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Abstract The RRAM-based accelerators enable fast and energy-efficient inference for neural networks.

However, there are some requirements to deploy neural networks on RRAM-based accelerators, which are not

considered in existing neural networks. (1) Because the noise problem and analog-digital converters/digital-

analog converters (ADC/DAC) affect the prediction accuracy, they should be modeled in networks. (2) Be-

cause the weights are mapped to the RRAM cells, they should be quantized, and the number of weights

is limited by the number of RRAM cells in the accelerator. These requirements motivate us to customize

the hardware-friendly network for the RRAM-based accelerator. We take the idea of network architecture

search (NAS) to design networks with high prediction accuracy that meet the requirements. We propose a

framework called NAS4RRAM to search for the optimal network on the given RRAM-based accelerator. The

experiments demonstrate that NAS4RRAM can apply to different RRAM-based accelerators with different

scales. The performance of searched networks outperforms the manually designed ResNet.
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1 Introduction

In the past years, neural networks have gained great success in a lot of tasks such as image classifica-
tion [1] and object detection [2]. However, neural networks’ performance always comes with a substantial
computational cost, which impedes their deployment on real-world applications. Thus, various hard-
ware accelerators have been proposed to support the parallel multiply-accumulate (MAC) calculations of
network inference, such as GPGPU [3], FPGA [4] and ASIC [5]. To further improve computing perfor-
mance and energy efficiency, the processing-in-memory (PIM) architecture based on RRAM technology is
proposed to perform the parallel MACs in neural networks [6,7], which is called RRAM-based accelerator.

An RRAM-based accelerator is composed of RRAM crossbars. We distributed the weights of neural
networks to the RRAM cells in these crossbars. In the RRAM crossbar, the digital-analog converters
(DAC) transform the digital input data (e.g., the feature maps in convolutional neural networks) to analog
voltages. The analog MACs are executed in the crossbar. The output currents represent the results of
MACs, and the analog-digital converters (ADC) transform the currents into digital values. Since the
MAC is directly accomplished by Ohm’s law and Kirchhoff’s law, analog computing in the crossbar is
more efficient than digital computing to support the parallel MACs of neural networks.

However, there are some requirements for the neural networks to deploy on a given RRAM-based
accelerator. (1) The weight in the neural network should be quantized since the number of RRAM cells’
conductance levels is limited. (2) For a specific accelerator, the total number of RRAM cells is limited,
constraining the number of weights. (3) Since DAC and ADC are used in the RRAM crossbar, and
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Figure 1 Demonstration of the RRAM crossbar.

the conversions affect the prediction accuracy, they should be modeled in the neural network. (4) The
neural network should be noise resistant because the RRAM-based accelerator’s inevitable noise affects
the prediction accuracy. These requirements impede the deployment of the existing neural networks.

Since the existing neural networks can hardly meet these requirements, it is desirable to design
hardware-friendly networks, which can be deployed on the given RRAM-based accelerator and perform
good prediction accuracy under noise. However, manually designing such a network is a non-trivial task.

Recently, network architecture search (NAS) has emerged to automatically design the neural net-
work [8]. This motivates us to use the powerful NAS to design the hardware-friendly network for
the RRAM-based accelerator. We formulate this problem of network design and propose a framework,
NAS4RRAM, to search for the optimal network given the RRAM-based accelerator. NAS4RRAM con-
siders these requirements to build the search space in which each network can be deployed. The evolution
algorithm is used to explore the search space, which simulates biological evolution, including reproduc-
tion, mutation, and selection. To compare different networks, we design a criterion that combines the
prediction accuracy and the computation cost, and we propose a method to evaluate the sampled networks
with hardware noise and DAC/ADC considered.

To verify the effectiveness of NAS4RRAM, we design a search space and search for the optimal network
for three RRAM-based accelerators with different scales as an example. The results demonstrate that
NAS4RRAM works well for different accelerators and different tasks. The prediction accuracy of the
searched networks significantly outperforms the manually designed ResNet networks. Deploying the
searched network, the utilization of the RRAM cells is high, which indicates NAS4RRAM can design
hardware-friendly networks that make full use of the hardware resources.

