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Abstract—High-level synthesis (HLS) relies on the use of
synthesis directives to generate digital designs meeting a set of
specifications. However, the selection of directives depends largely
on designer experience and knowledge of the target architec-
ture and digital design. Existing automated methods of directive
selection are very limited in scope and capability to analyze com-
plex design descriptions in high-level languages to be synthesized
using HLS. This paper proposes a comprehensive model-based
analysis (COMBA) framework which is capable of analyzing the
effects of a multitude of directives related to functions, loops and
arrays in the design description using pluggable analytical mod-
els, a recursive data collector and a metric-guided design space
exploration (DSE) algorithm. COMBA reports a small average
error in estimating performance when compared with HLS tools
like Vivado HLS, and finds a high-performance configuration
of synthesis directives within minutes. Given different resource
constraints, COMBA finds configurations with higher speed-ups,
compared with the state-of-the-art. Moreover, COMBA can guide
the performance and area trade-off analysis. Experiments show
that our DSE algorithm outperforms the conventional genetic
algorithm, and COMBA efficiently finds a near-optimal configu-
ration, which proves the efficiency of our tool for optimizing the
practical HLS based designs.

Index Terms—Field-programmable gate arrays (FPGAs), high-
level synthesis (HLS), design space exploration.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) speed
up the system performance significantly with low

energy consumption. However, the implementation on FPGAs
requires deep comprehension of the hardware architecture
and great effort to write register transfer level (RTL) codes,
which is error-prone and time-consuming. By automatically
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synthesizing behavioral descriptions into RTL codes, high-
level synthesis (HLS) has been developed to improve the
FPGA programmability. Several FPGA vendors, such as
Xilinx and Intel Altera, have released HLS tools [1], [2].
However, the quality of the resulting RTL designs largely
depend on the configuration of synthesis directives provided by
HLS tools [1]. Significant speed-up can be achieved with prop-
erly chosen directives, while improper selection can worsen
the design performance. Therefore, an optimal configuration of
synthesis directives which maximizes the performance under
limited resource constraints is highly beneficial. Finding such a
configuration, however, is non-trivial given multiple directives
and exponentially increasing design space.

In this paper, we propose a comprehensive model-based
analysis (COMBA) framework to help designers select the
most suitable configuration for C-based description of algo-
rithms to be implemented on FPGAs. COMBA includes a
recursive data collector (RDC), a performance and resource
estimation model and an improved metric-guided design space
exploration (MGDSE-II) algorithm. The RDC computes the
required parameters for our models, supporting a rich set of
C/C++ code structures and achieving cycle-level accuracy by
considering operation chaining. The models consider more
directives than previous works, as given in Table I. We further
refine the models by considering different BRAM modes, the
influence of array partitioning on the memory resource esti-
mation and the effects of the channels introduced by dataflow.
Moreover, we demonstrate how directives interact with each
other and analyze how improper array partitioning degrades
the application performance, which help direct the search of
the optimal configuration. With more complex code structures
and more directives, the design space increases exponentially
and the brute-force method [3], [4] cannot work. Therefore, we
propose MGDSE-II algorithm with three evaluation metrics to
prune and explore the design space. By considering the array
interplay, better configurations could be found by MGDSE-II.

Experimental results show that COMBA models the
performance closely compared to Vivado HLS, and finds a
high-performance configuration within minutes in an expo-
nentially increasing design space. A preliminary version of
this paper appears in [5]. In this paper, we refine our analyti-
cal models, improve our DSE algorithm, study the impact of
the resource constraints and analyze the trade-off relationship
between performance and area.

II. BACKGROUND

A. Synthesis Directives

HLS tools provide several synthesis directives or pragmas
to create different hardware implementations from the same
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TABLE I
CONFIGURATION OF SYNTHESIS DIRECTIVES

TABLE II
MAXIMUM PORT WIDTH OF DIFFERENT MODES

(a) (b) (c)

Fig. 1. Three BRAM modes. (a) SP mode contains one port for both read and
write. (b) TDP mode contains two independent ports A and B, each of which
is used for both reads and writes. (c) SDP mode includes two independent
ports, designated as the read port and the write port separately.

C/C++ source code [1]. The performance of generated hard-
ware circuits varies with the configurations of directives [5].
This is because each directive has its specific effects on the
performance and there is mutual interaction among different
directives. To differentiate their behaviors and understand the
interaction, multiple methods have been proposed in the HLS
research community, but most of these focus on two or three
directives [4], [6]–[10]. To cover more complex designs and
to target real applications, more directives need to be consid-
ered. Table I lists the main characteristics of seven widely used
synthesis directives, provided by Vivado HLS and supported
by COMBA. The “target” denotes where the directive can be
applied and the “configuration” shows what parameters should
be set for each directive.

B. BRAM Modes

On most modern FPGAs, like Xilinx Virtex-7, each block
RAM (BRAM) can be configured as either two independent
18-Kb RAMs, or one 36-Kb RAM, and set to three modes:
1) single-port (SP) mode; 2) true dual-port (TDP) mode; and
3) simple dual-port (SDP) mode [11], as shown in Fig. 1 and
Table II. The BRAM modes impact the read/write latency
and resource usage. The SP mode cannot support simulta-
neous read and write operations, which may incur a delay
and degrade the performance. In the TDP mode, simultane-
ous memory accesses are supported, but more blocks may be
needed to store the same data set due to the smaller maxi-
mum data width, thereby increasing the resource usage. Take
the 18-Kb TDP BRAM as an example, and if the stored data is
32-bit wide, two blocks are required to cover the data width
since the maximum width of each block is 18. In the SDP
mode, the port width is the double of that of the TDP mode,

Fig. 2. Motivation example: decode_block from JPEG application. (a) Source
code. (b) Speed-ups of latency and throughput for different configurations.

and the independent read and write ports avoid the conflict
problem. However, it cannot support simultaneous multiple
reads or multiple writes. Due to the trade-off, a careful choice
of the BRAM modes is important. By modeling their effects
on the performance and area, COMBA is capable of selecting
the suitable BRAM mode for a specific application.

C. Motivation

Real applications contain complex code structures with cou-
pled functions and loops as well as multi-dimension arrays.
Fig. 2(a) shows the “decode_block” kernel in the JPEG appli-
cation [12], which contains five sub-functions, seven loops
and three arrays. For different configurations, the performance
improvement, represented by latency and throughput, varies,
as shown in Fig. 2(b). We compare loop pipelining (LP),
loop unrolling (LU), and function pipelining (FP), combined
with array partitioning for different arrays. Both LU and FP
improve the performance greatly if a beneficial array config-
uration is chosen, while LP plays a minor role. Specifically,
FP further improves throughput compared with LU. Therefore,
function-related directives, like FP, which are not considered in
previous works, are of great importance in real applications.
Loop-related directives, such as LP and LU, have different
effects on the performance, depending on the specific loop
structures. Only considering one nested loop, as in [4], does
not apply to other loop structures and cannot reveal the rela-
tionship between loops. Moreover, the array configuration has
a significant influence, resulting in great speed-ups by care-
fully deciding how to map arrays to memories and how to
choose BRAM modes. Therefore, a comprehensive and accu-
rate estimation model is required to differentiate the effects of
directives, analyze their mutual interaction and evaluate their
performance for complex applications.

