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Abstract—Processing-in-memory (PIM) exploits massive par-
allelism with high energy efficiency and becomes a promising
solution to the von Neumann bottleneck. Recently, the emerging
metal-oxide Resistive Random Access Memory (RRAM) shows
its potential to construct a PIM architecture, because several
stateful logic operations, e.g., IMP and NOR, can be executed in
an RRAM crossbar in parallel. Previous synthesis flows focus
on improving latency with stateful logic operations, but they
ignore that the memory should be used primarily for storage.
i.e., most of the area in the crossbar is used for computation
but not storage. In this situation, storage and computation still
have to be separated into different crossbars, which leads to
considerable data transfer overhead and limited parallelism.

In this work, we define the ratio of storage in a crossbar as
area utilization. We aim to improve the area utilization without
throughput loss by proposing STAR, a novel synthesis flow for the
stateful logic. We present two optimization strategies to reduce
the computation area in STAR. First, we reduce the area for
redundant inputs. For the shared constants among different
rows (or columns), we encode them as immediate values into
the control signals without writing them into the crossbar at
run time. For the other inputs, we only store one copy of them
in the crossbar. Second, we reduce the area for intermediate
variables by reusing invalid cells. And we design a scheduling
algorithm to find a computation sequence with the minimal
variable erasing cycles. Invalid primary inputs can also be erased
in this algorithm. Furthermore, we present a case study of the
image convolution to demonstrate the effectiveness of STAR.
Experimental evaluation shows that STAR achieves 33.03% more
area utilization and a 1.43x throughput compared to SIMPLER,
the state-of-the-art stateful logic synthesis flow. Our image
convolution implementation also provides 78.36% more area
utilization and a 1.48x throughput compared with IMAGING, the
state-of-the-art stateful logic based image processing accelerator.

Index Terms—synthesis, memory, scheduling, performance op-
timization

I. INTRODUCTION

Huge energy-hungry data transfer between processors and
memory has been the limitation of computation speed and
energy efficiency, i.e., the von Neumann bottleneck [1]. To al-
leviate the memory wall, researchers have explored to process
data within the memory, which is an attractive solution.

This work is partly supported by Beijing Municipal Science and Technology
Program under Grant No. Z201100004220007, Key Area R&D Program of
Guangdong Province with grant No. 2018B030338001, Beijing Academy
of Artificial Intelligence (BAAI), and Alibaba Innovative Research (AIR)
Program.

The metal-oxide Resistive Random Access Memory
(RRAM) is one type of non-volatile memories (NVM) [2].
It has emerged as one of the most promising technologies to
implement a processing-in-memory (PIM) architecture for two
reasons. First, it is a non-volatile, ultra-compact memory with
low leakage power and excellent scalability. Industrial demon-
strations have been presented [3] to showcase the viability of
large memory crossbars (GB level in total with 512×512 bits
per crossbar). Second, digital RRAM has been demonstrated
to perform stateful logic operations [4] beyond storage. It
is possible to combine computation and storage in the same
RRAM crossbar due to its flexibility.

In a digital RRAM crossbar, each RRAM cell can store
one-bit information because it has two different resistance
states, the low resistance state (LRS) and the high resistance
state (HRS). These two states can be switched by applying
certain voltage patterns. For RRAM cells that are connected
in series, they can change the states of others under specific
voltage patterns. This important feature has been leveraged
for computation, and several stateful logic operations have
been conducted in recent years, including IMP [4], NOR [5],
NAND [6], and OR [7].

Besides the PIM benefit, RRAM also provides massive Sin-
gle Instruction Multiple Lines (SIML)-fashion parallelism [8].
In an RRAM crossbar, we can implement multiple stateful
logic operations along different columns (or rows) in parallel
by applying the same voltage pattern [9], if the input and the
output RRAM cells are aligned along rows (or columns). The
degree of parallelism can reach the size of the crossbar and
scale with the data size due to the PIM capability of RRAM.
On contrary, the degree of parallelism in the conventional von
Neumann architecture is limited by the amount of computing
resources, e.g., Arithmetic Logical Units (ALUs). Despite their
equivalence in computation capability, we can achieve lower
time complexity in RRAM if fully exploiting its parallelism.

To utilize the PIM feature and the SIML-fashion parallelism
of RRAM, storage and computation have to be combined in the
same RRAM crossbars. Otherwise, data need to be transferred
from storage crossbars to computation crossbars at run time,
which still introduces a considerable overhead [20]. Also,
the parallelism is dominated by the number of computation
crossbars and cannot scale with the data size. Furthermore, to
meet this requirement and still suit for storage, storage have
to take up the major part in the crossbar.
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Fig. 1: Data layout during the computation procedure of image
convolution in IMAGING. For a 3×3 filter and a 512×512
RRAM crossbar, the maximum input image size is 170×8
with 8 bits per pixel.

TABLE I: Ultra-low area utilization of previous works. We
list the result of the state-of-the-art work SIMPLER for each
benchmark.

Benchmark Work Area utilization

ISCAS’85 [10]

Logic [9] 3.69%
Scalable [11] 2.52%

Look-ahead [12] 2.64%
Staircase [13] 2.01%

SAID [14] 8.25%
SIMPLER [15] 63.21%

LgSynth’91 [16] SIMPLE [17] 8.02%
SIMPLER 48.49%

IWLS’93 [18] SIMPLER 41.93%
Image convolution IMAGING [19] 8.10%

In this work, we define:

area utilization
def
====

storage area

crossbar area
, (1)

which represents the ratio of storage in the crossbar. Specifi-
cally, for a logic function implemented in the RRAM crossbar,
the storage consists of inputs and outputs, and its area utiliza-
tion becomes

area utilization =
|inputs|+ |outputs|
bounding box area

. (2)

The synthesis flow for the stateful logic should have high
area utilization and reduce the area for redundant inputs,
intermediate variables, unused cells as much as possible.