2 Background and related work

A lot of RRAM-based accelerators have been proposed to support the inference of neural networks [6, 7,
9–16]. In this section, we first introduce the mechanism and the noise of the RRAM-based accelerator.
Then we introduce the background of NAS and some related work.

2.1 Mechanism of accelerator

The basic organization of the RRAM-based accelerator is the RRAM crossbar, which can perform the
matrix-vector product efficiently. The matrix-vector product is defined as

y = Wx, (1)

where W is an n×m matrix, x is a vector with m elements and y is a vector with n elements.
As demonstrated in Figure 1, an RRAM crossbar contains #Row×#Col RRAM cells and the peripheral

devices. The weights (W ) in the matrix are mapped to the conductance of the RRAM cells G. Since the
computation is in analog, the input vector (x) is transferred to analog voltage V using DAC. The analog
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Figure 2 Demonstration of computation of matrix-vector product for the weight with negative value on RRAM crossbar.

computation is performed and the current flow to the end of the i-th column is Ii =
∑

j Gi,jVj . Then the
current flow is converted to digital signals using ADC as the result of the matrix-vector product. Since
the multiplication and accumulation are performed in analog, the RRAM crossbar is highly efficient to
perform the parallel computation for a matrix-vector product.

Note that the conductance of RRAM cells should be non-negative. In order to enable the matrix-vector
product for the matrix with both positive and negative numbers, we transform it into positive part W+,
which takes the positive numbers, and negative part W−, which takes the absolute values of negative
numbers. As demonstrated in Figure 2, we map them to the conductance of RRAM crossbar as G+

i,j and

G−
i,j , respectively. Therefore, we can perform the matrix-vector product for the two parts. The result of

the positive part is subtracted by the result of the negative part, which is formulated as

Ii =
∑

j

G+
i,jVj −

∑

j

G−
i,jVj . (2)

2.2 Map network to accelerator

In this paper, we focus on the convolutional neural network, which is the most widely used network on the
RRAM-based accelerator. The computation of convolution layers can be transformed into matrix-vector
products in different sliding windows [9]. The weights of one output channel are divided into the positive
part and the negative part. They are mapped to the conductance of RRAM cells of different columns in
the crossbar. When the size of the matrix is larger than the size of the crossbar, we partition them into
multiple crossbars. The weights of different output channels are mapped to different columns and they
can compute simultaneously, which results in high throughput. Since the computational cost of other
layers is not significant, they are processed digitally.

2.3 Noise sources

In the RRAM crossbar, the computations happen in the analog domain. Some inevitable noise sources
affect the inference result of neural networks. The components related to the analog domain include
DAC, RRAM cell, and ADC. In this subsection, we introduce the noise sources from these components
respectively.

2.3.1 DAC

In most RRAM-based accelerator designs, a kin-bits input activation is split to kin 1-bit values, and
processed by the crossbar in kin cycles. Then, the partial results are put together by a shift-add circuit
in the digital domain. Therefore, we take 1-bit DAC in our experiments. Because 1-bit DAC can be
implemented as an on/off switch, its noise is insignificant and we ignore it in our noise model.

2.3.2 RRAM cell

The significant noise sources of the RRAM cell include thermal noise, shot noise, and random telegraph
noise (RTN). Previous studies modeling the RRAM noise mainly focus on them [17,18]. Following their
studies, we also consider these noise sources in our model. The thermal noise and shot noise are modeled

as a Gaussian distribution N (0,
Gf(4KBT+2qVdrop)

V 2
drop

), where G is the conductance of an RRAM cell, f is
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the frequency of the crossbar, KB is Boltzmann constant, T is temperature, q is the electron charge and

Vdrop is the drop of voltage. The RTN noise is modeled as a Poisson distribution {
bG+a

G−(bG+a)
G

0
p=0.5
p=0.5 , where

a = 1.662E− 7 and b = 0.0015 [19].