Considering more directives identifies the design character-
istics but leads to a larger design space. Moreover, the different
choices of the BRAM modes further expand the design space
and increase the difficulty of selecting the best optimization
scheme. Given the example in Fig. 2, the functions may or may
not be pipelined and dataflow may or may not be applied to
the top function, resulting in 26 ∗ 2 choices in total. Similarly,
configurations of loops and arrays contain 27∗(42∗75) and 123

choices, respectively. Considering the three BRAM modes, the
design space consists of 2 ∗ 26 ∗ 123 ∗ 27 ∗ 42 ∗ 75 ∗ 3 points,
which is so large that invoking HLS tools to test each con-
figuration is infeasible. Therefore, it is crucial to develop an
efficient DSE algorithm for rapid architectural exploration in
an exponentially increasing design space.

Authorized licensed use limited to: Peking University. Downloaded on September 15,2020 at 13:38:36 UTC from IEEE Xplore.  Restrictions apply. 



1430 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 7, JULY 2020

Fig. 3. Framework overview.

III. PROBLEM FORMULATION

In a large design space with numerous configurations of
directives, the problem is how to select the optimal configura-
tion, which provides the best delay given certain resource con-
straints. We formulate the resource-constrained performance
optimization problem as

minimize
x

f (x)

subject to ri(x) ≤ ci, i = bram, dsp, lut (1)

where f (x) is the performance estimation function and denotes
the execution time (cycle) when applied with configuration x;
ri(x) is the corresponding resource usage, which is bounded
by the resource constraint ci; and i denotes the resource com-
ponents on FPGAs, i.e., BRAMs, DSPs, and LUTs. We do not
include flip-flops because they are abundant on FPGAs.

To solve this problem, we develop a comprehensive model-
based framework, as shown in Fig. 3. The input is a C/C++
application, and the output is a high-performance configura-
tion (i.e., directive setting) under given resource constraints.
First, the C/C++ specification is translated into LLVM IR
via the Clang front-end [13]. Next, the IR is sent to the
RDC to compute the parameters required by our models based
on the directive setting and pre-characterization information.
With the parameters from RDC, the proposed models estimate
the performance and area for the corresponding configuration.
Finally, the MGDSE-II evaluates the results and sets the next
configuration, and then COMBA iterates from the RDC stage
until it finds the high-performance configuration. Note that
the proposed models are pluggable and hence can accommo-
date a vast range of target FPGA architectures, though we use
Virtex-7 in this paper.

IV. RECURSIVE DATA COLLECTION

To obtain required data statistics, our RDC extracts neces-
sary data information, stores the relationship between instruc-
tions and constructs data flow graph (DFG). The input of
RDC is the LLVM intermediate representation (IR), which
can be transformed into a control and data flow graph [14]
and allows efficient analysis through LLVM passes. Our RDC
is implemented as an LLVM pass based on llvm::Module
class, and analyzes the LLVM IR to compute the parame-
ters. The parameters are divided into two categories: the static
information, e.g., the memory address of each array element,
and the dynamic information, e.g., the iteration latency of
loops. Static information is obtained by analyzing the assem-
bly instructions of LLVM IR through IR parser, as shown in

Fig. 4. Example of node weight setting: load/store operations.

Fig. 3, while dynamic information depends on code structures
and directives applied, and is computed using DFG.

A. DFG Construction

The DFG constructed by our RDC covers a rich set of
code structures like nested loops, function calls and if-else
and switch branches. It is constructed by connecting depen-
dent instructions and storing each instruction as a node, with
its latency as the node weight. A dynamic programming
approach [15] is then employed to trace each path between
two dependent instructions, calculate the latency between them
and search the longest path. The DFG construction phase
also takes into account loop and function hierarchies in the
design description and accordingly computes their latencies
by adhering to data and control flow dependencies. Sub-
functions and loops within the function hierarchy are defined
as “sub-elements” and viewed as nodes in the DFG of the top
function.

B. Node Weight Setting

We obtain the node weight by characterizing from micro-
benchmarks. Specifically, the latency of load (read) and store
(write) instructions depends on two factors. First, it depends
on whether or not the memory ports are available. If avail-
able, the load latency is two clock cycles (i.e., generating an
address in one cycle then reading the data in the next) and
the store latency is one clock cycle. If the memory ports are
not available, the delay caused by other load/store instructions
should be added to get the actual latency. Second, it depends
on what directives are set. In the example in Fig. 4, if both
loops are unrolled completely, the second loop can access the
result of the first loop directly and does not need to load b[i]
again. Therefore, the latency of load b[i] is set to zero.

C. Operation Chaining

Our framework also considers “operation chaining” to
improve scheduling and mimic the scheduling behavior in
commercial HLS tools. Operation chaining means that more
than one operation can be scheduled in one cycle if possi-
ble. An example can be seen in [5]. Characterization-based
information is used to decide on whether the operations can
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be chained or not, and this is used to modify the weight of
each node when constructing the DFG.

V. PERFORMANCE MODEL

In this section, we present our performance model for five
frequently used directives, namely, loop unrolling (LU), loop
pipelining (LP), array partitioning, function pipelining (FP),
and dataflow.

A. Loop Unrolling

LU allows iterations of one loop to execute in paral-
lel. To show the general case, we define a nested loop
L = {L1, . . . , Li, . . . , Ln}, where n is the number of loop
levels in L and L1, Li and Ln are the outermost loop, sub-
loop in level i and the innermost loop, respectively. Let
B = {B1, . . . , Bi, . . . , Bn} denote the set of loop bounds and
U = {U1, . . . , Ui, . . . , Un} denote the set of unrolling factors
respectively. The loop latency is estimated in a recursive way

CUk
Lk
= CUk+1

Lk+1
· Bk+1

Uk+1
· Uk + CUk

Lk\Lk+1
(2)

where Lk is the loop in level k; Lk+1 is the inner loop of Lk;
CUk

Lk
and CUk+1

Lk+1
are the iteration latencies of Lk and Lk+1 with

unrolling factors Uk and Uk+1, respectively; (Bk+1/Uk+1) is
the trip count after LU is applied; and Uk is a multiplication
factor since loops are scheduled in sequence in Vivado HLS,
even if they are independent [1]. When Lk is unrolled with
Uk, its sub-loop Lk+1 will be replicated, generating Uk copies
to execute in sequence. CUk

Lk\Lk+1
is the critical-path latency of

the logic specified between the loop statements, that is, the
codes within Lk and outside Lk+1, and is returned by RDC.

