
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020 411

Serial-Equivalent Static and Dynamic
Parallel Routing for FPGAs

Minghua Shen , Member, IEEE, Wentai Zhang, Student Member, IEEE, Guojie Luo , Member, IEEE,
and Nong Xiao, Senior Member, IEEE

Abstract—Serial equivalency enables easier regression testing
and customer support in production-grade parallel CAD tools.
While existing parallel routing techniques have become suffi-
ciently advanced to provide good speedup, support for serial
equivalency still has been very limited or ignored because it was
considered costly. In this paper, we present a serial-equivalent
parallel router that not only provides significant speedup but
also produces the same result as the serial router. This parallel
router primarily leverages a dependency-aware scheduling algo-
rithm to facilitate the serial equivalency. Moreover, regardless of
how many processor cores are used, this scheduling algorithm
also enables parallel router to have the same result as the serial
router. In scheduling algorithm, according to the original net
order of serial router, all of the nets are scheduled to a series of
different stages. Specifically, the independent nets are scheduled
to the same stage and they can be routed in parallel while the
dependent nets are scheduled in different stages and they are
processed in serial. Note that the parallel routing of independent
nets can be explored in static and dynamic fashions, and the
data synchronization between dependent stages is implemented
in MPI-based message queue. Experimental evaluations using
ten large designs from the academic VTR benchmark suite show
that our parallel router can scale to 32 processor cores at least
to provide an average 19.13× speedup compared to the state-of-
the-art academic VPR router. And most importantly, our parallel
router can maintain the serial equivalency which achieves the
same results as the serial router. To the best of our knowledge, it
is the first parallel router that provides significant speedup with
a serial equivalency guarantee.

Index Terms—Field-programmable gate array (FPGA), FPGA
CAD, parallel routing, routing, serial equivalency.

Manuscript received July 10, 2018; revised October 17, 2018; accepted
November 30, 2018. Date of publication December 21, 2018; date of cur-
rent version January 18, 2020. This work was supported in part by the
National Key Research and Development Program of China under Grant
2018YFB1003502, in part by the National Natural Science Foundation of
China under Grant 61433019 and Grant 61802446, and in part by the Program
for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant
2016ZT06D211. This paper was recommended by Associate Editor P. Leong.
(Corresponding author: Minghua Shen.)

M. Shen is with the School of Data and Computer Science, Sun
Yat-sen University, Guangzhou 510275, China, and also with the Key
Laboratory of Machine Intelligence and Advanced Computing, Ministry
of Education, Sun Yat-sen University, Guangzhou 510275, China (e-mail:
shenmh6@mail.sysu.edu.cn).

W. Zhang and G. Luo are with the Center for Energy-Efficient Computing
and Applications, School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China.

N. Xiao is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510275, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2887050

I. INTRODUCTION

IN THE past 30 years, field-programmable gate arrays
(FPGAs) have increased in speed by a factor of 100,

meanwhile, cost and energy consumption per unit function
have both decreased by more than a factor of 1000 [1].
These advancements are particularly promising which enables
FPGAs to become the application accelerators deployed in
datacenters. For example, Microsoft leverages the FPGAs
to accelerate website search engine and software network
functions [2], [3]. Unfortunately, the capacity of FPGA has
alternately increased by more than a factor of 10 000 owing to
the quantitative effects of Moore’s Law. This change has also
raised challenges to existing CAD compilation tools, which
are used to synthesize the application designs onto underlying
FPGA devices. Since the scale of the target application design
increases, the compilation time of the CAD tool increases.

One possible direction to accelerate the compilation time
of CAD tools is by using a faster processor. However, the
failure of Dennard scaling has limited the maximum speed
of a single processor. Considering that multicore processor
has become prevalent today, parallelization has very strong
attraction in many fields to address the runtime challenge.
Specifically, parallel programs are preferred to be serial equiv-
alency which must always give the same results as the serial
version of the parallel algorithm. Meanwhile, this property is
also emphasized by Altera for easier regression testing and
customer support in industry [4]. This motivates the need to
have a serial-equivalent parallel design implementation tool
flow for FPGAs.

In FPGA CAD compilation flow, routing is probably the
most tedious and time-consuming process. Obtaining a feasi-
ble routing solution is an NP-complete problem which finds
a set of disjoint paths in a general graph. The heuristic
PathFinder [6] algorithm works well in practice and it is also
in the predominant use in academic research. This algorithm
is usually divided into three nested iterations. In outermost
iterations, it forces the nets to negotiate with each other to
decide who will make a detour around the dependent routing
resources, until all the dependencies are resolved to obtain
a feasible solution. In middle iterations, it rips up an exist-
ing routing path and reroutes it by invoking maze expansion,
which computes a path from the source node to each sink node
in routing resource graph (RRG). In innermost iterations, the
maze expansion employs the single source shortest path solver,
which is usually implemented by Dijkstra’s algorithm or A*
search. However, there exist a dependency problem on routing
a net one by one, this algorithm is serial in nature and it is
nontrivial to perform the parallel routing of multiple nets for
FPGAs.

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4747-8020
https://orcid.org/0000-0003-4932-3655


412 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

Parallel routing for FPGAs has been studied extensively in
the past few years. While existing work has witness the numer-
ous efforts to explore the parallel routing, most of them have
one or more of the following drawbacks which are not solved
completely.

1) Quality of results (QoR) is a commonly used tar-
get in the modern routing study, because it directly
affects maximum clock frequency and other design
metrics, such as area, power, and routability. Some
parallel routers [13], [14], however, have unacceptable
degradation in the routing quality.

2) Determinism is very crucial in early design develop-
ment and debugging, evidenced by vendors and users
expect the same results to be produced each time when
the routing tools are executed in parallel. However,
some parallel routers [12], [15] cannot provide the
deterministic results, where different results are pro-
duced each time the parallel router is executed. Thus,
these parallel routers are impractical in an industrial
context.

3) With the increasing logic capacities, scalability has
become more important in modern parallel router.
Several approaches [10], [11] try to partition the rout-
ing region into several subregions, the nets in their own
respective subregions can be routed in parallel. However,
some high fanout nets need to use some resources that
distributed in other subregions and these nets cannot be
routed in parallel. It is even worse that the number of
such nets will increase when the number of partitions
increases. Therefore, these parallel routers are not highly
scalable.

Serial equivalency is an another indispensable feature to guar-
antee that parallel router always provides the same answer as
the serial router. However, this property is rarely studied in
prior parallel routers. Creating a faster and better router from
scratch with equal capabilities and quality would be very dif-
ficult, and for this reason, we also explore the parallel router
with a serial equivalency guarantee. Notably, serial equiva-
lency is completely different from determinism, and it is an
even stronger constraint we can apply to our proposed parallel
router.

In this paper, we explore serial-equivalent multicore parallel
routing for FPGAs. We leverage an optimal dependency-
aware scheduling algorithm to guarantee serial equivalency
of parallel router and explore the static and dynamic
parallel techniques on multicore processor platform to
expose a greater degree of parallelism. In our proposed
parallel router, all of the nets are scheduled into sev-
eral stages. The same stage has independent nets that
can be routed in parallel while the different stages have
dependent behaviors and they are processed in serial.
Note that independent nets can be routed in static and
dynamic parallelization, and data synchronization between
dependent stages is implemented in MPI-based message
queue. Our main contributions are summarized as fol-
lows.

1) To the best of our knowledge, it is the first serial-
equivalent parallel router with a significant speedup
guarantee for FPGAs.

2) We propose an optimal dependency-aware scheduling
algorithm that enables the benefits of serial equivalency
for parallel routing.

3) We explore the static and dynamic parallel routing with
MPI-based messaging queue on multicore distributed-
memory parallel platform.

4) We still provide significant speedup even with the con-
straint of serial equivalency, although it was considered
expensive.