For example, Fig. 1 shows the data layout during the com-
putation procedure of image convolution in IMAGING [19].
Despite of high parallelism, the area utilization of image
convolution is 8.30%. Several copies of the input image and
the filter occupy 25.53% of the crossbar, and the intermediate
variables occupy 66.17%. To combine storage and compu-
tation in the same crossbar, 25.53%+66.17%=91.70% of the
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(b) State transitions.

Fig. 2: Schematic of an RRAM cell.

crossbar needs to be reserved for computation. Assuming that
we have a 1 GB RRAM, we can only store 83 MB images in
it. It cannot play the role of storage well.

As shown in Table I, most of the previous synthesis
flows [9], [17], [11], [12], [13], [14] optimize the latency
of a given logic function at a cost of less than 10% area
utilization. Large amount of extra inputs and intermediate
variables are written into the crossbar during computation,
and more than half of the RRAM cells are unused. SIM-
PLER [15] optimizes the throughput instead of the latency
by reusing invalid cells and computing multiple instances in
parallel. However, its reusing algorithm cannot get the optimal
computation sequence. As a result, the area utilization still
stays around 50%.

For a given crossbar size and a synthesis flow, considering
that the throughput (per crossbar) is proportional to the area for
computation, it is unacceptable to improve the area utilization
directly in previous works, which will lead to a significant
throughput loss. To address this problem, we propose STAR,
a novel synthesis flow for the stateful logic in RRAM, in
this work. The key point is to improve the area utilization
without throughput loss. The main contributions of this work
are listed as follows:

• We propose STAR, a synthesis flow for stateful logic in
RRAM, which improves area utilization by reducing the
area for primary inputs and intermediate variables without
throughput loss.

• We present a case study of the image convolution. We first
design a dense data placement scheme and then perform
highly parallel computation using the limited area under
the guide of STAR.

• We experimentally evaluate STAR and the image con-
volution implementation with the state-of-the-art works
on the stateful logic to show our advantages in area
utilization and throughput.

The rest of this paper is organized as follows. Section II
summarizes the mechanism of the stateful logic. Section III
proposes the synthesis flow in detail. In Section IV, we present
a case study of the image convolution. The proposed synthesis
flow STAR and the image convolution implementation are
evaluated with experimental results in Section V. Finally,
Section VI introduces some related works, and Section VII
concludes the paper.
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Fig. 3: A NOR operation Z = NOR(X,Y ). RRAM Z is
initialized to LRS. VG satisfies VG>2 · VRESET. Z will be
reset to HRS if X or Y stays at LRS.
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Fig. 4: Parallel NOR operations in a crossbar. Each cell
in the figure represents an RRAM cell. We can exe-
cute WL operations Rim=NOR(Ri1, Ri2) or BL operations
Rmi=NOR(R1i, R2i) for 1≤i≤m in parallel.

II. BACKGROUND

A. Digital RRAM Cell

RRAM [21] is made of a dielectric material that is fabricated
between two metal electrodes, as shown in Fig. 2a. The two
terminals connect to the word line (WL) and the bit line
(BL), respectively. The logical state of a digital RRAM cell is
represented by its resistance, where the high resistance state
(HRS) is logical zero and the low resistance state (LRS) is
logical one. The two states can be switched mutually at certain
conditions, as summarized in a state machine in Fig. 2b. When
applying a positive voltage which is larger than VSET, RRAM
cells can be switched from HRS to LRS. When applying a
negative voltage with a magnitude larger than the erase voltage
VRESET, RRAM cells can be switched from LRS to HRS.
These two voltage patterns implement the logic operations
SET Y=1 and RESET Y=0, respectively.

B. Memristor-Aided loGIC (MAGIC)

Stateful logic is one of the techniques for RRAM based
in-memory logic, where both the inputs and outputs of the
logic gates are the states of the RRAM. The applied voltages
across the input cells write the result to the output cell
based on the values stored in the input cells initially. Fig. 3
shows the schematic of Memristor-Aided loGIC (MAGIC) [5],
a widely-used stateful logic family. In this example, Z is
initialized to LRS. When we apply a voltage pulse of VG
(VG>2VRESET), VG, and GND on BLs of cells X, Y, and
Z, respectively and connect their WLs, we perform a NOR
operation Z=NOR(X,Y ). We can also perform the NOR
operation with more than two inputs similarly.

Here we give a detailed examination of this two-input NOR
operation. Two input cells X and Y are connected in parallel.
When one of the inputs stays at LRS, the total resistance of the
inputs is smaller than LRS. As a result, the negative voltage on
Z is greater than VG/2>VRESET and is large enough to reset
it into HRS. Otherwise, the voltage on Z is close to zero, and
Z remains unchanged. Z’s value becomes 0 only if at least one
of the inputs is 1, which is consistent with the NOR logic.

TABLE II: Stateful logic families.

Work Stateful logic operations
[4] IMP
[5] NOR, NOT
[6] NAND, NIMP
[7] NOR, NAND, Min, OR
[22] NOR, NOT, NAND, NIMP, XOR

Fig. 4 shows the schematic of NOR performed over rows
and columns within a symmetric RRAM crossbar. The m
horizontal wires are WLs and the m vertical ones are BLs.
Each junction of a WL and a BL has an RRAM cell. Parallel
execution of operations requires alignment of their inputs
and outputs. Thus, we can apply a logic operation to WLs
(also referred as WL operations) or BLs (also referred as BL
operations) simultaneously using the same voltage pattern. The
operation takes the period of a single voltage pulse, regardless
of the number of parallel WLs or BLs [9].

C. Stateful Logic Families

Previous works have demonstrated some other stateful logic
families, which are summarized in Table II. These works are
a little different in their implementation details. For example,
Huang et al. define HRS and LRS as logical 1 and 0, respec-
tively [6]. Xu et al. combine the unipolar and bipolar devices
in the same crossbar [22]. Despite the differences, all of
them support SIML-fashion parallelism in a symmetric RRAM
crossbar. Also, these stateful logic families are functionally
complete, and thus, any logic functions can be implemented
in a finite number of RRAM cells using finite voltage pulses.
We have proved that these differences have no effect on the
order of the time complexity [8]. Without loss of generality,
we take two-input MAGIC NOR operations as an example in
the rest of the paper.