The initial state of the recursion is the iteration latency
(CUr

Lr
) of Lr, which is not unrolled completely with inner

loops {Lr+1, . . . , Ln} unrolled completely. CUr
Lr

and the loop
bounds are returned by RDC, and the unrolling factors come
from the directive setting. Considering each part of one
loop, (2) works for all loop hierarchies, including perfect
and non-perfect nested loops, and multiple loops, as dis-
cussed in [5]. For multiple loops, CUk+1

Lk+1
·(Bk+1/Uk+1) becomes

∑m
j=0 C

Uk+1,j
Lk+1,j

· (Bk+1,j/Uk+1,j) to add the latencies of loops at
the same level k + 1. The latency of the loop in level k (Lk)
can then be computed as CycleLk

= CUk
Lk
· (Bk/Uk).

B. Loop Pipelining

LP allows operations from different iterations to overlap for
parallelism. There are three factors: 1) the trip count; 2) the
initiation interval; and 3) the pipeline depth [16].

1) Trip Count: The trip count is the number of iterations in
a pipeline, depending on whether the loop is perfect or not. In a
perfect nested loop, when the inner loop is pipelined, the outer
loops that are not unrolled can be flattened to feed the inner
loop with new data and form a deeper pipeline to improve the
overall throughput. Then the trip count is the multiplication of
each loop’s trip count, as shown in (3). For non-perfect loops,
the codes between loop statements prevent the outer loops
from flattening, and the trip count is equal to the inner loop’s
trip count, (Bi/Ui) (the trip count of Li), as shown in (4). i is
the level of the loop which is pipelined.

CycleLk
= Di + IIi ·

(
Bi

Ui
· Bi−1Bi−2 · · ·Bk − 1

)

(3)

where CycleLk
is the latency of Lk, Di is the pipeline depth of

loop Li, and IIi is the initiation interval. Except for Li, outer
loops are not unrolled and can be flattened; otherwise, the
pipeline is maintained up to the loop level which is unrolled.

CycleLi
= Di + IIi ·

(
Bi

Ui
− 1

)

(4)

where CycleLi
is the latency of Li in an imperfect loop.

2) Initiation Interval: The initiation interval, IIi, is the
latency between the initiation of two consecutive iterations.
Minimal IIi is constrained by available resources and the loop-
carried dependence [17], shown in the following equation:

IIi,min = max
(
IIres

i,min, IIrec
i,min

)
(5)

where IIres
i,min and IIrec

i,min are the resource-constrained and
the recurrence-constrained minimum initiation intervals of
Li, respectively. Moreover, sub-functions within Li are also
pipelined, affecting IIi, shown in the following equation:

IIi = max
(
IIi,min, IIsub,max

)
(6)

where IIsub,max is the maximum initiation interval among all
the sub-functions within Li, i.e., maxsub(IIsub).

When estimating IIres
i,min, we assume that computation oper-

ators are sufficient [18] and IIres
i,min is constrained by memory

operations. Besides the LUT-based RAMs, in most cases
Vivado HLS automatically maps arrays to SP, SDP, or TDP
BRAMs, depending on the actual needs. The limited num-
ber of BRAM ports in different modes constrains IIres

i,min in
different ways, shown in the following equation:

IIres
i,min =

⎧
⎨

⎩

max
m

(⌈
Readm
RPortm

⌉
+
⌈

Writem
WPortm

⌉)
for SP and TDP

max
m

(
max

(⌈
Readm
RPortm

⌉
,
⌈

Writem
WPortm

⌉))
for SDP

(7)

where Readm and Writem denote the number of read and
write operations to array m correspondingly; and RPortm and
WPortm are the number of read and write ports, respectively,
of the memory that stores array m in corresponding memory
modes. Specifically, in SP and TDP modes, the II caused by
array m is calculated by adding both read and write operations
together considering the load and store conflict, while it is the
larger value in the SDP mode since the read and write ports are
independent, avoiding the conflict problem. Note that if array
m is partitioned, Readm, Writem, RPortm, and WPortm become
the number of read/write operations and ports of corresponding
partitions, respectively. An example is given in Section IX-B
to show the impact of BRAM modes on the II estimation.

IIrec
i,min is computed as [19], shown in the following equation:

IIrec
i,min = max

p

(⌈
Delayp

Distancep

⌉)

(8)

where Delayp is the latency between a pair (p) of dependent
instructions from different iterations and Distancep is the result
of subtracting the corresponding iteration numbers.

3) Pipeline Depth: Pipeline depth, Di, is the latency of one
iteration of the pipelined loop, which is related to the original
iteration latency CUi

Li
. Specifically, if read and write operations

access different arrays or the memory is in the SDP mode, Di

equals CUi
Li

; otherwise, Di is computed as Di = �CUi
Li

/IIi� · IIi,
considering load/store conflict. An example is shown in [5].
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C. Array Partitioning

Memory operations are often the performance bottleneck
in real applications. To enable simultaneous accesses, HLS
tools like Vivado HLS allow arrays to be partitioned into
smaller ones in different dimensions, providing three options:
1) block; 2) cyclic; and 3) complete [1]. Our framework sup-
ports multi-dimension array partitioning with the same options.
By tracking each load/store node and finding the address index
of the accessed element, RDC calculates which partition P
the element is located in using (9), and checks whether this
partition’s ports are available to compute the load/store latency.

Pi = �indexi/�sizei/fi�� (9a)

Pi = (indexi) mod (fi) (9b)

P = P1 +
n∑

i=2

(

Pi ·
i−1∏

k=1

fk

)

(9c)

where Pi is the partition number in dimension i, indexi is
the address index of the array element, sizei is the num-
ber of elements, and fi is the array partitioning factor. P
in (9c) is the partition number considering n-dimensional
array partitioning. The partition number in one dimension is
calculated in (9a) (block) and (9b) (cyclic). For the complete
option, it is calculated by setting fi = sizei in both equations.

D. Function Pipelining

Real applications often contain multiple functions. As such,
FP is critical to performance improvement by allowing con-
current execution of operations within a function. We estimate
latency and throughput to evaluate the function performance.
Tools like Vivado HLS unroll all the sub-loops completely and
pipeline each sub-function inside a pipelined function. Based
on this feature, the latency is returned by our RDC after build-
ing the DFG. The throughput measures the number of outputs
per cycle and is calculated as (1/II). II is the initiation interval
of a pipelined function as follows:

II = max
(

IIres
min, IIsub

max

)
(10)

where IIres
min is the resource-constrained minimum II, and IIsub

max
is the maximum function II among all sub-functions.

IIsub
max is computed by comparing each sub-function’s II and

choosing the maximal one. IIres
min is estimated by counting

the number of memory operations in the function, includ-
ing memory operations in the sub-functions and the logic
surrounding sub-functions, then dividing by the number of
memory ports.