Experimental results using ten large designs from the aca-
demic VTR benchmark suite show that our parallel router
can scale to 32 processing cores to provide an aver-
age 19.13× speedup and maintain serial-equivalent rout-
ing results comparing to the state-of-the-art academic VPR
router.

The remaining part of this paper is organized as follows. In
Section II, we describe the related work. In Section III, we
give the motivation and overall design flow. In Section IV, we
detail the scheduling algorithm. In Section V, we describe the
static parallel approach. In Section VI, we present the dynamic
parallel approach. In Section VII, we analyze the experimental
results and evaluate the performance of the proposed parallel
routing approaches. In Section VIII, we discuss the proposed
parallel approaches and conclude this paper in Section IX.

II. RELATED WORK

There is an abundance of work in the literature concerning
FPGA routing, and we describe the most relevant works here,
highlighting the elements that are beneficial for multicore par-
allel routing. Summaries include the works of process-level
parallel routers [10], [11], [14]–[16] and thread-level parallel
routers [12], [13], [17]. Specifically, the process-level parallel
routers are based on MPI techniques while the thread-level
parallel routers are based on multithreading techniques.

Cabral et al. [10] partitioned entire RRG into several dis-
joint subgraphs and the nets in subgraph are routed in parallel.
To generate the disjoint subgraphs, they require the FPGA
architecture to have the disjoint switch box topology. Since
the subgraphs are disjoint, there is no data synchronization
between processor cores during parallel routing. As a result,
they can achieve close to linear speedup for parallel rout-
ing. However, the disjoint switch topology is not suitable for
modern FPGA architectures.

Gort and Anderson [11] partitioned all of the nets into
different processor cores for parallel FPGA routing. Data
synchronization among processor cores by using MPI-based
message queue. Deterministic results are guaranteed by receiv-
ing the routing data in a blocking manner. However, this
blocking scheme imposes expensive synchronization time and
reduces the speedup. To improve the speedup, they consider
the net dependency and only synchronize the dependent nets
during parallel routing.

Moctar and Brisk [12] exploited speculative parallelism for
multithreaded parallel routing. They allow each thread to pro-
cess multiple iterations at once and use locks to implement the
thread-level synchronization. If a lock can be acquired, paral-
lel runtime detects the dependency and rolls back one of the
dependent activities. This requires having always a copy of
the data before modifications. Unfortunately, this speculative
parallelism can not guarantee the deterministic results.

Hoo et al. [13] formulated parallel routing as a linear pro-
gramming problem and partition the problem into independent
subproblems that can be solved in parallel. Parallel routing
is done by using the Intel threading building block (TBB)



SHEN et al.: SERIAL-EQUIVALENT STATIC AND DYNAMIC PARALLEL ROUTING FOR FPGAs 413

library. They can achieve good speedup when the overhead of
task creation and context switching with Intel TBB are amor-
tized. Unfortunately, such speedup will degrade the critical
path delay dramatically.

Shen and Luo [14] employed recursive partitioning to par-
allelize the multinet routing for FPGAs. All the nets are
partitioned into three subsets, where the subset containing
dependent nets is routed in serial and the remaining two
subsets containing independent nets are routed in parallel.
This partitioning can be solved in dynamic programming.
Unfortunately, their approach needs to take much longer
wirelength for parallel routing.

Hoo and Kumar [15] exploited speculative parallelism and
path encoding for parallel FPGA routing. They accelerate the
routing in speculative parallelism and iteratively reduce the
number of processes to guarantee the convergence of parallel
router. The parallel routing time can be reduced by encod-
ing the routing paths to sinks in a space-efficient manner.
While they achieve good speedup, their parallel router can
not produce the deterministic results.

Shen et al. [16] explored synchronous and asynchronous
parallel routing for FPGAs. They enable asynchronous paral-
lelism for parallel routing the independent nets to maintain
good speedup without requiring communication overhead.
They employ synchronous parallel routing for dependent nets
to guarantee parallel router has same convergence to serial
router. Moreover, they optimize the rip-up and reroute process
to reduce the parallel routing time.

Hoo and Kumar [17] presented a parallel deterministic
router based on spatial partitioning. To improve speedup,
nets within a partition are scheduled to be routed in paral-
lel. Multisink nets are decomposed into single-sink nets, and
their bounding boxes are shrunk to increase the number of
nets that can be routed in parallel. With these enhancements,
they can reduce the routing time significantly.

In this paper, we focus on serial-equivalent parallel router
and explore static and dynamic parallel approaches for FPGA
routing.

III. MOTIVATION AND DESIGN FLOW

A. Motivation

Parallelization has become a very attractive direction to
reduce the routing time significantly. However, the dynamic
scheduling of multiple threads or processes will result in dif-
ferent routing solutions across different runs. Serial-equivalent
results across different runs and different platforms are crucial
in a commercial context for three reasons.

1) When a bug is reported, we must be able to reproduce
it. And different results to serial version will result in
extremely difficult debugging, even if the bug is not
caused by a parallel algorithm.

2) When we perform thousands of regression tests prior to
each release of CAD tools, such as Quartus and Vivado,
it would be extremely difficult to diagnose the failing
tests whose results changed randomly.

3) When vendors and customers evaluate the performance
of CAD tools and correctly use this product, it is imprac-
tical in customer support if parallel version can not
produce the same result as the serial version.

Fig. 1. Serial-equivalent parallel routing flow.

There exists a latest parallel routing work [17] with emphasis
on deterministic results. However, their parallel routing results
are different from the result of serial version when running on
machines with various numbers of cores. It is also important
to parallelize the routing across different platforms. Otherwise,
we cannot benefit from a more powerful computing platform
with more processor cores, or we will lose the benefits of
serial equivalency as mentioned earlier. When a parallel router
provides the serial-equivalent results across different runs and
different platforms, it is obvious that this algorithm produces
the deterministic routing results as well [9], because it will
generate identical routing solutions as running on a single-core
platform. Serial equivalency is a very strong constraint that
seems difficult to satisfy without degrading the performance.

In this paper, we explore the serial equivalency of par-
allel routing techniques without any significant performance
degradation. It is based on an optimal scheduling algorithm
to maintain the serial equivalency. And it also relies on
the bounding box of each net to determine the dependency
between nets in routing parallelization techniques.

B. Overall Design Flow

The overall design flow of our serial-equivalent parallel
router is shown in Fig. 1, and notably, we still adopt the
negotiation-based rip-up and reroute framework [6] to itera-
tively reduce the routing congestion until the feasible solution
finds. In this flow, each iteration has two major phases:
1) scheduling and 2) parallel routing. The scheduling phase is
to assign all of the nets to a series of different stages accord-
ing to the original net order. Specifically, the nets in the same
stage are independent and the dependent nets are distributed
in different stages for serial-equivalent parallel routing. The
details of scheduling will be revealed in Section IV. The par-
allel routing phase enables the independent nets are routed
in parallel and the dependent stages are processed in serial.
Note that we explore the static and dynamic parallel routing
of the independent nets whereby there are no clear Internet
constraints or relationships in same stage. The implementation
details will be described in Sections V and VI. Combining this
two phases, we can effectively parallelize the multinet routing
with a serial equivalency guarantee.



414 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

When the iteration proceeds, the net dependency will change
due to the relative scarcity of routing resources, both wires and
connection points. Thus, before each parallel routing iteration,
we will reschedule the nets into different stages considering
such change in order to obtain the large degree of parallelism
and ensure parallel algorithm has the same number of itera-
tions as the serial version. Moreover, all the routing resources
are accessible by every net during parallelization. Since the
serial equivalency is guaranteed by the scheduling algorithm,
multinet parallelization is supported to accelerate the routing
stages on multicore distributed-memory system.