2.3.3 ADC

The noise of the ADC has been considered when deciding the ADC resolution. Knowing the signal-to-
noise and distortion ratio (SINADR) of an ADC, the number of effective bits it can sample is SINADR

6.02 .
Therefore, we also do not consider the noise of ADC in our noise model.

2.4 Network architecture search

In recent years, NAS [8, 20, 21] has emerged to automatically design the networks. Given the specific
constraint, the algorithm searches for the optimal network in a predefined search space of various networks.
The NAS is modeled as a sequence generation problem in [8], which can be solved by reinforcement
learning. Besides the reinforcement learning-based algorithms, the evolutionary algorithm is also widely
used in NAS [22, 23]. NAS4RRAM takes the evolutionary algorithm.

Since the computational efficiency of the network varies on different hardware devices, the hardware-
aware NAS is proposed to search for the optimal network on a given hardware device [24–26]. Noise sources
of hardware devices have been considered in some studies. FTT-NAS [27] models the bit flip noise on
edge devices and searches for the fault-tolerant neural architecture. FTR-NAS [28] searches for the fault-
tolerant recurrent neural architectures with weight faults and bit-flip noise. NACIM [29] proposed to
use NAS to co-optimize the network and hardware including the processing-in-memory devices. Different
from them, NAS4RRAM models the RRAM noise in detail and considers more hardware constraints (i.e.,
the number of weights and the ADC/DAC quantization).

3 Motivation

Different from other types of accelerators, there are some requirements for the network to deploy on the
RRAM-based accelerator.

• Weight quantization. We can only write an RRAM cell to a small number of conductance states.
So the weights of the network should be quantized.

• Number of weights. Given an RRAM-based accelerator, the number of available RRAM cells
is fixed. Assuming the size of the crossbars is #Row × #Col, the number of RRAM cells is #Cells =
B ×#Row ×#Col, where B is the number of the crossbars in the accelerator. Since both the positive
part and negative part of the weights in a network should be mapped to the RRAM cells, the number of
weights #Weight is limited, which is formulated as

#Weight 6
#Cells

2
=

B ×#Row×#Col

2
. (3)

• DAC/ADC. The inputs of the crossbar are transformed from digital numbers to sequences of analog
voltages by DAC and the length of the sequence is an integer kin. ADC transforms the continuous current
flow into the quantized digital value with a fixed number of bits kout. Since the two conversions affect
the result, they should be considered in the network.

• Noise resistance. The inevitable noise of the RRAM-based accelerator affects the prediction
accuracy of the network. This requires the network can resist noise.

Existing networks are not designed with these requirements. For example, the total number of weights
#Weight is not limited. As a result, these networks cannot be well deployed on the RRAM-based
accelerator. Networks are not deployable when the #Weight is out of the limit. The other case is that
they cannot make full use of hardware resources when the #Weight is too small because many RRAM
cells are idle. Furthermore, the prediction accuracy is not guaranteed because the inevitable noise, weight
quantization, and DAC/ADC are not considered in the existing networks.

To fully utilize the hardware resources and guarantee prediction accuracy, we should design hardware-
friendly networks considering these requirements. However, manually designing a network is a non-trivial
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task. This motivates us to take the powerful NAS to design the networks for deploying on a given RRAM-
based accelerator. Therefore, we propose the framework, NAS4RRAM, which is used to search for the
optimal network to meet these requirements.

4 Problem formulation

Given an RRAM-based accelerator, the goal is to find a deployable network a with high prediction
accuracy and low computation costs. We first formulate this problem by defining the deployable network,
introducing the criterion, and formulate the search.