III. STAR: SYNTHESIS FLOW

We propose STAR, a synthesis flow with high area utiliza-
tion, in this section, as shown in Fig. 6. STAR contains seven
steps labelled by A to G. The first six steps A to F target
low latency of a serial function, i.e., all of the stateful logic
operations are executed in series in an RRAM line, and we
try to reduce the number of the stateful logic and the variable
erasing operations at these steps. The last step G extends the
one-line synthesis result to multiple lines. We integrate the
optimization strategies on area utilization into STAR (Opt 1:
Step B, Opt 2: Step C to E). We introduce STAR step by step
in the corresponding subsections using the full adder in Fig. 5
as an example and focus on the optimization strategies.

A. Synthesize for Least Primitive Operations

For a logic function given in the Verilog format, we convert
it into an operation graph using the ABC synthesis tool [23]
with a customized logic library. The operation graph can be
regarded as a Directed Acyclic Graph (DAG) G = 〈V,E〉,
in which V is the set of variables, and E represents the
stateful logic operations. If Y = F (A1, A2, ..., An) (F is an
operation in the library) exists in the synthesis result, there is
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A B C T1 T2 T4 T6 T10 Cycle 1-5: Compute T1, T2, T4, T6, T10

A B C T6 T10 Cycle 6: Erase T1, T2, T4

A B C T3 T8 T5 T6 T10 Cycle 7-9: Compute T3, T8, T5

A B C T8 T5 T10 Cycle 10: Erase T3, T6

A B C Co T8 T5 T7 T10 Cycle 11-12: Compute Co, T7

A B C Co T8 T7 Cycle 13: Erase T5, T10

A B C Co T8 T9 T7 T12 Cycle 14-15: Compute T9, T12

A B C Co T8 T9 T12 Cycle 16: Erase T7

A B C Co T8 T9 T13 T12 Cycle 17: Compute T13

A B C Co T9 T13 Cycle 18: Erase T8, T12

A B C Co S T9 T13 Cycle 19: Compute S

(b) Our implementation with the highest area utilization (the least cells).
Fig. 5: Our RRAM implementation of the one-bit full adder. For one full adder instance, our implementation takes 19 cycles
with 8 cells. We insert 5 erasing operations during the computation procedure. We can also compute multiple instances within
the same latency. Our area utilization is (3+2)/8=62.5%.

an edge from A1, A2, ..., An to Y in G, respectively. Although
different stateful logic families may affect the area utilization
and latency of the function, we can deal with them using a
uniform synthesis flow.

Example. If we use the MAGIC stateful logic family, the
customized library consists of two types of gates, the two-
input NOR gate (NOR2X1) and the NOT gate. The operation
graph becomes NOR-Inverter Graph. The one-bit full adder
consists of 14 NOR (NOT) gates.

B. Opt 1: Reduce the Area for Redundant Inputs

We use three methods to reduce the area for primary inputs.
First, we utilize the inter-instance parallelism and do not copy
inputs. That is to say, we compute one instance, i.e., one full
adder, in one RRAM line and compute multiple instances
using the SIML-fashion parallelism instead of parallelizing
logic operations within one instance. All of the cells in the
bounding box participate in the computation, which provides
high area utilization. It is worth noting that we do not copy
input instances, and the parallelism only comes from the
instance number. On contrary, although some previous works,
e.g., IMAGING [19], also designs stateful logic algorithms
using this natural parallel manner, they improve parallelism by
copying one instance to multiple lines, which still introduces
area and initialization overhead.

Example. If we compute multiple adder instances in parallel,
it still takes 19 cycles. The area utilization remains unchanged.

Second, we encode the shared constants among all of the
instances into the control signals once to save the cells storing
them and the operations writing multiple copies into the
crossbar. In detail, in the operation graph, we simplify the op-
erations that directly contain a shared constant p or their nega-
tions by deleting unitary operations and converting n-input
operations to (n−1)-input operations. If we use the MAGIC
stateful logic family in STAR, we delete Y = NOT(p) and

convert Y = NOR(A, p), Y = NOR(A,NOT(p)) to Y = 0
or Y = NOT(A) according to the value of p.

Example. If we already know C = 0 or C = 1 for all adder
instances, we do not need to write C and its negation into the
crossbar. In the full adder NOR-Inverter Graph, we delete C,
its negation T3, and four outgoing edges. The control signals
generating T10 and T8 depend on the value of C.

Third, if the inputs will not be used in the future, we treat
them as the intermediate variables and erase them during the
computation procedure. We set coverInput = true in the
following scheduling algorithm (Algorithm 1) of this flow.

Example. If coverInput = true, we can implement the
full adder with only 6 cells and increase the area utilization
to (3 + 2)/6 = 83.33%..

C. Opt 2a: Insert the Variable Erasing Operations

Step C to E constitute Opt 2. We reuse RRAM cells
by erasing invalid variables. If the internal inputs will no
longer be used, we also erase them during the computation.
In this strategy, the area utilization of STAR is affected by
the variable computation sequence, the cell number, and the
variable erasing rule. The former two depend on the variable
erasing rule, so we first introduce the rule.

For a given computation sequence and the cell number,
considering that multiple RRAM cells can be set at the same
time [24], we follow a lazy erasing rule in STAR, i.e., we
erase all invalid variables by parallel SET operations when
the intermediate variables use up the RRAM cells. In fact, the
number of cells set together has an upper bound SETmax 1,
which varies with the RRAM physical parameters. We ideally
assume that SETmax equals to the columns in the crossbar in
this section and demonstrate that a finite SETmax has a small
impact on the number of erasing operations in Section V.