IV. DEPENDENCY-AWARE SCHEDULING

In this section, we analyze and formulate the problem of
parallel routing with sequential equivalency and present a
scheduling algorithm to guarantee such property. Notably, the
scheduling algorithm is provably optimal.

A. Problem Statement

Serial router routes a net at a time and it depends heav-
ily on the net order. Thus, in serial router, net order is a
very important factor to the routing results [7] and moreover,
the perturbation of net order will result in divergence [8]. To
ensure that parallel router has the same convergence as the
serial router and avoid the degradation in the routing quality,
we need to maintain the original net order and route the nets
in parallel only if these nets are independent and they do not
affect the results of each other. Thereby, we have the following
definitions.

Definition 1 (Net Order): The routing nets ni are the key
elements in the scheduling. The set T = (n1, n2, n3, . . . , nt) is
the collection of all the nets, where the nets are scheduled by
the increasing order as n1, n2, n3, . . . , nt.

Note that the increasing order of parallel router is the same
as the original net order of serial router. Parallel router with
serial equivalency provides identical and deterministic results
as the corresponding serial router. We now define the concept
of serial equivalency in the following context of our parallel
routing approach. Initially, the definition of scheduling stages,
as the routing tasks, is introduced.

Definition 2 (Scheduling Stages): Given a serial order of
the nets T = (n1, n2, . . . , nt) to be routed, the parallel router
schedules a routing iteration into a sequence of scheduling
stages M = (p1, p2, . . . , pm), where

⋃
pi = T and i �= j ⇐⇒

pi ∩ pj = ∅.
Definition 3 (Serial Equivalency): Given the scheduling

stages, the parallel router routes the nets in p1 concurrently
at the first stage, and then after synchronization, it routes the
nets in p2 at the second stage, and so on. We call this parallel
router Serial equivalency, if the routing results are equivalent
to the serial routing results, where the nets n1, n2, . . . , nt are
routed one by one.

We regard such parallel router serial equivalency because
it achieves the same results as the serial router for various
numbers of cores. Thus, it shares the benefits from serial
equivalency as mentioned in Section III-A.

Considering that the nets in same stage are routed in parallel
and the stages M are processed in serial, thus we will require
analyzing the dependent relationships between different nets to
validate the serial equivalency. It is very critical to determine

the net independency before the routing in the next iteration.
Here, we analyze the dependency between nets based on the
previous iteration and consider net bounding box to enable
an efficient analysis. For each net ni, we consider the unique
bounding box bi, artificially restricting the maze expansion of
net ni. For each bounding box bi, the width and height are wi
and hi, and the lower-left cornet position is at (xi, yi). With
this assumption, we introduce the independent concept.

Definition 4 (Independent Net): The nets in a stage pk are
independent, if the bounding box of every pair of nets in pk
have no overlap, i.e.,

∀bi, bj ∈ pk

(xi + wi < xj) ∨ (yi + hi < yj)

∨(xj + wj < xi) ∨ (yj + hj < yi).

It is easy to see that if the nets in the same stage are inde-
pendent, we can route these independent nets in parallel and
still generate the same results as in a serial routing. By restrict-
ing every net in its bounding box, the net dependency can be
efficiently analyzed before the next rerouting.

According to the concepts and assumptions above, it is
natural to introduce the conflict graph G′(V ′, E′).

Definition 5 (Conflict Graph): Given the conflict graph
G′(V ′, E′), V ′ represents the set of all the nets. A directed
edge e′

ij ∈ E′ represents the dependency between nets ni and
nj, while ni must be scheduled before nj to maintain serial
equivalency.

Instead of directly minimizing the total parallel routing time,
we minimize the number of stages to increase the degree
of parallelism and reduce the synchronization overhead of
parallel processes on multicore system. Based on the above
definitions, we can formulate the serial-equivalent parallel
routing problem as a scheduling problem.

Problem: Given a conflict graph G′(V ′, E′) of all the nets,
the objective is to find a scheduling M = (p1, p2, . . . , pm),
such that the number of stages m is minimized.

Here, a stage pk is a collection of nets, and all the nets in
pk are independent in the conflict graph G′.

B. Scheduling Algorithm

Net bounding box and its expansion approaches are widely
explored to improve the serial routers. Also, they can provide
the potential to determine the dependency between nets when
we perform the parallel routing of multiple nets at each
iteration. In original serial router, the initial bounding box
is slightly larger than the minimum bounding box enclosing
the terminal pins of routed net. The inability to find a legal
routing path within the current bounding box results in expan-
sion of the current bounding box, and then the net is rerouted
again in expanded bounding box during the next iteration. This
default box expansion enables each box to be expanded in four
directions and the expanded size is set to one unit by default.
This enlightens us to refer whether the boxes are overlap to
determine the net dependency.

According to the box size of previous iteration and the
default box expansion, we have the ability to calculate the size
of expanded box at each iteration, and further determine the
dependencies between nets in the current iteration. And thus
we can schedule the nets into multiple stages to explore serial-
equivalent parallel routing. Note that we follow the original



SHEN et al.: SERIAL-EQUIVALENT STATIC AND DYNAMIC PARALLEL ROUTING FOR FPGAs 415

Algorithm 1 Scheduling Algorithm

Require: G′ = (V ′, E′)
Ensure: M

1: M ⇐ ()

2: K ⇐ 1
3: while |V ′| > 0 do
4: pK ⇐ ∅

5: for every node ni in V ′ do
6: if in-degree of ni is zero then
7: pK ⇐ pK ∪ {ni}
8: end if
9: end for

10: for every element nu in pK do
11: for every edge e′

uv do
12: E′ ⇐ E′ − {e′

uv}
13: end for
14: end for
15: V ′ ⇐ V ′ − pK
16: M.append(pK)
17: K ⇐ K + 1
18: end while

increasing net to avoid the quality degradation and to maintain
the same convergence as the serial router. Therefore, we are
inspired to focus on the net order to explore dependency-aware
scheduling algorithm for the nets.

In a sense that the goal of this scheduling is to find a set
M = (p1, p2, . . . , pm) of V ′ from the conflict graph G′, where
the elements in the same stage pk are disconnected with each
other. Every stage pk is a dependent collection, and we aim
to schedule the conflict graph G′ into dependent stages as few
as possible.

According to the Definition 5, we provide two observations
as follows.

1) Conflict graph G′ is directed, and ∀ni, nj ∈ pk, e′
ij �∈ E′.

2) If ni ∈ pk, nj ∈ pl, and e′
ij ∈ E′, we have i < j and k < l

(a necessary condition for serial equivalency).
These observations inspire us to develop a topological-like
traversal to solve the scheduling problem, and its pseudocode
is shown in Algorithm 1.

In this algorithm, every vertex and edge are accessed once
and only once. Thus, the algorithm has a complexity of
O(|V ′| + |E′|) as a conventional traversal flow. The cost to
print the solution is at least O(|V ′|), and to read the depen-
dency E′ is O(|E′|). Therefore, it is an asymptotically optimal
algorithm.

In the following demonstrations, we will prove that M is the
optimal solution with the minimum m. Obviously, this solution
is legal because no two elements in pk are connected according
to lines 5–9 in Algorithm 1. Every batches pK of nodes have
no in-edge, so that ∀ni, nj ∈ pk, e′

ij �∈ E′.
On the other hand, while no edges inside one stage pk, there

must exist edges between two consecutive stages pk and pk+1,
which is Theorem 1.

Theorem 1: ∀nv ∈ pk+1, ∃nu ∈ pk, such that e′
uv ∈ E′.

Proof (Proof by Contradiction): Suppose �nu ∈ pk with
e′

uv, and it means that nv ∈ pk+1 has a zero in-degree while
we process pk. Thus, nv will be lifted into pk instead of pk+1.
This contradicts nv ∈ pk+1.

Fig. 2. Dependency-aware scheduling. Red line denotes that there is a conflict
between nets.