E. Dataflow

Unlike FP, dataflow is the “coarse grain” pipelining at the
task level, allowing functions and loops to operate concur-
rently. It does not require sub-functions to be pipelined and
sub-loops to be unrolled, but can only be applied to functions
at the top level. Also, it aims at applications executing in a
producer–consumer model, i.e., the output of the last func-
tion/loop is the input of the next function/loop. In Vivado
HLS, functions and loops are extracted as “process functions”
(blocks of codes) and dataflow places channels between the
blocks to keep the data rate, resulting in additional area over-
head, which will be discussed in Section VI. We also utilize
throughput and latency to evaluate the performance impact of
dataflow.

Fig. 5. Illustration of the communication channels for dataflow. (a) Dataflow
using ping-pong buffers. (b) Dataflow using FIFOS.

1) Throughput: The initiation interval II is used to measure
the throughput, shown as follows:

II = IIsub
max = max

i

(
IIsub

i

)
(11)

where II equals the maximal initiation interval among the pro-
cess functions extracted from the sub-elements. Specifically,
for a sub-function i, the initiation interval of its correspond-
ing process function, IIsub

i , equals the initiation interval of
sub-function i. However, for a sub-loop, the IIsub

i of its cor-
responding process function is equal to the latency of the
sub-loop regardless of whether or not it is pipelined. This is
because the initiation interval of a pipelined loop is the interval
between two consecutive iterations, but the II of dataflow is
larger and measures the interval between two successive loops.

2) Latency: When dataflow applied on the top function, the
function latency is influenced by the memory configuration of
the channels between process functions, shown as follows:

CycleFunc =
{

max
i

(
CycleLi

)
if FIFOs used

∑n
i

(
CycleLi

)
if ping-pong buffers used.

(12)

As introduced before, the channels placed by dataflow are to
keep the data rate, as shown in Fig. 5. For arrays, the channels
are implemented using ping-pong buffers (i.e., double buffer-
ing) or FIFOs [1]. Given a function containing multiple loops,
when using FIFOs, data can be transferred to the next loop
once processed by the previous loop, improving the efficiency
of the data transmission. In this case, the latency of the top
function is nearly the latency of the longest sub-loop. Note that
they are not exactly equal but are very close since it typically
takes one cycle to enter or exit a loop, which is an additional
cost. This method is more efficient with smaller area overhead
but is constrained to the case that data must be accessed in a
sequential order among all the sub-loops. The more frequently
used type is the ping-pong buffer. It contains two parts storing
the same data and permits one loop to access one part while
another loop accesses the other part, improving the efficiency
without the sequential constraint. However, the next loop can
only obtain the data after the previous loop finishes processing
and transferring all the data in one array. Therefore, it is less
efficient and the memory resource usage also doubles com-
pared with FIFOs. In this case, the latency of the top function
is not reduced and is computed by adding each loop latency
as in (12), but the throughput is still improved.

Authorized licensed use limited to: Peking University. Downloaded on September 15,2020 at 13:38:36 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: PERFORMANCE MODELING AND DIRECTIVES OPTIMIZATION FOR HLS ON FPGA 1433

VI. RESOURCE MODEL

To obtain the fastest implementation under the fixed
resource constraints, a resource model is required to check
whether the usage exceeds the available resources.

A. DSP and LUT Estimation

We characterize the resource usage of different operators
from micro-benchmarks. For instance, a 32-bit floating point
multiplication is mapped to a floating point unit with three
DSPs. Then we take into account resource sharing, according
to [16] and [18]. Specifically, Li et al. [16] reported an accu-
rate estimation for DSPs and a small estimation error for LUTs
(i.e., under 5%), and Gao et al. [18] showed their LUT estima-
tion accurately fits the actual trend. Therefore, we make use
of the same method and estimate the resource usage through
resource sharing analysis.

For LUT-based and small bitwidth operations, such as
integer add/subtract operations, resource sharing incurs large
resource usage due to the multiplexers introduced [16], [22].
Therefore, they are not shared, and the number of operations
equals the number of allocated instances. Conversely,
DSP-based operators, or operators with enough complexity
compared to multiplexers, such as double point multiplication
operations [16], are sharable with higher efficiency and larger
area, so the operator usage is the maximum number of opera-
tors executing in parallel. For sharable operators in a pipelined
loop, we compute the lower bound Nop

min = �[(Nop)/II]�, to cal-
culate the number of instances that must be allocated [18]. Nop
is the number of the operation op used in one iteration, and
II is the initiation interval of the loop. For example, if II is 2
and four floating point adders are used in one iteration, then
at least two floating point adders should be allocated. Based
on the resource sharing analysis, the usage of DSPs and LUTs
for each allocated operator is accumulated and added up.

B. BRAM Estimation

Local reads/writes consume memory resources on FPGAs,
and arrays are synthesized into BRAMs, which are provided in
blocks, with each block containing 18-Kb or 36-Kb primitive
elements for data storage on most modern Xilinx FPGAs. Each
array is synthesized into its own BRAM which contains one
or multiple blocks. We model the BRAM usage Rbram for each
array in (13) and add them up as the total memory usage

Rbram =
⌈

#bits

width

⌉

·
⌈

#element

depth

⌉

· #partition · d (13)

where Rbram is the number of blocks, #bits is the width
of each array element, #element is the number of elements
per memory partition, and width and depth is the width
and depth of the selected block configuration, respectively.⌈
(#bits/width)

⌉ · ⌈(#element/depth)
⌉

computes the usage of
blocks for one memory partition. The selection of the block
configuration depends on data types, BRAM modes and
devices. For example, for Virtex-7 FPGAs, given an array con-
taining 512 32-bit wide elements, the selected configuration of
an 18-Kb BRAM is 512×36 for SP and SDP modes (one block
is sufficient), and is 1k×18 for the TDP mode since the maxi-
mum width in this mode is 18 (two blocks are needed to cover
the width of 32). #partition is the number of memory parti-
tions, equal to the product of the partitioning factors in each
dimension, i.e.,

∏n
i=1 fi, and d reflects the effect of dataflow,

which utilizes channels to maintain the data rate between sub-
elements. For scalars, the channel is a register. For arrays, the
channels are ping-pong buffers by default, which means that
each BRAM has two copies: one is used for the output buffer
of the last function/loop and one is used for the input buffer of
the next function/loop. So d is 2 if dataflow is applied and the
channel is implemented using ping-pong buffers, otherwise d
equals 1.

Arrays are assumed to be partitioned evenly in (13), which
means that each partition contains the same number of ele-
ments. For uneven partitioning, we have

Rbram =
⌈

#bits

width

⌉

·
⌈

#element

depth

⌉

· (#partition− 1) · d

+
⌈

#bits

width

⌉

·
⌈

#elementr
depth

⌉

· 1 · d (14)

where #elementr is the number of the remaining elements
after distributing �[(array_size)/#partition]� elements to each
previous partition; and other parameters keep the same mean-
ing as in (13).