1SETmax has the same meaning as LimitInitCells in SIMPLER.
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G. assign the SIML-fashion parallelism parallelism requirement 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 = 10

module full_adder;
input A, B, C;
output Co, S;
…
endmodule

…
T10 = NOR(C, T4);
erase T1, T2, T4;
T3 = NOT(C)
T8 = NOR(T3, T6);
T5 = NOR(A, B);
…

…
R8 = NOR(R3, R6);
SET R4, R5, R6;
R4 = NOT(C);
R5 = NOR(R4, R7);
R6 = NOR(R1, R2);
…

parallel 1 to 10 {
…
R8 = NOR(R3, R6);
SET R4, R5, R6;
…

}

insert 5 erasing operations

𝑐𝑜𝑣𝑒𝑟𝐼𝑛𝑝𝑢𝑡 𝑐𝑜𝑣𝑒𝑟𝐼𝑛𝑝𝑢𝑡 = 𝑓𝑎𝑙𝑠𝑒

C
 ~

 E

General synthesis flow of STAR Example: one-bit full adder

Fig. 6: Our high area utilization synthesis flow STAR with two optimization strategies. Optimization 1: reduce the area for
redundant inputs. Optimization 2: reuse the RRAM cells for intermediate variables. The left part is the general synthesis flow of
STAR, and the right part takes the one-bit full adder in Fig. 5 as an example. For simplicity, we assume that the NOR-Inverter
Graph in Fig. 5a is the synthesis result of ABC. (In fact, the fastest series full adder only takes 9 cycles.)

Example. All of the cells are exhausted after computing T10,
so we erase T1, T2, T4 in the next cycle in parallel as they will
not participate in the following computation.

D. Opt 2b: Determine the Computation Sequence

Inserting erasing operations will increase the total latency
despite of improving area utilization. To alleviate the negative
effect, we want to find a computation sequence that can
minimize the erasing operations. We formulate the erasing
operation minimization problem as follows.

Erasing operation minimization problem. Given an oper-
ation graph G = 〈V,E〉 and cellopt cells for the logic function,
find a computation sequence CS, which can minimize the
variable erasing operations under the lazy erase rule.

We prove that the erase operation minimization problem is
NP-hard by showing that the register allocation problem, a
known NP-hard problem [25], is a special case of it. Register
allocation is a problem of assigning a large number of target
variables onto a small number of registers. On the one hand,
if we consider registers as RRAM cells, the register allocation
problem is equivalent to solving the minimal cell number. On
the other hand, the erasing operation minimization problem
can decide whether the register allocation at a given cell
number is feasible. We can solve the minimal cell number
by binary search of the cell number and this problem, so the
erasing operation minimization problem is also NP-hard. As
a result, we propose a heuristic scheduling algorithm to find
a near optimal solution, as shown in Algorithm 1.

Note that no more than cellopt variables can be stored in
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Algorithm 1 Scheduling algorithm for the erasing operation
minimization problem

Input: An operation graph G = 〈V,E〉, coverInput
Output: The computation sequence CS with the minimal

variable erasing operations
1: CS ← ∅
2: if coverInput == false then
3: valid← ∅
4: else
5: valid = G.input
6: end if
7: for i = 1 to |V | − |G.input| do
8: for v ∈ (V −G.input− CS) ∪ valid do
9: Update erasePre(v, CS)

10: end for
11: if valid == ∅ then
12: candidate← V
13: else
14: // select toErase
15: toErase = argminv∈valid{erasePre(v, CS)}
16: candidate← erasePre(toErase)
17: end if
18: // select toCompute
19: candidate− = {x|pre(x) is not computed}
20: toCompute = argminv∈candidate{erasePre(v, CS)}
21: Add toCompute into CS, valid
22: Update valid
23: end for

RRAM when the computation is finished. As a result, at least
|V | − cellopt variables have to be erased, and the number of
the erasing operations can be represented as follows:

erasing operations =
total erased variables

average erased variables once

≥ |V | − cellopt
average erased variables once

.

(3)
We can minimize the variable erasing operations by maximiz-
ing the erased variables once.
erasePre(v, CS) is the core concept in the algorithm.

v is a vertex in V . At a certain moment during the al-
gorithm execution, CS is the partial computation sequence.
|erasePre(v, CS)| represents the minimal variables to com-
pute, i.e., the minimal cells to use, before v can be erased in
the next erasing operation.

A vertex can be erased only if it will not be used in the
future. For example, after the 4th cycle in our full adder imple-
mentation, CS = {T1, T2, T4, T6}. To erase T4, its successor
T10 has to be computed, i.e., erasePre(T4, CS) = {T10}.
Similarly, to erase T6, its successor T8 has to be computed. T3,
the other precursor of T8 also needs to be computed first. As
a result, erasePre(T6, CS) = {T8, T3}. Since there is only
one cell left, we choose to compute erasePre(T4) in the 5th
cycle and erase 3 variables in the 6th cycle. Otherwise, if we
compute erasePre(T6, CS) first, we can only erase T1, T2 in
the 6th cycle.

From the above example we can see that, for a given cell
number, to erase as many variables as possible once, we
should erase the variables in the crossbar with the minimal
|erasePre| by computing their erasePre sets first.

Here gives a formal definition for erasePre. For a vertex
v ∈ V , pre(v) is the precursors of v, and suc(v) is the
successors of v. At a certain moment, erasePre(v, CS) can
be defined recursively:
• suc(v) ⊂ erasePre(v, CS).
• If x ∈ erasePre(v, CS), y ∈ pre(x) and y /∈ CS, y ∈
erasePre(v, CS).

With the computation of the function, |CS| becomes larger
and larger, while erasePre sets become smaller and smaller.
Finally, the variables with large |erasePre| at the beginning
can also be computed and erased using the limited cells.