When we can find a path from vertex a to vertex b, we
denote a → b. From Theorem 1, we induce a corollary, which
is obvious.

Corollary 1: In any solution P = (p1, p2, . . . , pm) given
by Algorithm 1, there exists a path nk1 → nkm of length m,
consisting of the vertices {nk1, nk2 , . . . nkm} with nkt ∈ pt.

Theorem 2: The number of stages m in M calculated from
Algorithm 1 is minimum.

Proof (Proof by Contradiction): Suppose there exist a better
solution M′ = {p′

1, p′
2, p′

3, . . . , p′
m′ } with m′ < m.

From Corollary 1, we have already found a path nk1 → nkm

with vertices {nk1, nk2 , nk3 , . . . nkm} in the solution M. For any
element nk on this path, we denote p′

q(k) as the stage that
it belongs to in the better solution M′. According to obser-
vation 1 and 2, we have q(k1) < q(k2) < · · · < q(km).
By Pigeonhole principle, since m′ < m, there exist two ele-
ments nku and nkv such that q(nku) = q(nkv). It contradicts the
previous inequality.

Fig. 2 shows an example of dependency-aware scheduling
for serial equivalency. According to the net dependent state
of previous iteration and the default net bounding box expan-
sion, we can determine the dependency between nets in the
next iteration. Thus, the independent nets can be collected and
their parallel execution will not influence on the routing results
when comparing to the serial router. And this collection pro-
cess is also successful because the scheduling algorithm can
efficiently and precisely determine the dependency between
the nets in each iteration. By using net scheduling, we start
to route the first stage of independent nets concurrently and
then route the next stage until all the stages are processed.
Moreover, the data synchronization among dependent stages
is implemented in MPI-based message queue. It is evident
that each stage can be routed in parallel without affecting the
routing results, because it benefits the net dependent detection
during routing iteration.

V. STATIC PARALLEL ROUTING

In this section, we present a static parallel routing approach
for FPGAs. Combined with dependency-aware scheduling in
static parallel router, the independent nets in same stage can
be parallelized in static fashion and the dependent stages are



416 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

Fig. 3. Load balanced partitioning of multiple independent nets in same
stage.

processed in serial to produce the serial equivalent routing
results as the serial router.

A. Load Balanced Partitioning

While the independent nets of same stages can be routed
in parallel, how to partition the nets into different proces-
sor cores for significant speedup is a nontrivial problem. As
with any parallel program, it is desirable to reduce the stall
time between different instances on the multicore processor
systems. In our static parallel router, this goal translates into
balancing the workloads between processor cores.

To enable the workloads between processor cores having
a good balance, we require to estimate the runtime needed
to route a single net. We consider the number of nodes
visited in routing a single net in the previous iteration for
predicting a single-net routing time based on two experimental
observations.

1) During rip-upping and rerouting a single net, most of
the nodes visited in the previous iteration will be reused
in the next iteration. Analysis shows that the reuse rate
of new routing path can up to 85% nodes of the original
routing path.

2) Both bounding box and number of sinks are two other
metrics for comparisons. Number of sinks is also used
as the prediction metric in [14]. We speculate that a net
with a large bounding box has a long distance between
sinks, implying a long routing time. Analysis shows that
number of explored nodes is the best metric and can lead
to the lowest amount of stall time.

Therefore, it is useful to predict the runtime of routing a sin-
gle net by using the number of nodes explored in the prior
iteration. And therefore, we use the number of explored nodes
as a load balancing metric to partition the nets into processor
cores.

Fig. 3 shows the process of load balanced partitioning for
multiple nets located in same stage. The independent nets of
same stage are partitioned into different clusters, where the
number of clusters is the same to the number of processor
cores. Partitioning into net clusters is finished such that the
sum of the number of explored nodes for the nets in each
cluster is approximately equal. Each cluster is assigned to one
processor core. Note that the number of explored nodes is no
available in the first iteration and thus, we assign each cluster
an equal number of nets in that iteration.

B. Multinet Static Parallel Routing

MPI is widely used to develop the distributed parallel
programs because it enables separate MPI processes to com-
municate with one another. In distributed parallel platform, we
focus on the multinet parallel routing approach. Specifically,
with partitioning in each stage, the nets of each stage can

Fig. 4. Multinet static parallel routing on multicore distributed platform.

be assigned into the different clusters, each of which can be
routed concurrently with separate MPI process provided by a
corresponding processor core.

Fig. 4 shows the multinet parallel routing process that the
independent nets of each stage are partitioned into the cor-
responding MPI processes. Each MPI process only routes
its own cluster of nets and maintain its own data struc-
tures, including routing path and associated congestion cost
information. When the nets of first stage are routed in parallel,
each MPI process needs to use MPI messages to communi-
cate the intermediate results with other MPI processes and
to synchronize their own respective results of overall routing
state.

MPI have a mechanism that all of the MPI processes are
invoked simultaneously. When dependent tasks are performed
in parallel, synchronization seems to be particularly important.
During our parallelization, synchronization is to determine
which routing resources have been occupied by other nets and
must avoid sharing the same resources. Because the dependent
nets are distributed in different stages, we must synchronize
the congestion information before routing the next stage such
that this parallel router converges a feasible solution.

Since we only perform the parallel routing of independent
nets in same stage and synchronize the dependent information
between different stages, the total routing time is reduced with
the similar convergence as the serial router. Mostly important,
with dependency-aware scheduling, this static parallel router
is able to give the same routing results as the serial version of
parallel router.

VI. DYNAMIC PARALLEL ROUTING

In this section, we explore dynamic parallel routing for inde-
pendent nets in a stage. Notably, this approach is different from
the static parallel routing approach and it can obtain better
speedup under the constraints of serial equivalency.

A. Dynamic Parallel Model

To fully exploit the multicore processor, parallel routing in
dynamic fashion is expected to provide a greater degree of
parallelism, where the parallel routing of multiple independent
nets can utilize multiple processor cores at the same time. This
is a foundation to provide an improvement about the available
parallel performance over traditional single-core processor.

We consider the same stage of nets S = {s1, s2, . . . , sa} to
be scheduled to a multicore processor C = {c1, c2, . . . , cb}
for dynamic parallel routing, where a is the number of inde-
pendent nets in the stage and b is the number of available
processor cores. Given a net si, we have (ri, di), where ri is



SHEN et al.: SERIAL-EQUIVALENT STATIC AND DYNAMIC PARALLEL ROUTING FOR FPGAs 417

the worst-case CPU time to route a net si and di is the CPU
time range1 to route the net si. Since router has the iterative
feature and two experimental observations in Section V-A, we
are encourage to select the routing time of previous iteration
to represent the routing time of current iteration for each net
in parallel routing. Thus, we can calculate the worst-case exe-
cution time including a start time and an end time to route
a net. Further we can calculate the time range (deadline) to
route a net on a processor core when performing the parallel
routing on a multicore processor system. According to these
available results, the utilization to route a net si on a processor
core can be calculated by ki = ri/di. Thus, the total utiliza-
tion of the stage S on multicore system can be calculated by
Ktot = ∑a

i=1 ki. Note that the total utilization must be smaller
than the number of processor cores (Ktot ≤ b) to obtain a
feasible scheduling solution2 for all the independent nets on
multicore processor systems.

In addition, the nets assigned to a processor core ci is
denoted by Pi and given a net to the assignment of proces-
sor core, the utilization of processor core ci is represented by
Ki = ∑

se∈Pi
ke (1 ≤ e ≤ a). A net is considered to be schedu-

lable for multicore processor if all of its instances finish no
smaller than their time deadlines to route a net.