VII. DESIGN SPACE EXPLORATION

In this section, we present our two-stage MGDSE-II algo-
rithm, which quickly finds a high-performance configuration
in a large design space. We improve our previous algorithm
in [5], consider the interplay of different arrays and increase
the possibility of finding a better configuration.

A. Two-Stage Exploration

1) Redundancy Elimination: The first stage is to remove the
redundant design points based on the rules of HLS tools. For
example, in Vivado HLS, the sub-loops in a pipelined loop
are unrolled completely and cannot be pipelined. Therefore,
no matter what unrolling factor is set and whether or not
sub-loops are pipelined, the performance remains the same.
These kinds of “redundant points” cannot reduce the latency
even if we set the corresponding directives. After removing
these points, the design space is reduced significantly without
sacrificing the quality of the search space.

2) Guided Search: The second stage is to evaluate the
performance of the current design point and determine the next
design point to be evaluated through three evaluation metrics,
namely Mdiff , Mres, and Mapt, which identify the performance
bottlenecks and indicate a suitable direction to explore.

Mdiff denotes the difference of the latency between the
longest sub-element and the second-longest sub-element in the
target function, as shown in the following equation:

Mdiff = Csub
max − Csub

s,max (15)

where Csub
max and Csub

s,max are the latencies of the longest sub-
element and the second-longest sub-element, respectively.
According to Mdiff , MGDSE-II algorithm gives the top
optimization priority to the longest sub-element, which is
assumed to have the greatest influence on the performance.

Mres is utilized to check whether the resource usage exceeds
the available resources on FPGAs, as shown in the following
equation:

Mres = max

(
BRAMused

BRAMtotal
,

DSPused

DSPtotal
,

LUTused

LUTtotal

)

(16)

Authorized licensed use limited to: Peking University. Downloaded on September 15,2020 at 13:38:36 UTC from IEEE Xplore.  Restrictions apply. 



1434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 7, JULY 2020

Algorithm 1: MGDSE-II(F), in case 0

1 Initializes: Dataflow = 0, FuncPipelining = 0, O← ∅,
S ← the set of the sub-elements in F;

2 if S! = ∅ then
3 while S! = ∅ do
4 smax ← the longest sub-element in S;
5 ss,max ← the second longest sub-element in S;
6 Mdiff = PerModel(smax)− PerModel(ss,max);
7 if smax is a function then
8 OptimizeFunc(smax, Mdiff);
9 end

10 else if smax is a loop then
11 OptimizeLoop(smax, Mdiff);
12 end
13 if OptFinish(smax) then
14 UpdateDel(S, smax);
15 end
16 O← the current best configuration;
17 end
18 else
19 OptimizeArray(F, arrays);
20 end

where each fraction denotes the percentage of the resources
used. If the resource constraints are not satisfied, the corre-
sponding point will be removed from the design space.

Mapt is to decide which partitioning type is more beneficial
in dimension i. To compute Mapt, we have

Mapt,l = #loads

max
j,k

(
indexj

i − indexk
i + 1

) (17a)

Mapt,s = #stores

max
j,k

(
indexj

i − indexk
i + 1

) (17b)

where Mapt,l and Mapt,s represent the value of Mapt for load
and store operations, respectively, and indexj

i and indexk
i are the

indexes in dimension i of the respective array elements j and k.
If Mapt is smaller than one, the array elements are accessed at
intervals and block is more beneficial. If Mapt is equal to one,
the elements are accessed continuously and cyclic is better. If
the option cannot be determined, e.g., Mapt,l and Mapt,s of the
same array are different, both options will be tested. For the
complete option, since arrays are partitioned into individual
elements and no factor needs to be set, there is only one point
and it will always be tested.

B. Overall Algorithm Description

As a whole, the MGDSE-II algorithm works as follows.
First, the top function F can be applied with dataflow or FP.
If a function is pipelined, dataflow will be ignored. Therefore,
there are three choices for the top function: the first is apply-
ing dataflow (case 1); the second is applying FP (case 2);
and the last is applying neither of them (case 0). MGDSE-
II explores the design space in all three cases one by one.
In case 0, as presented in Algorithm 1, MGDSE-II optimizes
the longest sub-element smax each time, aiming at minimizing
Mdiff until zero. Then it optimizes the new longest sub-element
in the optimization set S . If Mdiff is still larger than zero after
optimization, the optimized sub-element will be removed out

Algorithm 2: OptimizeArray(F, arrays)

1 Initializes: Q← an array of vectors of configurations;
2 for each arrayi in arrays do initialization
3 for each dimension dimj in arrayi do
4 Push (Type, Factor) = (block, 1) in Q[arrayi];
5 end
6 end
7 while size(Q)! = 0 do
8 for each non-empty vector Q[arrayi] do
9 for each pair in Q[arrayi] do

10 for (Type, Factor)→ (cyclic, bound) do
11 resource = ResourceModel(F);
12 latency = PerModel(F);
13 if (Mres > 1)&(latency not reduced) then
14 Increase Factor or Type and break;
15 end
16 end
17 O← the current best configuration;
18 end
19 if arrayi is optimized then Clear Q[arrayi]
20 end
21 end

of the optimization set by UpdateDel(S, smax). Through this
iterative way, the latency of all sub-elements will be minimized
while honoring the resource constraints. In case 1, MGDSE-II
first checks if the producer–consumer requirement is satisfied.
If satisfied, the exploration will be conducted the same way as
case 0 except for that dataflow is set to one for initialization;
otherwise it will be skipped. In case 2, the top function is
pipelined, and the configuration of sub-functions (pipelined)
and loops (unrolled completely) is fixed. Then MGDSE-II
explores the design space by varying the options of array
partitioning based on Mapt and computes Mres to remove the
points that exceed resource constraints.

In cases 0 and 1, when optimizing the sub-elements,
the sub-functions are viewed as new target functions in
OptimizeFunc(smax, Mdiff ) and are sent to MGDSE-II
recursively. For loops, MGDSE-II optimizes them through
OptimizeLoop(smax, Mdiff ), starting from the innermost
loop and then the outer loops in each level. Each level’s loop
is applied with LP and LU. Then MGDSE-II computes Mres
and Mapt for each loop configuration to vary the setting of
array partitioning and decide the exploration direction. Based
on the evaluation metrics, MGDSE-II ignores the points that
worsen the performance and chooses a promising configura-
tion as the next point, exploring the design space and finding
a high-performance configuration in minutes.