We also define valid to represent the variables that cannot
be erased now:

valid = {x|x ∈ CS ∧ erasePre(x,CS) 6= ∅}. (4)

All of the intermediate variables in valid have to be stored
in the crossbar at this moment because their erasePre sets
depend on them. If coverInput = true, we also add the input
variables into valid..

Back to Algorithm 1, Line 2 to Line 6 initialize valid.
Each iteration from Line 7 to Line 23 selects toCompute
and adds it into CS. In detail, Line 13 to Line 17 se-
lect the variable in valid with the minimal |erasePre| as
toErase, which means we want to erase it in the next
erasing cycle. Then, Line 18 to Line 20 select the variable
in candidate(erasePre(toErase)) as toCompute. If there
are several variables in candidate that can be computed now,
we select the variable with the minimal |erasePre| such that
it can be erased as soon as possible.

The algorithm iterates for less than |V | times. In each itera-
tion, for a given v, if toCompute in the previous cycle belongs
to erasePre(v, CS), we delete it from the set. Otherwise,
erasePre(v, CS) remains unchanged. As a result, it takes
O(|V |) cycles to update all of the vertices. Both |valid| and
|candidate| is smaller than |V |, so it takes O(|V |) cycles to
select toErase and toCompute. The total time complexity of
the scheduling algorithm is O(|V |2). As an example, STAR
maps a graph with over 12K vertices using 10.5 seconds on a
Core i5 with 16-GB RAM.

Example 1. In the 1st cycle, valid = ∅. We select T1 as
toCompute because it is the variable in V with the minimal
|erasePre| (|{T2, T4}| = 2).

Example 2. In the 4th cycle, valid = {T4, T6}.
erasePre(T4) is smaller, so we select T4 as toErase. We
select T10 in erasePre(T4) as toCompute.

E. Opt 2c: Determine the Optimal Cell Number

We can get the minimal cell number cellmin during the
execution of the scheduling algorithm:

cellmin =

{
|G.input|+ |valid|max + 1 coverInput = false

|valid|max + 1 coverInput = true
(5)
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Fig. 7: The optimal cell number of the full adder (α = 2).

Besides |G.input| cells for the inputs, |valid| cells for the
intermediate and output variables that cannot be erased now,
another cell is reserved for the variable to be compute in the
next cycle.

Only using cellmin cells will introduce several erasing
operations and increases the total latency. Still taking the full
adder as an example, the implementation without reusing only
needs 14 cycles in spite of 17 cells. As a result, we make
a trade-off between the area utilization and the latency by
selecting the optimal cellopt for a function:

cellopt = argmin
cellopt

latencyα

area utilization

= argmin
cellopt

(|CS|+ erasing operations)α

|G.input|+|G.output|
cellopt

(6)

α is a parameter defined by the programmer. If α→ +∞, the
algorithm prefers to minimize latency without reusing cells.
If α → 0, the algorithm prefers to maximize area utilization
by reusing as many cells as possible. If the total cell number
cellmax stays between cellmin and cellopt, we let cellopt =
cellmax.

The computation sequence CS in our algorithm is cell
number irrelevant. We can compute the total erasing operations
with a given cell number under the lazy erasing rule. We can
compute the number of the erasing operations for a given
cell number by simulating the computation procedure using
O(|V |) cycles, so the total time complexity of determining
cellopt is O(|V | · (cellmax − cellmin)).

Example. As shown in Fig. 7, the optimal cell number of the
full adder is cellopt = 10 when we set α = 2. If cellmax = 8,
we select cellopt = 8.

F. Allocate RRAM Cells for Variables
We allocate RRAM cells for variables and convert the

operation sequence to the control signals, which consist of
the input and output RRAM cells and the operation types. If
the inputs cannot be covered, we do not reuse the cells storing
them. The cells storing the output variables can only be reused
before the output variables are computed. Two variables can
share the same cell only if one is erased before the other is
computed.

Example. T8 is computed after T1 is erased so they can
share the cell R3. R4 is not reused after the output variable
Co is computed.

G. Assign the SIML-fashion Parallelism
We extend the one-line control signals to multiple lines

using the inter-instance parallel manner. According to the

int image[N + 2][N + 2], filter[s][s];
for (int x = 0; x < N; ++x)

for (int y = 0; y < N; ++y){
int sum = 0;
for (int i = 0; i < s; ++i)

for (int j = 0; j < s; ++j)
sum += image[x+i][y+j] * filter[i][j];

image[x + s/2][y + s/2] = sum;
}

Fig. 8: Image convolution.

parallelism requirement, we apply the control signals to these
lines at run time in parallel.

IV. CASE STUDY: IMAGE CONVOLUTION

We present a case study of the image convolution to demon-
strate the effectiveness of STAR in this section. Convolution
is a widely-used operator in image processing. Figure 8 shows
an example. An s× s filter slides over an N ×N image and
multiplies with the corresponding pixel values of the image.

Similarly to the previous works [19], [26] that implement
convolution using the stateful logic, we only consider opti-
mizing the classical four-loop image convolution. We focus
on the computation in one crossbar by proposing a dense data
placement scheme and a highly parallel computation procedure
under the guide of STAR.

Compared to IMAGING, for Opt 1, first, we store only one
copy of the input image in the crossbar without parallelism
loss. Second, we encode the filters, the shared constants of all
pixels, in the control signals. Third, we mark coverInput of
additions as true because addends will not be used. For Opt 2,
we significantly reduce the area for stateful logic by reusing.
The rest of this section gives the details of our implementation.

A. Dense Data Placement Scheme

Figure 9a depicts the architecture for image processing, in
which each RRAM crossbar plays two roles at the same time,
as both a storage unit and a computation unit. Images are
stored and processed in the same crossbars with little data
transfer. The area and offset of the computation region in
one crossbar are determined by the global crossbar config-
uration parameters. Multiple RRAM crossbars are connected
using the H-tree topology. Data can be transferred between
adjacent arrays via high speed links. We store each image in
several contiguous crossbars, and thus, different images can be
processed in parallel without I/O conflicts. It is able to store
a large number of images in a single chip due to the high
density of RRAM, and the total parallelism is considerable.