B. Quantifiable Load Balancing

Load balancing is very important to provide good speedup
for dynamic parallel routing on multicore processor systems.
The goal of load balancing is to evenly assign the nets such
that every processor core has the same amount of nets. By bal-
ancing the nets between processor cores, computing resources
provided by multicore systems can be efficiently used without
over-provisioning and wasting potential.

We quantify the load balancing between processor cores
by using the coefficient of variation, which is defined as
the ratio of the standard deviation of the workload between
the processor cores to the average workload. The imbal-
anced measure can describe the deviation of the current load
balancing scheme with regard to a perfect balance. Note
that a perfect balance indicates a perfectly uniform distri-
bution. The standard deviation of an assignment is denoted
by σ = (1/b)

√
(Ki − μ)2, where μ = ∑b

i=1 Ki/b and it
means the utilization value of core. Note that a higher value
of load imbalance indicates a lower effective load balancing
scheme. In dynamic parallel routing, load balance is always
used to guide the assignment of multiple nets toward multicore
processor systems.

Lemma 1: There exists load imbalance between processor
cores if there are two cores ci and cj such that ke < Ki − Kj,
where se ∈ Pi

C. Multinet Dynamic Parallel Routing

Fig. 5 shows the independent nets of the same stage can
be scheduled to multicore processor system for dynamic par-
allel routing. This dynamic parallel approach consists of two
steps: 1) partitioning and 2) scheduling. In partitioning, each
net is assigned to a processor core, where the net is able to

1We define that the time range is equal to the deadline of routing a net on
a processor core.

2Nets are referred to be schedulable if they are scheduled to be routed on
a processor core while satisfying their deadline constraints.

Fig. 5. Independent nets are partitioned and scheduled to multiple processor
cores for dynamic parallel routing.

satisfy its deadline to complete the net routing. In scheduling,
the assigned nets are scheduled within the time line of each
processor core. Note that partitioning occurs before parallel
runtime and scheduling occurs during parallel runtime. The
per-core scheduling algorithm adopts the earlier deadline first
arithmetic by default and in this paper, we only focus on the
partitioning approach of multiple nets.

Given a schedulability test in the multicore processor
system, our partitioning problem is to assign the nets to
multiple cores effectively and this is a variation of the bin
packing problem which is NP-complete. There have several
heuristic algorithms to solve this problem, such as next-fit,
first-fit, best-fit, and worst-fit. In general, first-fit has good
schedulability but poor load balancing between multiple pro-
cessor cores, while worst-fit has good load balancing but
relatively poor schedulability when comparing to first-fit. We
propose a new partitioning approach that not only provides a
good schedulability but also maintain a good load balancing
when routing the nets between processor cores in multicore
parallel system.

The proposed approach, named load balancing-aware par-
titioning (LBAP), is implemented in the partitioning step of
Fig. 5. And the proposed LBAP consists of three critical steps
as follows.

1) Sorting: Given a stage, all the independent nets need to
be sorted in a order of decreasing utilization.

2) Partitioning: With this sorted order about independent
nets, each net is assigned into the first processor core,
where it can be routed on the processor core while
satisfying the constraints of all deadlines.

3) Repartitioning: Using the order of increasing utilization
to sort the nets, each net is reassigned into a processor
core with the minimum utilization.

The repartitioning step begins only when a feasible scheduling
solution can be generated in the partitioning step. Moreover,
the repartitioning step has a load balancing test and reparti-
tioning needs to be continue until further reassignment cannot
implement a improvement in terms of load balancing. Note
that at the repartitioning step, it is unnecessary to retest the
schedulability for each net routing on multicore processor
system. This is because a new scheduling solution generated
by the repartitioning step is feasible as well based on our
theorem (see Theorem 3).

In partitioning step, we adopt first-fit decreasing utiliza-
tion (FFDU) to obtain good schedulability. Employing FFDU
to finish a single net routing will not miss deadline at each
processor core and this is a basic requirement in multicore
parallel system. If FFDU cannot generate a feasible schedul-
ing solution for the given stage of independent nets, it returns



418 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

a value used to indicate that the partitioning of independent
nets is failed.3 If FFDU partitioning cannot generate a feasible
scheduling solution, we also cannot perform the repartitioning
step.

In repartitioning step, we adopt worst-fit increasing utiliza-
tion (WFIU) to obtain good load balancing. Note that the nets
are reassigned in order of increasing utilization and this is in
contrast to the partitioning step. This order is used to maintain
a feasible scheduling solution without retesting the schedula-
bility, although a new solution generated by repartitioning may
be different from the scheduling solution generated by FFDU.
Moreover, using the WFIU only may has weaker schedulabil-
ity and load balancing when comparing to worst-fit decreasing
utilization that has good load balancing. But in this paper,
WFIU is based on FFDU assignment and as a repartitioning
approach and thus, it can provide good schedulability and load
balancing and reduce the overheads of retesting the schedula-
bility. The repartitioning stops when there is no additional net
reassignment to improve load balancing.

Lemma 2: Given a current assignment and there is a
single net considered for repartitioning, the WFIU-based
repartitioning stops if the utilization of the single net routing
on a processor core is equal to or larger than Kmax − Kmin.

Proof: When considering a single net for repartitioning at
the multicore processor systems, we are based on the current
assignment to calculate the minimum and maximum utiliza-
tion values of processor cores, Kmin and Kmax. This current
assignment is different from FFDU assignment due to that
the assignment is changed in the repartitioning process. Based
on Lemma 1, the maximum utilization of a potential net for
repartitioning will be smaller than the difference of the min-
imum and maximum utilization values of processor cores. If
the utilization of the potential net for repartitioning is equal
to or larger than the difference of the utilization values, the
repartitioning process stops.

Since the nets considering repartitioning are sorted in the
order of increasing utilization, this process can stop when the
above condition is satisfied without requiring to further explore
repartitioning of nets to reduce the load imbalance between
processor cores. In fact, if a single net with a smaller utilization
on multicore processor system is difficult to implement any
improvement in dynamic parallel routing, there is no chance to
make any improvement in load balancing for any net with the
larger utilization than the utilization of current net considered
for repartitioning.

Theorem 3: The proposed LBAP can generate a feasi-
ble scheduling solution if FFDU can generate a feasible
scheduling solution.

Proof: Given a feasible scheduling solution generated by
FFDU assignment, the utilization of each processor core ci is
less than or equal to 1 in order to make all the nets meet all
the deadline constraints. The net se that considers for repar-
titioning is currently assigned to processor core ci and thus
its utilization is less than or equal to 1 since all the deadline
constraints are satisfied. Thus, we have

Ki ≤ 1, where se ∈ Pi. (1)

3In general, heuristic FFDU can generate a feasible scheduling solution
and if it fails in the experiments, we will adopt static parallel approach for
routing.

Assuming that there is another processor core cj with the
minimum utilization value and it is used as a target for a net
se used to reassignment, thus the utilization of the processor
core cj is less than 1 since all the given assignment satisfies
all deadline constraints. Thus, the utilization value of the pro-
cessor core cj that considers for repartitioning is not equal to
1 which forms

Kj < 1, where cj subject to min
ce∈C

Ke. (2)

Assuming that the utilization of net se is smaller than the
difference between its currently assigned core’s utilization
and the minimum core’s utilization. Then the assignment is
regarded to be load imbalance based on Lemma 1

ke < Ki − Kj, where se ∈ Pi. (3)

In this situation, LBAP has least utilization by removing the
net se from core ci and reassigning the net se to core cj. Thus,
we have

Kj = Kj + ke < Ki. (4)

Although the utilization of core cj is increased when adding
the utilization value of the net se, its value is still smaller than
1 as follows, according to (1), (3), and (4):

Kj < 1. (5)

Also, the utilization value of core ci is smaller than 1 since
the utilization value of the net se is reduced. Note that the
utilization of the net se is ke and its value is larger than 0.
Meanwhile, the modified utilization value of processor core ci
are not equal to 1 as well

Ki = Ki − ke < 1, where Ki �= 1 and ke > 0. (6)

From (5) and (6), the utilization value of these two processor
cores are smaller than 1 and thus their assignment still satis-
fies deadline constraints after repartitioning a net. According to
Lemma 2, the repartitioning process stops when the next net se
that considered for reassignment satisfies the following equa-
tion: ke ≥ (Kmax − Kmin). This is conflicted with (3). During
repartitioning, all of the above equations are satisfied and thus,
if FFDU assignment meets all the deadline constraints, the
proposed LBAP assignment satisfies all the deadlines as well.