C. Array Interplay in MGDSE-II

The major difference, between MGDSE-II and our previous
MGDSE algorithm [5], is the way they optimize the arrays.
The algorithm in [5] optimizes arrays one by one. For each
configuration of functions and loops, it varies the type and
factor of array partitioning, tests each array configuration
for different dimensions and chooses the best partitioning
scheme for one array. Then it conducts the same explo-
ration for the next array until all the arrays are optimized.
In MGDSE-II, we optimize arrays in a different way, as
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shown in Algorithm 2, by considering the interplay of dif-
ferent arrays in the same function or loop. The input is all
the arrays of a function F or a loop L. Compared with the
previous algorithm, MGDSE-II conducts a finer grain array
optimization. Specifically, it first selects one array to optimize
from the initial state (block, 1), which means the array parti-
tioning type is block with factor one (no partitioning). During
the optimization of one array, if the latency is not reduced or
the resource constraint is not satisfied, MGDSE-II will sus-
pend the current optimization, save the next design point as
the breaking point and turn to the optimization of the next
array to check if there is any possibility of improving the
performance further. When MGDSE-II comes back to optimize
the previous array, optimization will start from the breaking
point and perform the same process until the partitioning pair
(Type, Factor) becomes (cyclic, bound), which is the end of
optimization and the array partitioning type is denoted as
cyclic with a factor equal to the array size (i.e., the array
is partitioned completely). After one array is optimized, the
array will be removed from the optimization list. After all
the arrays are optimized, OptimizeArray(F, arrays) will
return a high-performance array configuration. The search
direction in MGDSE-II is to test the array configurations of
different arrays alternately to enable a more efficient search of
optimal point, while the previous algorithm [5] is to optimize
each array continuously.

VIII. MEMORY OPTIMIZATION

In this section, we first present two factors that influ-
ence the memory performance. By considering these factors,
improper array partitioning schemes could be avoided during
the DSE stage. Then we introduce the multi-port memories and
related techniques, and demonstrate how to improve memory
performance through code transformation.

A. Factors Affecting Memory Performance

1) Multiplexers: Improper array partitioning may introduce
a great number of multiplexers, leading to additional delays.
For instance, if partitioned completely, arrays will be divided
into individual elements and mapped to registers. Then each
array element is expected to be accessed at any time in one
cycle, eliminating the limitation of insufficient memory ports.
However, if a loop accesses one element per iteration, a large
number of multiplexers will be generated to select the required
data from all the elements loaded, resulting in a much longer
latency than expected. In this case, there is no need to partition
the array, and a single port is enough to satisfy the requirement.

2) Loop-Carried Dependence: Improper array partitioning
may also incur loop-carried dependence, weakening the pos-
itive effects of LU and LP. Given the example in Fig. 6, the
iterations are independent in Fig. 6(a) and (b). However, if an
improper array partitioning scheme is chosen as in Fig. 6(c),
the performance may be degraded due to the loop-carried
dependence incurred. This is because, for the loop in Fig. 6(b),
all the four banks are accessed per iteration even though
each time only two of them provide the required data. The
next iteration needs to access the same four banks but has to
wait until the last iteration finishes reading/writing the data.
Therefore, there exists “dependence” between the two iter-
ations, which is the loop-carried dependence and influences
the estimation of II. By considering this impact, the estima-
tion accuracy of the LU and LP models is improved further.

(a)

(b) (c)

Fig. 6. Impacts of improper array partitioning. (a) Original code: no
loop-carried dependence. (b) Loop is unrolled with factor 2: still no loop-
carried dependence. (c) Diagram of array partitioning for array a in (b):
improper partitioning incurs loop-carried dependence. The yellow and blue
circles denote the data required by the first and second iterations, respectively,
which are distributed to the four memory banks.

Fig. 7. Two types of multi-port memories: (a) replication and (b) banking.
Each BRAM is a 1W/1R memory and the same color indicates the same data.

Note that it also reveals the close interaction among different
directives, and this is why we need to model an application
considering the overall effects of various directives.

By considering the impact of improper array partition-
ing, COMBA eliminates the configurations that degrade the
memory performance and explores the design space in a more
beneficial direction.

B. Multi-Port Memories and Code Transformation

BRAMs on FPGAs typically have two ports, which are not
sufficient for memory-intensive applications. Multi-port mem-
ories, supporting multiple accesses concurrently, increase the
overall performance and are extensively used in soft proces-
sors and complex systems-on-chip [23]. Although multi-port
memories have been studied deeply at the hardware level, they
are only considered partially in the current HLS tools [27].
We introduce multi-port memories into HLS through code
transformation which adjusts the original code to a more
hardware-friendly form.

It is the most efficient way to implement multi-port memo-
ries with BRAMs on FPGAs [26]. Fig. 7 shows two conven-
tional techniques for the BRAM-based multi-port memories.
Replication makes multiple copies of the data set, each of
which is stored in a BRAM. For replication, each additional
read port requires an extra BRAM while the single write port
remains unchanged. Replication supports multiple reads and
data sharing across the ports, but has only one write port
and costs multifold resource usage. Banking divides the data
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(a)

(b) (c)

Fig. 8. Example of code transformation. (a) Invoked function. (b) Original
code. (c) Modified code.

set and stores different partitions in different BRAMs. The
number of the read/write ports increases with the number of
1W/1R BRAM, supporting multiple accesses. However, simul-
taneous accesses to the same partition are not supported, since
each read or write port can only access their correspond-
ing memory partition. Previous HLS-related works focused
on banking to improve memory performance and ignore the
advantages of replication which is of great benefit for appli-
cations requiring data sharing. We consider both methods and
give an example in Fig. 8 to show how code transforma-
tion generates different memory architectures to satisfy various
requirements.

Fig. 8(b) shows the original code without modification. It
invokes the function in Fig. 8(a) twice to process the data
from array x and y. Typically, independent functions execute
in parallel. However, the invoked functions in Fig. 8(b) have to
execute in sequence since they share the data from array a. In
this case, banking cannot eliminate the function dependence
caused by data sharing. To improve the performance, replica-
tion is utilized and code is transformed to the form in Fig. 8(c).
In the modified code, array a and b contain the same data, and
the invoked functions execute concurrently. In its RTL code
generated by Vivado HLS, the write ports of BRAMs that store
a and b, are connected to the same register, while the read
ports are connected to different registers, which works exactly
like a 2R/1W replication type multi-port memory. After code
transformation, the latency is reduced by half, but the BRAM
usage is doubled compared to the original code. Through code
transformation, the performance can be improved in advance
before utilizing HLS tools. Combined with COMBA, a better
hardware implementation can be generated, achieving more
efficient architecture optimization.

IX. EXPERIMENTAL RESULTS

We evaluate COMBA on PolyBench [28], CHStone [12],
and the image processing applications used in [10]. COMBA
is developed on LLVM 3.4, with Clang 3.4 as the front end,
running on CentOS Linux 7.3 with an Intel Core i7-4790 CPU.
The target FPGA platform is Virtex-7 XC7V2000T-FLG1925.
Vivado HLS v2016.1 is used to evaluate evaluate the model
accuracy and synthesize the configurations found by our tool.

A. Comparison With State-of-the-Art

As evaluated in [5], COMBA improves the estimation accu-
racy compared to the state-of-the-art [4] which generates the
execution trace dynamically and estimates the latency based
on simple performance models. COMBA conducts analysis at

the source code level which covers various code structures.
Combined with more comprehensive models, the estimation
accuracy has been improved significantly.