To deploy a network on the RRAM-based accelerator, we should map the weights to the RRAM cells’
conductance in different crossbars. Therefore, the weights should be quantized, and the total number of
the weights should not be greater than the number of the RRAM cells #Cells in the accelerator. We
define a network a is deployable under the following constraints:

W l
a
∈ Ql = {ql1, q

l
2, . . . , q

l
n}, (4)

∑

l

|W l
a
| 6

#Cells

2
, (5)

where W l
a
is the weights in the l-th convolution layer of the network a, Ql = {ql1, q

l
2, . . . , q

l
n} is the set

of the quantization points, where n is the number of conductance levels of RRAM-cells, and the |W l
a
| is

the number of elements in W l
a
.

Next, we introduce the criterion to evaluate different networks. The criterion takes the prediction
accuracy and computation cost of the network into consideration. Since the prediction accuracy of the
network is affected by the inevitable noise ǫ, we take the expected accuracy under the noise Eǫ(ACCa).
The computation cost COSTa of the network can be the energy consumption or latency of the network
inference. Boosting prediction accuracy often accompanies the increase in computation cost. Therefore,
we take a criterion that combines the prediction accuracy and computation cost:

Sa =
Eǫ(ACCa)

COSTω
a

, (6)

where Sa is the score of the network a and ω is the parameter that controls the trade-off between the
prediction accuracy and the computation cost.

Using this criterion, we can search for the optimal deployable network with the highest score S∗.
However, the number of available networks is infinite, which cannot be well handled by any search
algorithm. Therefore, we limit the search space to a finite set A. The problem of network search in the
search space A is formulated as

S∗ = argmax
a

Sa

s.t. a ∈ A, W l
a
∈ Q,

∑

l

|W l
a
| 6

#Cells

2
.

(7)

In this way, we incorporate the requirements of the network to be deployed on the RRAM-based accel-
erators into the formulation.

5 NAS4RRAM framework

In this section, we introduce the framework, NAS4RRAM. The overall is demonstrated in Figure 3.
The search algorithm samples networks from the search space. Then we evaluate the sampled networks
using the evaluation metric to get the score of each network. And we feed the scores back to the search
algorithm to sample better networks. After some iterations of sample/evaluation/feedback, we take the
best network explored by the search algorithm. We can deploy it to the RRAM-based accelerator.
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Figure 3 Overview of the NAS4RRAM framework.

5.1 Search space

The search space is a finite set that contains a lot of deployable networks. The goal of NAS is to find
the optimal network in the search space, and the networks not in the space are ignored. Since the search
space determines the range of network search, it is essential to build a proper search space A.

There are many available choices to build the search space, including (1) the number of layers, (2) the
topology of layers, (3) the parameters of layers (e.g., the number of channels, the kernel size, and the
group size for convolution layer). NAS4RRAM requires the search space to contain networks that are
deployable on the given RRAM-based accelerator. For example, a network with an excessive number of
weights is forbidden to be in the search space.

A large space contains many networks, in which the probability of finding a powerful network is
increased. However, search algorithms cannot well explore a large space given finite computation re-
sources [30]. A small space contains fewer networks, in which the probability of finding a powerful
network is decreased. So we should use a search space with a proper size. We design a search space with
around 1016 networks in our experiment as an example described in Subsection 6.1.2.

5.2 Search algorithm

The search algorithm’s goal is to explore the search space A and search for the optimal network with
the highest score S∗. There exist different kinds of search algorithms, including reinforcement-learning
based algorithm [8], evolutionary algorithm [23] and Bayesian optimization [31]. In NAS4RRAM, we
take the widely used evolutionary algorithm, which is powerful and easy to implement. The algorithm
simulates biological evolution, which includes the steps of reproduction, mutation, and selection. Next,
we introduce the search algorithm in detail.

In the evolutionary algorithm, a population is some networks sampled from the search space. The
network in the population is also called individual. The population can evolve iteratively. Like natural
selection, a number of good networks in the population are selected as the parent. The other networks
cannot survive, and they are deleted from the population. By mutation in the network structures of
the parent networks, the child networks can be generated. The generated child networks update the
population. Therefore, the networks are evolved iteratively. At natural selection, we take the proposed
criterion to evaluate each network in the population, and the scores of the networks can increase during
the evolution.