VII. EXPERIMENTAL EVALUATION

The proposed serial-equivalent parallel routing approach is
implemented in C++ programming language, as well as it has
been incorporated into VTR 7.0 CAD flow [18]. We use the
large-scale VTR 7.0 benchmarks to evaluate the effectiveness
of our proposed parallel router. Notably, the VTR benchmark
suite is very popular in parallel routing research. Experiments
were performed on Linux servers, where each node has a 8-
core Intel Xeon processor operating at 2.2 GHz and 32 GB
memory. We run our parallel router using 2, 4, 8, 16, and 32
processor cores, and use two nodes to provide 16 processor
cores and use four nodes to provide 32 processor cores.

Table I shows a summary of ten largest VTR benchmarks
routed by serial VPR 7.0 router. Notably, most of the previous
parallel routers also chooses the VPR 7.0 router as the base-
line for comparisons. Moreover, this academic VPR 7.0 router
is faster than commercial router [5]. The serial VPR 7.0 router



SHEN et al.: SERIAL-EQUIVALENT STATIC AND DYNAMIC PARALLEL ROUTING FOR FPGAs 419

TABLE I
SUMMARY OF RESULTS USING VPR 7.0 ROUTER ACROSS

TEN LARGEST VTR BENCHMARKS

has two versions, one is routability-driven router and the other
is timing-driven router. The former optimizes the total routed
wirelength and the latter optimizes the critical path delay. In
this paper, we only parallelize the routability-driven router and
evaluate the total routed wirelength and available speedup.
Note that our proposed parallel approach is also suitable for
timing-driven router since these two serial routers have the
same data structure and algorithmic flow.

To analyze the impacts of scheduling on achieved speedup
and routed quality of the proposed static and dynamic parallel
routing approaches, we first implement a simple parallel router
(SiPaRo) for comparisons. This SiPaRo is static and employs
the same partitioning and parallelization methods described in
Section V. In SiPaRo, all of the nets are partitioned into clus-
ters, each of which is assigned to the corresponding processor
core for parallel routing. Each processor core routes a net and
then synchronizes with other processor core and then routes
the next net, and so on, until to finish the parallel routing.

Note that to analyze the experimental results, the static par-
allel routing based on dependency-aware scheduling is denoted
by StPaRo-DAS and, the dynamic parallel routing based on
dependency-aware scheduling is denoted by DyPaRo-DAS.

A. Routing Time and Speedup

In the first experiment, we evaluate the three proposed
parallel techniques (SiPaRo, StPaRo-DAS, DyPaRo-DAS) for
FPGA routing, respectively. We primarily study the execu-
tion time and available speedup when leveraging these parallel
techniques to accelerate the original routing process.

Table II shows the execution time and achieved speedup
of SiPaRo with the increasing number of processor cores,
comparing to the original serial VPR 7.0 router. On aver-
age, SiPaRo achieves about 1.22×, 1.86×, 3.23×, 5.08×, and
6.49× speedups using 2, 4, 8, 16, and 32 processor cores,
respectively. These results denote that SiPaRo is practicable
parallel approach to accelerate the routing time for FPGAs
on multicore processor systems. Please note that since all of
the nets are not scheduled to independent and dependent nets,
when parallelizing the routing of multiple nets, SiPaRo needs
to frequently perform the data synchronization between pro-
cessor cores to avoid to the congestions of routing resources,
further converging a feasible routing solution. Since the fre-
quent net-level synchronization overhead is very expensive,
SiPaRo cannot provide a high degree of parallelism in paral-
lel routing and its scalable speedups is very low. Moreover,
without dependency-aware scheduling, SiPaRo does not have

the serial equivalency and thus, it cannot provide the same
result as the serial router.

Table III describes the execution time and achieved speedup
of StPaRo-DAS with the different number of processor cores.
On average, speedups of about 1.56×, 2.83×, 5.31×, 9.26×,
and 16.58× can be achieved using 2, 4, 8, 16, and 32 processor
cores, respectively. These results denote that StPaRo-DAS is
a more feasible parallel routing approach and it is faster than
the previous SiPaRo approach in terms of achieved average
speedups. StPaRo-DAS exploits dependency-aware scheduling
algorithm to enable all of the nets to be scheduled to several
stages. In StPaRo-DAS, the independent nets are scheduled
to the same stage and the dependent nets are scheduled to
the different stages. Thus, StPaRo-DAS performs the paral-
lel routing in same stage and performs the serial processing
for different stages due to that there is a dependent behav-
ior between different stages. Therefore, StPaRo-DAS enables
the independent nets to be routed in parallel and minimizes
the number of stages to reduce the expensive synchronization
overheads between processor cores. Benefiting from the net-
dependency-aware scheduling algorithm, the achieved speedup
of StPaRo-DAS is improved significantly. When adopting
32 processor cores, StPaRo-DAS is about 2.5 times faster than
SiPaRo. In addition, it is a pity that the ideal speedup is dif-
ficult to obtain in StPaRo-DAS because the dependent stages
are processed in serial and the synchronization overhead is still
exist in parallel routing. And nevertheless, our StPaRo-DAS
can scale to 32 processor cores at least, leading to about 17×
speedup for FPGA routing. Moreover, StPaRo-DAS has serial
equivalency and produces the same result as the serial router.

Table IV reports the routing time and achieved speedup
of DyPaRo-DAS using different number of processor cores.
Considering that there is a dependent behavior on the sched-
uled stages, the data synchronization must be performed to
ensure that DyPaRo-DAS has the same number of iterations as
the serial router to find a feasible routing solution. It is difficult
to optimize the synchronization overheads in DyPaRo-DAS
under the constraints of serial equivalency and convergency.
Therefore, we consider the parallel optimization and explore
dynamic parallel routing to the independent nets of same stage
on multicore processor system. Benefiting from the dynamic
parallel routing approach, our DyPaRo-DAS can provide about
1.75×, 3.48×, 6.39×, 11.20×, and 19.13× speedups on aver-
age using 2, 4, 8, 16, and 32 processor cores, respectively.
In terms of 32 processor cores, there are about 1.13× and
2.95× improvements over the proposed StPaRo-DAS and
SiPaRo approaches, respectively. These improves come from
the implementation of dynamic parallel routing for indepen-
dent nets. Therefore, we conclude that DyPaRo-DAS has the
ability to expose a higher degree of parallelism than the above
StPaRo-DAS approach, further enabling the highly scalable
parallel routing on multicore processor system, especially with
the increasing number of processor cores. Benefiting from
dependency-aware scheduling, DyPaRo-DAS also has serial
equivalency, resulting in the same routing result as the serial
router.

From Tables II–IV, we summarize the proposed parallel
routing techniques and present some intuitive observations.
From the horizontal point of view, we observe that the
achieved speedup increases significantly with the increas-
ing number of processor cores, especially for the proposed



420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

TABLE II
ROUTING TIME OF SIPARO ACROSS TEN LARGEST BENCHMARKS

TABLE III
ROUTING TIME OF STPARO-DAS ACROSS TEN LARGEST BENCHMARKS

TABLE IV
ROUTING TIME OF DYPARO-DAS ACROSS TEN LARGEST BENCHMARKS

DyPaRo-DAS approach. From the vertical point of view, we
observe that the achieved speedup continues to increase when
increasing the size of the application designs, and we can pro-
vide a better speedup when performing the parallel routing
of the larger application designs. It is obvious that there is a
design named stereov.2 having a slightly large speedup when
comparing with other larger designs. Our analysis points out
that this design is relative congestion due to the difference of
its own architecture. But the overall looks like, we route the
larger design to achieve larger speedup based on the proposed
parallel techniques.