In this section, we vary the resource constraints and evaluate
COMBA in three different aspects, compared to the state-of-
the-art [4], as shown in Fig. 9. By studying the impact of
the resource constraints, we can get a better view of the rela-
tionship between latency and resource usage. In Fig. 9, we
set the resource constraint to different percentages of the total
resources, and run our tool, COMBA, and the state-of-the-art,
Lin-analyzer [4], given the same resource constraint. The top
row of figures for each benchmark shows the latency speed-ups
achieved by the configurations returned by the two frame-
works, which are computed by comparing the latencies of
these configurations with the latency of the baseline (with-
out any directive applied). Since the resource constraint in [4]
is used to help schedule the operations and their resource
estimation is not very accurate, their tool returns the same
configuration given various resource constraints. When the
actual resource usage exceeds the resource constraint, the
configuration returned will not be feasible. In this case, we
test each configuration in their design space in Vivado HLS
(around 102 points for each application) and select the best
configuration with the highest speed-up and effective resource
usage, which are represented as the dashed lines in the fig-
ures. Compared with [4], COMBA finds configurations with
better speed-ups for each application given the same resource
constraint. Even when the resource constraints are small,
our tool can still find better configurations compared to the
dashed lines. By including more directives, considering more
diverse code structures and expanding the design space, a
broader range of optimization is achieved by COMBA, and
configurations with higher performance can be found, improv-
ing the application performance significantly. It is notable
that when the resource constraints are set to higher values,
COMBA will continue to find configurations with higher
speed-ups.

Another reason for the performance improvement is that
we better utilize the available resources. The middle row
of figures for each benchmark in Fig. 9 shows the resource
usage of the same configurations as in the top row of figures.
Note that [4] and this paper try to tackle the same resource-
constrained optimization problem, which is to optimize the
performance given certain resource constraints. What we con-
cern is how to utilize available resources better to obtain
a design with higher performance. Compared with [4], we
improve the resource utilization rate and the cost is accept-
able considering the larger differences between the latency
speed-ups achieved by the two frameworks. Taking the MM
application as an example, our framework increases the latency
speed-up by 56.6 times, while just utilizing 1.4 times more
resources.

The bottom row of figures for each benchmark in Fig. 9
compares the runtime, which denotes the time it takes to
search the design space and obtain the final configuration. For
most applications, the runtime of our framework is longer but
acceptable, considering the gap of the design space scale. As
discussed in Section II-C, our design space is much larger,
because we consider more characteristics, such as different
kinds of loop structures, multi-dimension arrays, and coupled
functions and loops. Zhong et al. [4] estimated the latency
of a single nested loop without considering other loop struc-
tures, like multiple loops. The type of array partitioning is also
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Fig. 9. Illustration of framework comparison under different resource constraints. For the eight benchmarks, the top row of figures shows the latency speed-ups
achieved by the configurations returned by the two frameworks (solid lines). The dashed lines are obtained by testing each configuration of Lin-analyzer
through Vivado HLS and selecting the best ones. The middle row of figures presents the resource usage of the corresponding configurations, and the bottom
row of figures compares the runtimes of the two frameworks. (a) MM. (b) ATAX. (c) SYRK. (d) BICG. (e) MVT. (f) SYR2K. (g) GEMM. (h) GESUMMV.

fixed. In contrast, when we consider all the loops within the
function, all the dimensions of each array and function-related
directives, the design space increases exponentially. The dif-
ference in the design space scale is marked on each figure,
evaluated by |Dc|/|Dl|, where |Dc| and |Dl| are the number of

points in the design space of COMBA and Lin-analyzer [4],
respectively. For the SYRK and GEMM applications, our
runtime is even shorter. This is because we analyze the source
code directly and the runtime is the DSE time, while the
runtime of [4] includes the time for DSE and profiling. For
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TABLE III
OPTIMIZATIONS OF APPLICATIONS

Fig. 10. Comparison of speed-ups as found using different DSE algorithms.

Fig. 11. Comparison of DSE times for different DSE algorithms.

these applications, the profiling is time-consuming, leading to
a longer runtime.

Compared to the state-of-the-art, we conclude that COMBA
can efficiently find a better configuration with higher
performance within minutes in an exponentially increasing
design space, and is more stable given different resource
constraints.

B. Evaluation of DSE Algorithms
To evaluate the performance of our DSE algorithm, we

compare MGDSE-II and the genetic algorithm (GA) [29] on
eleven applications. GA is implemented on DEAP [30] and
Python 2.7, and the resource constraints are set to the total
resources on FPGA. Based on our accurate estimation mod-
els, both algorithms can find high-performance configurations
with significant speed-ups as in Fig. 10. Note that GA may
generate different results each time, depending on the ran-
domly selected generations, so we run it three times for each
application and compute the average. DSE times are compared
in Fig. 11.

Compared to GA, the MGDSE-II algorithm achieves 1.2×
improvement on speed-ups with around 0.4× time cost. For
most applications, the MGDSE-II algorithm outperforms GA

and finds better configurations in less time. For some bench-
marks, GA finds a higher speed-up, but it is still very close
to what MGDSE-II found and its DSE time is much longer.
This is because GA randomly generates some points that may
be skipped by MGDSE-II, and therefore increases the pos-
sibility of achieving better speed-ups for some applications.
However, for most applications, the single-objective genetic
algorithm only aims at reducing the latency without consid-
ering the II, generating configurations with small latency but
high II and resulting in an incorrect optimization direction.
Furthermore, its randomness characteristic brings about uncer-
tainty for the results. We also tried the multi-objective genetic
algorithm, but it took an even longer time to find configura-
tions with smaller speed-ups. Although we can set the weights
of objectives (latency and II), it is still difficult to determine
the weights for various applications with different code struc-
tures. The MGDSE-II algorithm evaluates the performance
according to both latency and II, i.e., reducing latency first
and then II for the same latency, and is more stable during
the exploration. Also, it does not need to generate many design
points like GA and searches the space much more efficiently.
The MGDSE-II algorithm also achieves larger speed-ups,
compared with our previous MGDSE algorithm in [5]. It is
partially because MGDSE-II considers the interplay of arrays,
covering more effective design points while eliminating less
effective points. Also, we refine our models and enhance the
stability of our framework. For example, the BRAM modes
impact the II estimation. If a pipelined loop contains one
read and one write, the smallest II will be achieved by map-
ping the array to an SDP BRAM, which is only one cycle,
while in the SP mode, II will be two cycles. The refine-
ment of our models, and the more careful consideration such
as the impact of improper memory partitioning, help direct
MGDSE-II to conduct a more efficient search and find better
configurations.

