersen, C. S. Jensen, and K. Torp, “Eco-
Mark 2.0: Empowering eco-routing with vehicular environmental
models and actual vehicle fuel consumption data,” Geoinformatica,
vol. 19, no. 3, pp. 567–599, Jul. 2015.

[4] Z. Chen, L. Li, B. Yan, C. Yang, C. Martnez, and D. Cao, “Multi-
mode energy management for plug-in hybrid electric buses based
on driving cycles prediction,” IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 10, pp. 2811–2821, Oct. 2016.

78 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

[5] L. Guzzella and A. Sciarretta, Vehicle Propulsion Systems: Introduc-
tion to Modeling and Optimization, Berlin, Germany: Springer, 2013.

[6] G. Nunzio, L. Thibault, A. Sciarretta, “A model-based eco-routing
strategy for electric vehicles in large urban networks,” in Proc.
IEEE 19th Int. Conf. Intell. Transp. Syst., 2016, pp. 2301–2306.

[7] R. Karp, “Reducibility among combinatorial problems,” Complexity
Comput. Comput., In: Miller R.E., Thatcher J.W., Bohlinger J.D.
(Eds), The IBM Research Symposia Series. Springer, Boston, MA.
1972. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-1-4684-2001-2_9#citeas

[8] I. Amundson and X. Koutsoukos, “A survey on localization for
mobile wireless sensor networks,” in Proc. Int. Workshop Mobile
Entity Localization TrackingGPS-Less Environments, 2009, pp. 235–254.

[9] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20,
no. 2, pp. 243–255, Apr. 2004.

[10] F. Miao, S. Han, A. M. Hendawi, M. E. Khalefa, J. A. Stankovic,
and G. J. Pappas, “Data-driven distributionally robust vehicle bal-
ancing using dynamic region partitions,” in Proc. ACM/IEEE 8th
Int. Conf. Cyber-Phys. Syst., Apr. 2017, pp. 261–271.

[11] A. Arsie, K. Savla, and E. Frazzoli, “Efficient routing algorithms
for multiple vehicles with no explicit communications,” IEEE
Trans. Autom. Control, vol. 54, no. 10, pp. 2302–2317, Oct. 2009.

[12] Y. Wan and S. Roy, “A scalable methodology for evaluating and
designing coordinated air-traffic flow management strategies
under uncertainty,” IEEE Trans. Intell. Transp. Syst., vol. 9, no. 4,
pp. 644–656, Dec. 2008.

[13] G. Naus, J. Ploeg, M. Molengraft, W. Heemels, and M. Steinbuch,
“Design and implementation of parameterized adaptive cruise
control: An explicit model predictive control approach,” Control
Eng. Practice, vol. 18, no. 8, pp. 882–892, Aug. 2010.

[14] R. Negenborn, B. Schutter, and J. Hellendoorn, “Multi-agentmodel
predictive control for transportation networks: Serial versus paral-
lel schemes,” Eng. Appl. Artif. Intell., vol. 21, no. 3, pp. 353–366,
Apr. 2008.

[15] K. Kim, “Collision free autonomous ground traffic: A model pre-
dictive control approach,” in Proc. ACM/IEEE Int. Conf. Cyber-
Phys. Syst., 2013, pp. 51–60.

[16] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. ACM Int. Symp.
Field-Programmable Gate Arrays, 1995, pp. 111–117.

[17] D. Chen, J. Cong, and P. Pan, “FPGA design automation: A
survey,” J. Foundations Trends Electron. Des. Autom., vol. 1, no. 3,
pp. 139–169, Jan. 2006.

[18] A. Kahng, I. Markov, and J. Hu, VLSI Physical Design: From Graph
Partitioning to Timing Closure, Berlin, Germany: Springer, 2011.

[19] J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney, “Statistical
properties of community structure in large social and infor-
mation networks,” in Proc. 17th Int. Conf. World Wide Web, 2008,
pp. 695–704.

Minghua Shen received the PhD degree in
computer science from the Peking University, in
2017. He is currently an associate researcher
with the School of Data and Computer Science,
Sun Yat-sen University, China. His research
interests include FPGA synthesis, heteroge-
neous and parallel computing, and cyber-physical
systems. He is a member of the IEEE and ACM.

Guojie Luo received the BS degree in computer
science from Peking University, Beijing, China, in
2005, and the MS and PhD degrees in computer
science from UCLA, in 2008 and 2011, respec-
tively. He is currently an associate professor with
the School of EECS, Peking University. His rese-
arch interests include electronic design automa-
tion, heterogeneous computing and emerging
devices, and cyber-physical systems. He is a
member of the IEEE and ACM.

Nong Xiao received the BS and PhD degrees in
computer science from the College of Com-
puter, National University of Defense Technology
(NUDT), China, in 1990 and 1996, respectively.
He is currently a professor with the School of Data
and Computer Science, Sun Yat-sen University.
His current research interests include parallel and
distributed computing, computer storage system,
and computer architecture. He is a senior member
of the IEEE and amember of ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SHEN ET AL.: EEPC: A FRAMEWORK FOR ENERGY-EFFICIENT PARALLEL CONTROL OF CONNECTED CARS 79

https://link.springer.com/chapter/10.1007/978-1-4684-2001-2_9#citeas
https://link.springer.com/chapter/10.1007/978-1-4684-2001-2_9#citeas

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