The image processing functions are pre-synthesized to one-
line control signals. Once the host processor receives an
operator call that contains the image address and the filter
value, it first writes the padding data in each crossbar. For
big images stored in multiple crossbars, convolution of pixels
on the border of sub images requires padding pixels in the
adjacent crossbars. Then, it fills in the control signals with the
filter values and assigns parallelism according to the image
size. Finally, it dispatches the instantiated control signals to
the corresponding crossbar(s).
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Fig. 9: (a) The architecture overview. The architecture consists of a host processor and several RRAM crossbars that are
connected using the H-tree topology. (b) The dense data placement scheme. The whole RRAM crossbar is divided into three
parts, which are assigned different colors. Symbols used in this figure are summarized in Table III.

TABLE III: Symbol explanation and their typical values.

Symbol Explanation Typical value
n pixel width 8
s filter size 3
M crossbar row/column 512

BLlogic # of BLs for stateful logic 48
rowmax the maximum image height 510
colmax the maximum image width 56

We design a dense data placement scheme to ensure high
area utilization with high SIML-fashion parallelism in an
RRAM crossbar, which is shown in Figure 9b. The crossbar
is divided into three parts. The leftmost 2n · b s2c BLs and
the 2 · b s2c WLs in the top (the blue region) are left for
padding data. Some intermediate results can also be stored
here when padding data are invalid. The rightmost BLlogic
BLs (the white region) are left for performing the stateful
logic operations. We do not reserve a region at the bottom
of the crossbar for the stateful logic operations because our
computation of each pixel is directly right to the it. We do not
reserve a region for the filter in the crossbar because they are
shared constants of all image pixels in the operator call. We
encode it into control signals before computation according to
the second method of Opt 1.

The original image is aligned in the center of the crossbar
(the green region). Each image row occupies an RRAM WL.
The maximal height and width of a gray-scale image in one
crossbar is:

rowmax =M − 2 · bs
2
c, (7)

colmax = bM −BLlogic
n

c − 2 · bs
2
c. (8)

rowmax have to be divided by 3 for an RGB image. If the
image size exceeds the limitation, we split it into multiple
crossbars. We only copy the padding data at run time but not
the whole image. The area utilization of our data placement
scheme is:

area utilization =
n · rowmax · colmax

M2

≈ 1−
(2n+ 2) · b s2c+BLlogic

M
.

(9)

Considering the typical values in Table III, the typical area
utilization is about 88.16%. This area utilization is high
enough to fit the PIM concept. Still assuming that we have
a 1 GB RRAM, we can store 881 MB images in it.

B. Highly Parallel Computation Procedure

We propose an inter-instance parallel implementation for
image convolution. We compute image Column #1 to Column
#colmax in turn, so different columns can share the stateful
logic region. The computation of one column involves b s2c
columns on its left. Therefore, if the results should be written
to the original position, we will store the result of a column
in the leftmost region of the crossbar temporarily until the
original data become invalid.

We divide image Column #c into s groups,
{I1,c, I1+s,c, I1+2s,c, ...}, {I2,c, I2+s,c, I2+2s,c, ...}, ...,
and {Is,c, I2s,c, I3s,c, ...}. Each group contains about rowmax

s
pixels. The computation of the pixels in the same group
has no data overlap, so we can compute them in parallel.
Figure 10 shows our computation of one group, which
consists of five steps:

1) Multiply pixels in one BL with the corresponding filters
in parallel ( 1©).

2) Add the partial results in the same WL in parallel ( 2©).
Both n-bit multiplication and addition are synthesized
using STAR. If there exist pixels that have not been
computed yet, go to Step(1).

3) Negate half of the partial results to the right using logic
NOT operations in parallel ( 3© 7©).

4) Negate these data up one by one ( 4© 5©).
5) Add all WLs in parallel ( 6©). If there still exist partial

results, go to Step (3).

Step (1) to (2) multiply pixels and add the products in turn.
The products generated in Step (1) can be erased after Step
(2) to improve the area utilization. Step (3) to (5) form an
adder tree and iterate for dlog se times. We add two partial
results in a WL once but not all to save auxiliary RRAM cells
and improve the area utilization. Assuming that computing an
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Fig. 10: One group computation. This figure takes s = 3 as an example. I2,2 and I5,2 are being computed. Some intermediate
results of the stateful logic operations are not shown. Although the auxiliary area for stateful logic is much larger than the one
for one group, different groups (or columns) can reuse the same region for stateful logic to keep a high area utilization.

addition in series takes cycle+ cycles, the total cycles from
Step (2) to (4) are:

cycleinter ≈
dlog se∑
i=1

(n+ browmax
s

c · b s
2i
c+ cycle+). (10)

The i-th iteration adds b s2i c partial sums of each target pixel.
The degree of parallelism reaches O(M) at most of the steps.

We select the global BLlogic for a crossbar:

BLlogic = max{cell×,opt, cell+,opt}+ n. (11)

We can get cell×,opt and cell+,opt according to Equation 6 in
Opt 2 of STAR. We have to compute at least two multiplica-
tions in a WL and then add them, so we reserve n cells for the
product computed first. The input of the multiplication is the
original image, so the coverInput option is false. The input
of the addition is the partial sums that will not be used in the
future, so the coverInput option is true. BLlogic is positively
correlated to n, s, so we can get a higher area utilization under
our dense data placement scheme with a smaller n, a smaller
s, and a bigger M .

Our computation procedure achieves a high area utilization
by fully reusing cells. We not only reuse cells during all n-bit
additions and multiplications but also reuse the whole stateful
logic region among different groups and columns.