C. Configuration Analysis

The configurations, returned by COMBA in Section IX-B,
are shown in Table III. The array size denotes the length
in each dimension. Column 3 presents whether dataflow is
applied or not, columns 4 and 5 indicate which function or
loop is pipelined, and column 6 shows the unrolling factors of
the top loops. The last column presents the configuration of
each array with a format of “array name: (type, factor, dimen-
sion)”. When the top-function is pipelined, the loops cannot be
pipelined (“not required”) and are unrolled completely, such as
ATAX. For MM and Rician, there are two top-level loops, and
both of them are pipelined. Some applications can be applied
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Fig. 12. Comparison with the exhaustive search for minimizing the latencies of the modified (a) MM, (b) MVT, and (c) SYRK.

Fig. 13. Comparison with the Pareto-optimal curves of the modified (a) MM, (b) MVT, and (c) SYRK.

with FP given available resources, while other applications
are improved by optimizing the loops. The array optimization
also plays an important role, and how to partition an array in
each dimension depends on the memory access pattern and
is influenced by other directives. Another interesting thing
is that the Seidel and Rician benchmarks have similar code
structures with two two-level nested loops and execute in a
producer–consumer flow. However, the optimization results
for both applications are different. The reason is that the sec-
ond loop in Rician loads elements from and stores results to
the same array, leading to loop-carried dependence when it
is pipelined. Therefore, the advantage of pipelining weakens
and higher performance improvement cannot be achieved. Our
framework identifies the bottlenecks of different applications
successfully and optimizes the performance as far as possible.

D. Optimality Analysis

In an exponentially increasing design space, it is impossi-
ble to obtain the optimal design through the exhaustive search.
To analyze the optimality of the results obtained by COMBA,
we modify three benchmarks (i.e., MM, MVT, and SYRK),
reduce the design space by decreasing the number of arrays,
loop levels and loop trip counts, and test our framework on
the modified applications, compared to the exhaustive method.
Fig. 12 shows the latencies of all the configurations for the
three applications. Each configuration is tested through Vivado
HLS, given the same resource constraints. We highlight the
configuration returned by COMBA and the optimal configura-
tion with the minimum latency returned by exhaustive search,
and compute their latency difference (�Latency) as illustrated
in Fig. 12 and Table IV. We can see that COMBA finds a con-
figuration with a small latency which is exactly or very close
to the optimal configuration obtained by exhaustive search,
given the same resource constraints. Moreover, as shown in

TABLE IV
COMPARISON WITH EXHAUSTIVE SEARCH

Table IV, it takes several hours to exhaustively test each con-
figuration through Vivado HLS, while COMBA efficiently
finds the high-performance configuration in a few seconds.
The comparison shows that COMBA efficiently solves the
resource-constrained performance optimization problem and
finds a high-performance configuration which is near-optimal.

By varying the resource constraints, we analyze the trade-off
relationship between performance and area and obtain a series
of configurations through our framework, as shown in the blue
lines in Fig. 13. The red lines are the Pareto-optimal curves
of different applications returned by the exhaustive method,
and the resource utilization rate is the percentage of resource
usage. We can see that our framework successfully predicts the
trend of the Pareto-optimal curve and generates a very close
approximate curve, showing the trade-off between latency and
resource usage. The reason why the two curves do not over-
lap exactly is that there are estimation errors introduced by the
prediction models. We measure the quality of our approximate
curve through the metric average distance from reference set
(ADRS) [10], [32], which is to evaluate how close the approx-
imate curve is to the Pareto-optimal curve. The lower ADRS,
the better the quality of the approximate curve. The values of
ADRS are 4.6%, 5.8%, and 7.3% for the modified MM, MVT,
and SYRK, respectively, showing that the approximate set of
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Pareto-optimal designs obtained by our framework is of high
quality.

X. RELATED WORKS

OpenCL-based performance models are proposed
in [3], [15], and [33]. Wang et al. [15] propose a performance
analysis framework for OpenCL programs and guide users
to optimize the code step by step. Wang et al. [3] and
Liang et al. [33] propose more accurate OpenCL-based
performance models and their framework supports automatic
DSE. However, due to the highly parallel OpenCL execution
model, their estimation models focus on pipelining and
parallelism analysis, making them incapable of modeling the
performance of applications specified in sequential languages
like C/C++.

Of C-based works, Shao et al. [34] propose a power-
performance simulator for ASICs to represent accelerators
and utilize the dynamic data dependence graph to analyze
the performance, while our focus is on enabling HLS tools
in generating correct and actual hardware for FPGA-based
accelerators through static analysis. Targeting reconfigurable
architectures, Bilavarn et al. [35] analyze the area/delay trade-
off through a hierarchical exploration and performance metrics
are estimated by the HLS tool. Prost-Boucle et al. [36] propose
an HLS synthesis flow which enables a rapid DSE consider-
ing loop unrolling. Zhong et al. [10] synthesize a number of
design points and model them in a linear model based on
loop-hierarchy-related observations. All of these works only
consider loop unrolling in a limited design space and have
to invoke HLS tools for estimation. More synthesis direc-
tives are considered in [4], [7], and [37]–[40]. Specifically,
Schafer and Wakabayashi [37], [38] cluster the operations
and explore each cluster separately, investigating the trade-off
between the exploration speed and the optimality of results.
Ferretti et al. [39] perform the DSE with a lattice representa-
tion of the design space, based on the observation of the low
variance among Pareto-optimal configurations. Pham et al. [7]
prune the design space by exploiting loop-array dependen-
cies. However, the invoking of HLS tools in these works
increases the DSE time to many hours. Zhong et al. [4] pro-
pose analytical models for estimation without running HLS
tools, but it restricts itself to loop unrolling, loop pipelining,
and array partitioning only, considers simple loop hierarchies
and optimizes one-dimension arrays, which is not enough for
complex applications. Cong et al. [40] propose an accelera-
tor template for cacheable applications to bound the design
space and perform DSE to generate the optimal configura-
tion of their template, while our framework optimizes original
HLS designs, considers function-related optimization and is
not constrained by the application types. Learning-based meth-
ods are also proposed in [32], [41], and [42]. Specifically,
Liu and Carloni [32] propose a learning-based model to esti-
mate the latency/area trade-off in a small design space, leading
to a long time for training. Zhong et al. [41] present a regres-
sion model to estimate the resource usage of LUTs and FFs
on FPGAs but consider limited directives and exhaustively
explore the design space with a few dozen points. Yu et al. [42]
separate the design space into independent partitions and adopt
reinforcement learning algorithms in DSE for different parti-
tions on different cores. The DSE time is reduced to 1 or
2 hours, but it is still not very efficient due to the invoking of
HLS tools.

XI. CONCLUSION

This paper presents a comprehensive model-based analysis
framework for high-performance synthesis of complex appli-
cations with various code structures. This demonstrates the
importance and the significant utility of our framework in mak-
ing HLS more practical and useful. Experiments show that our
framework outperforms the previous work with more accurate
models and more powerful DSE algorithm, and optimizes var-
ious applications rapidly, within minutes. Our tool is available
at http://www.ece.ust.hk/∼eeweiz/tools.html.
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