Specifically, we first random sample #Individual networks to initialize the population. Then we repeat
the following steps #Evolution times.

(1) Evaluate the networks in the population to get the scores.

(2) Select #Parent networks with the highest scores as parent networks and delete the other networks.

(3) Generate (#Individual−#Parent) child networks by mutating the parent networks.

(4) Put the generated networks into the population.

At last, we take the network with the highest score as output. The mutation operation is implemented
by randomly changing the parent network configurations to generate a new network in the search space.
For example, the number of output channels of a convolution layer in a parent network can be changed
to generate another network.
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5.3 Evaluation of networks

When the child networks are sampled from the search space, we should evaluate them to get the score. The
score Sa of network a is calculated by the expected prediction accuracy Eǫ(ACCa) and the computation
cost COSTa according to the criterion in (6).

Generally, NAS takes the following steps to get the prediction accuracy.
(1) Train the network using a training dataset (training phase).
(2) Test the trained network using an evaluation dataset and calculate the prediction accuracy (testing

phase).
Different from digital hardware, the noise in the RRAM-based accelerator cannot be ignored, and the

DAC and ADC are used to transform the input and output of the crossbar between digital numbers and
analog signals. The noise and the DAC/ADC affect the prediction accuracy, which should be considered
here.

We model the noise in both the training phase and testing phase. The noise of the RRAM-based
accelerator is described in Subsection 2.3. The thermal noise, the shot noise, and the RTN noise are
added to the convolution layers’ weight at each training iteration. At the testing phase, we test on the
evaluation dataset with different randomly sampled noise multiple times. The prediction accuracy of
different tests is averaged as an approximation of the expected prediction accuracy Eǫ(ACCa).

The same as [32], we model the DAC and the ADC in the RRAM crossbar as two quantization functions,
respectively. The DAC is modeled as a kin bits quantization function, and the ADC is modeled as a kout
bits quantization function. At the training phase, the training techniques for quantization can be used
such as straight-forward estimator [33] or error decay estimator [34]. Note that the weights in each layer
can be mapped to several crossbars, and the quantization functions are applied at each crossbar, which
is different from the layer-wise or channel-wise quantization.

The computation cost of the network is calculated using a simulator of the target RRAM-based accel-
erator. We first collect the latency and energy consumption of matrix-vector multiplication on different
crossbars. The sampled networks are mapped to the crossbars and calculate the total latency and energy
consumption.

6 Experiments

To verify the effectiveness of NAS4RRAM, we search for the optimal networks on the CIFAR-10 and the
CIFAR-100 classification tasks to deploy on the RRAM-based accelerators with different sizes. In this
section, we first describe the settings, including the accelerator’s details, the design of the search space,
the hyper-parameters of NAS, and the dataset. Then we demonstrate the results of the experiments.

6.1 Settings

6.1.1 RRAM-based accelerator

In our experiments, the RRAM cells in the accelerator can be programmed to 2 levels of conductance.
This 2-level RRAM cell can achieve high energy efficiency and low noise, which is widely used. Therefore,
we use the ternary weight, of which the value is selected from {−1, 0, 1}. Each weight consumes two
RRAM cells because we divide the weights in the matrix into the positive and negative parts. To enable
quick inference and low energy consumption, we chose kin = 1 and kout = 4. The operating frequency f is
100 MHz, the voltage drop Vdrop is 0.2 V, the 2 levels of conductance are 333 and 0.33 µS, the temperature
T is 300 K, and the crossbar size #Row×#Col is 128× 128. We set different numbers of the crossbars
B to scale the RRAM-based accelerator. In our experiment, we take B ∈ {16, 32, 48}. Therefore, the
numbers of weights in the networks are limited to 131072, 262144, and 393216, respectively.