V. EXPERIMENTAL EVALUATION

We compare our work with previous works on stateful logic
in this section. We first evaluate the general-purpose synthesis
flow and focus on the scheduling algorithm. Then, we evaluate
our implementation of image convolution. We only optimize
the shared constants in the image convolution but not in
the general-purpose comparison. We normalize the physical
parameters, e.g., technology node, crossbar size, operation
latency, in the comparison. The latency can be represented
by the number of cycles, and the area can be represented by
the number of RRAM cells.

A. Synthesis Flow Evaluation
In Fig. 11, we compare STAR with seven other synthesis

flows listed in TABLE I previously, in the area utilization and
the throughput using three benchmark suites, ISCAS’85 [10],
LgSynth’91 [16], and IWLS’93 [18]. Each previous synthesis
flow uses one or more suites in the original publication.
We support the four-input NOR operation additionally in the
IWLS’93 benchmark, similarly to the previous works. We
evaluate two modes of STAR: ‘tradeoff mode’ makes a tradeoff
between area utilization and throughput by using cellopt cells
(α = 1) and setting coverInput = false; ‘Area-first mode’
uses cellmin cells and can cover the input, so it has the highest
area utilization. TABLE IV lists the average area utilization of
STAR on these benchmark suites.

Fig. 11a, 11c, 11e evaluates the area utilization. Our ‘area-
first mode’ achieves 102.10%, 85.77%, 76.85%, 103.15%,
103.78%, 72.91%, 33.03% more area utilization, compared
to Logic [9], SIMPLE [17], Scalable [11], Look-ahead [12],
Staircase [13], SAID [14], SIMPLER [15], respectively. For
previous synthesis flows, the area utilization of most cases is
less than 50%. The intermediate variables and unused cells
occupy most of the area. On contrary, the area utilization
of ‘area-first mode’ is usually larger than 80% and even
exceeds 100% in nine cases because the input and output
variables share some cells. The ‘tradeoff mode’ also achieves
a significant area utilization improvement.

STAR has less advantage in a few cases, e.g., 9sym and
clip in IWLS’93, because of the complex operation graph.
These cases have very few input and output variables and many
intermediate variables. Most variables have high fan-in and
fan-out, so their erasePre sets are relatively large. We have
to store lots of intermediate variables in the RRAM crossbar
during execution.

As shown in Fig. 11b, 11d, 11f, our ‘area-first mode’
achieves 9.83×, 6.65×, 69.33×, 82.46×, 318.42×, 17.42×,
1.43× throughput (per crossbar) compared to Logic [9],
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Fig. 11: Synthesis flow evaluation using three benchmark suites. In (a)(c)(e), partial input and output variables may share the
same cells, so the area utilization of the ‘area-first mode’ can exceed 100%. In (b)(d)(f), the throughput of the ‘area-first
mode’ is normalized to 1. We ideally assume that previous flows can compute all of the instances in parallel. STAR achieves
significant area utilization and throughput improvement compared to previous flows.

TABLE IV: High area utilization of STAR (‘Area-first mode’).

Benchmark Work Area utilization
ISCAS’85

STAR
105.79%

LgSynth’91 93.80%
IWLS’93 55.59%

SIMPLE [17], Scalable [11], Look-ahead [12], Staircase [13],
SAID [14], SIMPLER [15], respectively. In fact, the actual
throughput gain can be much higher for two reasons. First, we
fix the total area of each synthesis flow in this comparison,
so the computation area of STAR is much less than that in
other flows because of higher area utilization. Assuming that
our area utilization is α and the area utilization of a previous
work is β (α > β), the throughput gain have to be multiplied
by 1−β

1−α if we fix the computation area of each synthesis flow.
Second, the previous flows except SIMPLER cannot compute
all of the instances in parallel, and the latency increases with
the instance number. The throughput gain have to be multiplied
for multiple instances. We just estimate an ideal situation for
them in the comparison as SIMPLER.

B. Scheduling Algorithm Evaluation

We evaluate our scheduling algorithm using the ISCAS’85
benchmark, as shown in Fig. 12. We use the configuration
of the ‘tradeoff mode’ in this figure. Fig. 12a evaluates the

area saving of the algorithm compared with the one without
reusing. Our algorithm saves 83.20% area compared to the
original ABC synthesis result without reusing.

Fig. 12b evaluates the effect of different SETmaxs on the
number of erasing operations. We obtain three conclusions
from this figure. First, the extra erasing operations inserted by
the scheduling algorithm has a small overhead. The average
erasing operation ratio is only 11.22% when SETmax = 10.
It becomes 5.41% if we do not restrict SETmax. Second, the
number of erasing operations increases slowly when decreas-
ing SETmax. A smaller SETmax has less negative effect on
the total latency. Third, our algorithm does well for any given
SETmax. The minimal erasing operation ratio is 1

1+SETmax

(the dotted line in the figure) if we always erase SETmax
variables once after they are computed. The average erasing
operation ratio of our algorithm is empirically less than twice
of the lower bound.

Fig. 12c evaluates the erased cell ratio on one cell, which
stays between 40% to 50%. Since the energy consumption
is proportional to the written cells, we can infer that the
erasing operations consumes 40%-50% energy in the whole
computation procedure. A cell is written by either an erasing
operation or a MAGIC operation. That is to say, the number
of erased cells is a little smaller than the number of MAGIC
operations. In fact, a cell can be reused only after it is erased.
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Fig. 12: Scheduling algorithm evaluation.

For all synthesis flows (with or without the reusing strategy),
they need to erase (or initialize) the cells for intermediate
variables before computing the new instance. If considering
the cost of the initialization procedure, these flows erase a
similar number of cells as STAR and consume similar energy
on erasing operations. They only differ in when and how to
erase these cells, so they have different latency and throughput.