B. Total Routed Wirelength

In the next experiment, we evaluate the quality results gener-
ated by the proposed parallel routers. Note that with the results,

we also evaluate the serial equivalency of the proposed paral-
lel routers. Consider that the StPaRo-DAS and DyPaRo-DAS
approaches are based on dependency-aware scheduling algo-
rithm, thus they have serial equivalency and they have the
same results as the serial router. Here, we only evaluate the
StPaRo-DAS results, as well as the SiPaRo results.

Table V presents the QoR between SiPaRo and DyPaRo-
DAS compared to serial VPR 7.0 router regarding the total
routed wirelength. No difference of total routed wirelength
between serial VPR router and the proposed DyPaRo-DAS
parallel router is observed for all circuit designs. This is
because DyPaRo-DAS schedules all the nets into a series of
different stages according to the original net order of serial
router. This enables the independent nets to be located in
same stage and the dependent nets to be distributed in differ-
ent stages. The former encourages us to perform the parallel



SHEN et al.: SERIAL-EQUIVALENT STATIC AND DYNAMIC PARALLEL ROUTING FOR FPGAs 421

TABLE V
SUMMARY OF QUALITIES BETWEEN SIPARO AND DYPARO-DAS ACROSS TEN LARGEST BENCHMARKS

routing in same stage due to that there is no dependent behav-
ior between nets. The latter enlightens us to perform the
serial processing for different stages due to that there exist a
dependent behavior between different stages. This guarantees
that our DyPaRo-DAS parallel router has serial equivalency
which generates the same results as the serial router.

The SiPaRo parallel router does not schedule all the nets
into independent and dependent nets for parallel routing explo-
ration. Thus, it cannot generate the same results as the serial
router. It means that SiPaRo does not have the serial equiva-
lency. Moreover, the SiPaRo parallel router does not maintain
the original net order, resulting in a slightly higher total routed
wirelength than the serial router.

From the results of total routed wirelength, we conclude that
dependency-aware scheduling enables DyPaRo-DAS to have
serial equivalency, thereby generating the same routing results
as the serial router. Notably, this is first work to implement
serial-equivalent parallel results with significant speedup for
FPGA routing. In summary, the proposed scheduling algorithm
not only can provide significant speedup but also maintain
serial equivalency of parallel router.

C. Scalability With Titan Benchmark Suite

In the third experiment, we only evaluate the scalability of
the proposed DyPaRo-DAS parallel router. This is due to that
DyPaRo-DAS has a better speedup and it is much faster than
the proposed SiPaRo and StPaRo-DAS parallel routers. We
conduct the experiments using the large-scale and heteroge-
neous Titan benchmark suite [5]. Table VI shows the details
of ten benchmarks used for evaluations in our scalable exper-
iments. We still select the VTR 7.0 CAD tool to synthesize
these application designs adopting Altera’s Stratix IV FPGA
architecture. Note that all of the designs are routed by original
VPR 7.0 router which forms our baseline for comparisons.

Fig. 6 shows the available speedups of the DyPaRo-DAS
parallel router when routing the ten heterogeneous Titan
designs using 2, 4, 8, 16, and 32 processor cores. When adding
the number of processor cores, DyPaRo-DAS still has a good
speedup to route the heterogeneous designs. Note that with the
increasing size of application designs, DyPaRo-DAS has also
the ability to continue to provide a significant speedup. It is
obvious that our DyPaRo-DAS has the potential to route the
very-large-scale application design to provide a good speedup
when adding the number of processor cores. In terms of
using 32 processor cores, our DyPaRo-DAS can achieve about

TABLE VI
DETAILS OF TEN HETEROGENEOUS TITAN BENCHMARKS

Fig. 6. Available speedups of the DyPaRo-DAS parallel router when routing
the heterogeneous Titan designs using 2, 4, 8, 16, and 32 processor cores.

15× ∼ 25× speedups. Thus, we believe that DyPaRo-DAS
has the ability to provide the highly scalable parallel routing
for very-large-scale and heterogeneous FPGA designs.

In addition, benefiting from dependency-aware scheduling
algorithm, our DyPaRo-DAS still generates the same results
as the serial router when routing these Titan designs. With
scheduling and dynamic parallel approaches, we accelerate the
serial router for large-scale Titan designs on multicore pro-
cessor systems enabling the significant speedup and a serial
equivalency guarantee. Thus, it is great meaningful to integrate
our proposed parallel routing approach into the commercial
CAD compilation tools.

D. Comparisons With State-of-the-Art Parallel Router

We compare the proposed parallel routers with the state-
of-the-art parallel router ParaDro [17] in terms of average
speedup. Note that we do not emphasize the difference of
other factors, such as benchmarks and experimental platforms,
but focus on the general observations based on the parallel



422 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

Fig. 7. Comparisons between the state-of-the-art ParaDRo and the proposed
parallel routers.

approaches and the available speedups. This comparison fash-
ion is the same as the previous parallel routers, including the
state-of-the-art ParaDro.

Fig. 7 shows the normalized speedups of ParaDRo and our
parallel routers. Our parallel routers can scale to 32 processor
cores at least and our DyPaRo-DAS can provide about 19×
speedup. ParaDRo achieves a maximum speedup of about 5×
with 8 processor cores. In terms of the maximum speedup,
our DyPaRo-DAS is about four times faster than the ParaDRo
and thus, our parallel approach is very suitable to accel-
erate the FPGA routing. In addition, it can be seen from
Fig. 7 that with the increasing number of processor cores, the
achieved speedup is improved significantly, especially for the
proposed DyPaRo-DAS parallel router. Therefore, combining
the scheduling and dynamic parallel approaches is able to pro-
vide a significant speedup which enables the highly scalable
parallel routing for FPGAs. Moreover, our DyPaRo-DAS is
serial equivalency able to give exactly the same results as the
corresponding serial router. ParaDRo has deterministic paral-
lel routing results but this result is different from the serial
router. ParaDRo can be repaired to fulfill the serial-equivalent
requirement but at the cost of speedup [17].

From the comparisons, we conclude that our DyPaRo-DAS
parallel router can achieve much more speedup than the state-
of-the-art ParaDRo router. And most importantly, our DyPaRo-
DAS has the serial equivalency which achieves the same
results as the serial router. These conclusions demonstrate the
effectiveness of our scheduling algorithm and dynamic parallel
approach. This further shows the efficiency and effectiveness
of our serial-equivalent parallel router.

VIII. DISCUSSION AND POSSIBLE LIMITATION

The experimental results show that our parallel router can be
a desirable choice in the context of FPGA CAD compilation
tools. Dependency-aware scheduling algorithm enables our
parallel router to generate the same results as the original serial
router, further implementing the serial equivalency of parallel
router. Static parallel approach demonstrates the effectiveness
of our parallel router which provides a good speedup and
serial-equivalent results. Dynamic parallel approach enables
our parallel router to provide the significant speedup with
the different number of processor cores comparing with the
serial router, further demonstrating the high scalability of par-
allel router. When comparing with the state-of-the-art parallel

router, our parallel router also performs better in terms of
available speedup and QoR. In addition, our parallel router
has serial equivalency which produces the same results as the
serial router. It is convincing that our parallel router is an
attractive choice for FPGA routing.