6.1.2 Search space

In our experiments, we design a search space based on ResNet [1]. A ResNet is composed of a number
of residual blocks, demonstrated in Figure 4(a). It contains a branch with two convolution layers and a
residual connection. Inspired by IRNet [34], we modify the standard residual block to support the low
bit-width quantization. As shown in Figure 4(b), we remove one of the convolution layers, change the
number of channels, and replace the activation function with Hardtanh, which is defined as Hardtanh(x) =
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Figure 4 Comparing of (a) standard residual block and (b) the modified residual block.

min(max(x,−1), 1). The input and output numbers of channels are C1 and C2, respectively. At the
residual connection, we add the feature maps with fewer channels to the front channels of the other one if
C1 6= C2. If the convolution’s stride is 2, we down-sample the input feature maps to align the resolution.
Note that the weights of the 3× 3 convolution are quantized, and the ADC/DAC quantization functions
are used.

As shown in Figure 5, we build the search space by stacking the modified residual blocks. The modified
residual blocks are divided into three block groups. Blockgi is the i-th residual block in g-th block group.
C

g
i is the number of the block’s output channel. Ng is the number of blocks in the block group g. The

dimensions of the search space are (1) the numbers of layers Ng ∈ N and (2) the numbers of output
channels C

g
i ∈ C for different convolutions. We set C = {16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64}

and N = {2, 4, 6, 8, 10}. We set the first block in the second and the third group with stride = 2 to
reduce the resolution of the feature maps. We add a convolution layer with 16 output channels before
the first residual block, and we add a global average pooling followed by a fully connected layer after the
last residual block. Since the quantization for the first convolution layer and the fully connected layer
dramatically decrease the model performance, they are processed in the CPU with floating-point values.

6.1.3 Hyper-parameters of NAS

For the evolution algorithm, we set the population size #Individual = 200, the parent size #Parent = 50
and the time of evolution #Evolution = 20. Therefore, 200+20×(200−50) = 3200 networks in the search
space are sampled during the evolutionary search. We set the mutation probability of each configuration
to 20%.

At the training phase of evaluation, we use SGD as the optimizer to train the sampled networks. The
momentum is set to 0.9. The batch size is set to 256. The learning rate is set to 0.1. The weight decay
is set to 1E − 4. Each sampled network is trained for 10 epochs. At the testing phase, we test it under
the affection of noise 5 times to calculate the expected prediction accuracy. We use a GPU server with
6 Nvidia Tesla V100 to train these networks. We use the energy consumption as the computation cost,
estimated by a simulator of the RRAM-based accelerator. The ω in (6) is set to 0.06.

After the network search, we train the searched network for 200 epochs. The learning rate starts from
0.1, and cosine annealing schedule [35] is used. The error decay estimator [34] is used to train with
quantization.

6.1.4 Dataset

Both CIFAR-10 and CIFAR-100 [36] contain 50k training images and 10k test images. We sample 5000
images from the training dataset as the evaluation dataset. The input resolution of the images is 32× 32.
The standard data augmentation is used. We zero-pad the image with 4 pixels, randomly crop it to the
resolution of 32× 32, and randomly horizontal flip it as data augmentation.
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Figure 5 Demonstration of the networks in the search space.

Table 1 The results on CIFAR-10/CIFAR-100 for different networksa)

Task Network #Weight ACC (%) Deployable (B = 16) Deployable (B = 32) Deployable (B = 48)

ResNet-20 ×1 267k 82.4 N N Y

ResNet-20 ×0.5 71k 72.6 Y Y Y

ResNet-32 ×1 461k 82.9 N N N

CIFAR-10 ResNet-32 ×0.5 122k 76.1 Y Y Y

NAS4RRAM (B =16) 125k 78.5 Y Y Y

NAS4RRAM (B =32) 261k 82.7 N Y Y

NAS4RRAM (B =48) 383k 84.4 N N Y

ResNet-20 ×1 267k 50.7 N N Y

ResNet-20 ×0.5 71k 38.2 Y Y Y

ResNet-32 ×1 461k 53.0 N N N

CIFAR-100 ResNet-32 ×0.5 122k 39.3 Y Y Y

NAS4RRAM (B = 16) 118k 45.6 Y Y Y

NAS4RRAM (B = 32) 250k 50.9 N Y Y

NAS4RRAM (B = 48) 343k 53.1 N N Y

a) #Weight is the number of weights in thousand. ACC is the top-1 accuracy. We mark a Y at the corresponding column if the

network is deployable on an accelerator with B RRAM-crossbars.

6.2 Results

We search for the optimal networks to deploy on accelerators with different numbers of RRAM cross-
bars B. The searched networks are denoted as NAS4RRAM (B = 16), NAS4RRAM (B = 32), and
NAS4RRAM (B = 48) for the accelerators with 16, 32, and 48 RRAM crossbars, respectively.

We compare the searched networks with the manually designed ResNet, denoted by ResNet-20 ×1 and
ResNet-32 ×1. However, they are too large to deploy on the RRAM-based accelerator with B = 16 and
B = 32. We halve their output channel of each convolution layer to generate smaller networks, denoted
as ResNet-20 ×0.5 and ResNet-32 ×0.5. They are evaluated with the same settings (i.e., noise affection,
quantization, training settings, and testing settings).

As shown in Table 1, we report the number of weights and the prediction accuracy of different networks.
The ResNet-20 ×1 takes 267k weights and is only deployable on the largest accelerator (B = 48). And
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ResNet-20 ×0.5 is much smaller than ResNet-20 ×1. It takes 71k weights and is deployable on the three
accelerators. However, the utilization of the RRAM cells is low. The utilization is 54.2% when the
ResNet-20 ×0.5 is deployed on the smallest accelerator (B = 16). The ResNet-32 ×1 is a large network
that takes 461k weights. We cannot deploy it on any accelerators. The ResNet-32 ×0.5 takes 122k
weights and can be deployed on the three accelerators.

The results demonstrated the networks searched by NAS4RRAM are deployable on the target accel-
erators. On CIFAR-10, the NAS4RRAM (B = 16) takes 122k weights, and its prediction accuracy is
78.5%. Comparing with ResNet-20 ×0.5 (72.6%) and ResNet-32 ×0.5 (76.1%), the prediction accuracy
of NAS4RRAM (B = 16) is much higher. The NAS4RRAM (B = 32) takes 261k weights with the pre-
diction accuracy of 82.7%, which outperforms the other networks that can be deployed on the accelerator
(B = 32). Targeting the accelerator with 48 RRAM crossbars, the NAS4RRAM (B = 48) takes 383k
weights with the highest prediction accuracy (84.4%).

On CIFAR-100, the NAS4RRAM (B = 16) takes 118k weights, and its prediction accuracy is 45.6%.
Comparing with ResNet-20 ×0.5 (38.2%) and ResNet-32 ×0.5 (39.3%), which are deployable on accel-
erator (B = 16), the prediction accuracy of NAS4RRAM (B = 16) is much higher. The NAS4RRAM
(B = 32) takes 250k weights with a prediction accuracy of 50.9%. Targeting the accelerator with 48
RRAM crossbars, the NAS4RRAM (B = 48) takes 343k weights with the highest prediction accuracy
(53.1%).

We observe that the RRAM cells’ utilization is much higher for the searched networks, which indicates
NAS4RRAM can make full use of the hardware devices.

7 Conclusion

In this paper, we observed the requirements of deploying a neural network on RRAM-based accelerators.
The requirements motivate us to design hardware-friendly networks. Taking the technique of NAS, we
propose a framework, NAS4RRAM. It searches for the optimal network to deploy on the given RRAM-
based accelerator. As an example, we validate the effectiveness of NAS4RRAM on the CIFAR-10 and
CIFAR-100 classification tasks. The experimental results demonstrate that the NAS4RRAM can be
applied on different RRAM-based accelerators with different scales. The searched networks outperform
the manually designed ResNet.
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