There is a possible limitation about our serial-equivalent
parallel router running on the multicore processor systems. To
maintain the serial equivalency of parallel router, we require to
generate the conflict graph based on the dependencies between
different nets. The complexity of conflict graph generation is
O(N2), where N is the total number of nets. With the num-
ber of nets become large, the time to generate the conflict
graph is a possible limitation in parallel routing. But in prac-
tice, it is very fast to generate the conflict graph due to that
the total number of nets is very small for existing application
designs including large-scale Titan designs. Actually, the time
of conflict graph generation can be ignored when comparing
to the routing time. Moreover, this limitation is trivial proba-
bly and an easy and intuitive way is to partition the conflict
graph into several subgraphs for parallel routing. We believe
that our serial-equivalent parallel router will be more powerful
than the previous parallel routers and it is particularly suitable
for FPGA routing.

IX. CONCLUSION

Serial equivalency is a very important requirement in par-
allel CAD tools. In this paper, we attempt to explore serial-
equivalent parallel routing for FPGAs. We primarily employ a
dependency-aware scheduling algorithm to make all the nets
are scheduled into several stages. The same stage consists
of independent nets and can be routed in parallel while the
different stages are processed in serial. Note that we adopt
dynamic parallel routing for independent nets to expose the
large degree of parallelism. Experimental evaluations using ten
large designs from the academic VTR benchmark suite show
that our serial equivalent parallel router can achieve about 19×
speedup on average using 32 processing cores. This is the
first work to maintain serial-equivalent parallel routing with
significant speedup for FPGAs.

ACKNOWLEDGMENT

The authors would like to thank the insightful comments
and feedbacks from anonymous reviewers.

REFERENCES

[1] S. M. Trimberger, “Three ages of FPGAs: A retrospective on the
first thirty years of FPGA technology,” Proc. IEEE , vol. 103, no. 3,
pp. 318–331, Mar. 2015.

[2] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in Proc.
Int. Symp. Microarchit. (MICRO), 2016, pp. 1–13.

[3] B. Li et al., “ClickNP: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. Conf. ACM Special
Interest Group Data Commun. (SIGCOMM), 2016, pp. 1–14.

[4] A. Ludwin, V. Betz, and K. Padalia, “High-quality, deterministic parallel
placement for FPGAs on commodity hardware,” in Proc. Int. Symp. Field
Program. Gate Arrays (FPGA), 2008, pp. 14–23.

[5] K. Murray et al., “Timing-driven titan: Enabling large benchmarks and
exploring the gap between academic and commercial CAD,” J. ACM
Trans. Reconfig. Technol. Syst., vol. 8, no. 2, Apr. 2015, Art. no. 10.

[6] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. Int. Symp. Field
Program. Gate Arrays (FPGA), 1995, pp. 111–117.



SHEN et al.: SERIAL-EQUIVALENT STATIC AND DYNAMIC PARALLEL ROUTING FOR FPGAs 423

[7] R. Y. Rubin and A. M. Dehon, “Timing-driven pathfinder pathol-
ogy and remediation: Quantifying and reducing delay noise in VPR-
pathfinder,” in Proc. Int. Symp. Field Program. Gate Arrays (FPGA),
2011, pp. 173–176.

[8] P. K. Chan, M. D. F. Schlag, C. Ebeling, and L. McMurchie,
“Distributed-memory parallel routing for field-programmable gate
arrays,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 19, no. 8, pp. 850–862, Aug. 2000.

[9] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir, “Parallel
programming must be deterministic by default,” in Proc. USENIX Conf.
Hot Topics Parallelism (HotPar), 2009, p. 4.

[10] L. Cabral, J. S. Aude, and N. Maculan, “TDR: A distributed-memory
parallel routing algorithm for FPGAs,” in Proc. IEEE Int. Conf. Field
Program. Logic Appl. (FPL), 2002, pp. 263–270.

[11] M. Gort and J. H. Anderson, “Accelerating FPGA routing through par-
allelization and engineering enhancements special section on PAR-CAD
2010,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31,
no. 1, pp. 61–74, Jan. 2012.

[12] Y. O. M. Moctar and P. Brisk, “Parallel FPGA routing based on the
operator formulation,” in Proc. 45th Annu. Design Autom. Conf. (DAC),
San Francisco, CA, USA, 2014, pp. 1–6.

[13] C. H. Hoo, A. Kumar, and Y. Ha, “ParaLaR: A parallel FPGA
router based on Lagrangian relaxation,” in Proc. IEEE Int. Conf. Field
Programmable Logic Appl. (FPL), London, U.K., 2015, pp. 1–6.

[14] M. Shen and G. Luo, “Accelerate FPGA routing with parallel recur-
sive partitioning,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Austin, TX, USA, 2015, pp. 118–125.

[15] C. Hoo and A. Kumar, “ParaDiMe: A distributed memory FPGA router
based on speculative parallelism and path encoding,” in Proc. Int. Symp.
Field Program. Custom Comput. Mach. (FCCM), 2017, pp. 172–179.

[16] M. Shen, N. Xiao, and G. Luo, “A coordinated synchronous and asyn-
chronous parallel routing approach for FPGAs,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Irvine, CA, USA, 2017,
pp. 577–584.

[17] C. H. Hoo and A. Kumar, “ParaDRo: A parallel deterministic router
based on spatial partitioning and scheduling,” in Proc. Int. Symp. Field
Program. Gate Arrays (FPGA), 2018, pp. 67–76.

[18] J. Luu et al., “VTR 7.0: Next generation architecture and CAD system
for FPGAs,” J. ACM Trans. Reconfig. Technol. Syst., vol. 7, no. 2, Jun.
2014, Art. no. 6.

Minghua Shen (M’18) received the Ph.D. degree in
computer science from Peking University, Beijing,
China, in 2017.

He is currently an Associate Researcher with the
School of Data and Computer Science, Sun Yat-sen
University, Guangzhou, China. His current research
interests include FPGA synthesis, heterogeneous and
parallel computing, and cyber-physical systems.

Dr. Shen is a member of ACM.

Wentai Zhang (S’16) received the B.S. degree
from Peking University, Beijing, China, in 2014,
where he is currently pursuing the Ph.D. degree
with the Center for Energy-Efficient Computing and
Applications.

He has published papers in several confer-
ences, such as ICCAD and DATE. His current
research interests include electronic design automa-
tion, heterogeneous accelerators, and medical imag-
ing analytics.

Guojie Luo (M’12) received the B.S. degree in
computer science from Peking University, Beijing,
China, in 2005 and the M.S. and Ph.D. degrees in
computer science from the University of California
at Los Angeles, Los Angeles, CA, USA, in 2008 and
2011, respectively.

He is currently an Associate Professor with the
School of EECS, Peking University. His current
research interests include electronic design automa-
tion, heterogeneous computing with FPGAs and
emerging devices, and medical imaging analytics.

Dr. Luo was a recipient of the 2013 ACM SIGDA Outstanding Ph.D.
Dissertation Award in Electronic Design Automation and the ten-year
Retrospective Most Influential Paper Award at ASPDAC 2017. He is a member
of ACM.

Nong Xiao (SM’18) received the B.S. and Ph.D.
degrees in computer science from the College
of Computer, National University of Defense
Technology, Changsha, China, in 1990 and 1996,
respectively.

He is currently a Professor with the School of
Data and Computer Science, Sun Yat-sen University,
Guangzhou, China. He has over 160 publications
to his credit in journals and international con-
ferences, including the IEEE TRANSACTIONS ON

SERVICES COMPUTING, the IEEE TRANSACTIONS

ON MULTIMEDIA, the Journal of Parallel and Distributed Computing,
the Journal of Computer Science and Technology, HPCA, ICCAD,
MIDDLEWARE, MSST, IPDPS, CLUSTER, SYSTOR, and MASCOTS. His
current research interests include network parallel computing, large-scale stor-
age system, and computer architecture.

Dr. Xiao is a member of ACM.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