We also compare our scheduling algorithm with SIMPLER.
Fig. 13 compares the minimal RRAM cells achieved by two
scheduling algorithms. When setting coverInput = false,
our algorithm saves 16.06%, 33.19%, 9.24% cells on the
ISCAS’85, LgSynth’91, EPFL benchmarks, respectively. Our
algorithm needs fewer cells on most of the cases. For the other
cases where SIMPLER has got the near-optimal result, our al-
gorithm can get the similar result. When setting coverInput =
true, our algorithm saves 38.85%, 46.39%, 37.17% cells on
the ISCAS’85, LgSynth’91, EPFL benchmarks, respectively.
The area saving from erasing the inputs depends on the netlist
structure and varies among different cases.

Our algorithm also saves most of the erasing operations
and helps improve the throughput. For example, according
to Fig. 14, our algorithm also saves 77.40% of the erasing
operations when the number of the RRAM cells is fixed to
the minimal cells of SIMPLER. Because the erasing operations
only occupy a small part in the total computation procedure
(see Fig. 12b), the throughput improvement is not obvious (see
Fig. 11).

Our algorithm needs fewer cells and cycles because of
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Fig. 13: Minimal cells of two scheduling algorithms.
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our better heuristic function. SIMPLER estimates the minimal
number of cells required for the execution of one vertex in the
computation graph by the Strahler number, which is intended
for trees only. The estimation is static and may be incorrect if a
vertex has multiple successors. On contrary, the erasePre set
in our algorithm can exactly represent the minimal variables to
compute before a vertex can be erased and dynamically adjust
during the algorithm execution.

C. Case Study Evaluation: Image Convolution

We compare our work with two MAGIC-based image
processing accelerator APIM [26] and IMAGING [19]. Both
APIM and IMAGING manually design the addition and mul-
tiplication. We get the results of IMAGING by using limited
precision multiplication proposed in its work.

As shown in Figure 15a, STAR achieves 78.36% and
80.97% more area utilization on average over IMAGING and
APIM, respectively. STAR keeps a greater than 75% area
utilization in all cases while the other two works are smaller
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Fig. 15: Convolution comparison with different filter sizes. The
crossbar size is 512×512.

0

400

800

1200

8 16 32 64

Ar
ea

 (R
RA

M
 c

el
ls)

Pixel width

IMAGING
STAR (Opt 2)
STAR (Opt 1+2)

(a) Opt 1+2 achieves a 53.28% area saving.

100

1000

10000

100000

8 16 32 64

La
te

nc
y (

cy
cl

es
)

Pixel width

IMAGING
STAR (Opt 2)
STAR (Opt 1+2)

(b) Opt 1+2 achieves a 1.10× speedup.

Fig. 16: Limited precision multiplication comparison. Opt 1:
encode the filter into control signals. Opt 2: reuse RRAM cells.

than 10%. As shown in Figure 15b, STAR achieves a 1.48×
and 8.53× higher throughput per crossbar than IMAGING and
APIM, respectively. The area utilization and throughput of
three works decreases with the increase of the filter size as
the computation becomes more and more complex.

We make a detailed comparison between our implemen-
tation and the state-of-the-art work IMAGING. Figure 16
compares the implementation of the most complex function
in convolution, limited-precision multiplication, in which the
input and output have the same pixel width. According to
Figure 16a, our implementation saves 56.17% area. Two
optimization strategies contribute 11.29% and 44.88%, respec-
tively. According to Figure 16b, our implementation achieves
an up to 1.10× speedup besides significant area saving.

Table V and Fig. 17 gives a detailed analysis for the filter
size s = 3. The area utilization improvement comes from two
parts. First, our rowmax is 3× over IMAGING, as IMAGING

TABLE V: Detailed analysis when the filter size s = 3. The
crossbar size is 512×512.

Work IMAGING STAR

Image size rowmax 170 510
colmax 8 56

Area utilization 8.10% 88.16%

Data transfer /
pixel (bit)

duplication 24 0
filter 4.24 0

padding 1.06 0.31
Execution cycles / pixel 11.03 9.63
Throughput (bit / cycle) 0.57 0.83

input / output
8%

input 
copies
21%

filter
5%

intermediate 
variables

66%

(a) Area breakdown in IMAGING.

input / 
output
87%

intermediate variables
13%

(b) Area breakdown in STAR.

Fig. 17: Area breakdown when the filter size s = 3. The
crossbar size is 512×512.

duplicates the (negative) image for 2s = 6 times to compute
s adjacent pixels in parallel. Second, our colmax is 3.3× over
IMAGING, as IMAGING stores rowmax filters, colmax partial
sums, and many other intermediate variables simultaneously
in a WL. The area utilization gap expands gradually with the
increase of the filter size.

The throughput improvement also comes from two parts.
First, our data placement scheme saves most of the data
transfer. Only a few padding data will be written into the
crossbar during initialization. Here assumes that the computa-
tion crossbars and the storage crossbars are adjacent and the
data transfer speed is one image row / cycle. The initialization
overhead will increase by about an order of magnitude or more
if the original image is farther away [27], i.e., outside the bank
or the chip. Second, our MAGIC execution achieves a 1.15×
speedup over IMAGING on the same input image. Both works
exploit the inter-instance parallel manner, so the total speedup
in MAGIC execution mainly comes from that in series.

VI. RELATED WORK

Recent works implement several stateful logic operations
in the RRAM crossbar, e.g., IMP [4], NOR [5], and corre-
sponding synthesis flows propose to fully utilize the massive
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parallelism of the stateful logic. SIMPLE [17] minimizes
the latency by solving an Integer Linear Programming (ILP)
problem but has exponential time complexity. The following
works design some heuristic algorithms to find an approximate
solution. For example, Staircase [13] performs WL and BL
operations alternately using a staircase structure to reduce
extra data copy. SAID [14] represents the logic function by
Look-Up Tables (LUTs) and then map the LUTs onto the
crossbar to maximize LUT-level parallelism. However, these
heuristic synthesis flows neglect the use of RRAM for data
storage and have ultra-low area utilization. SIMPLER [15]
tries to improve area utilization by reusing RRAM cells, but
its scheduling algorithm cannot get the optimal result.

Some works map the function onto the RRAM crossbar
manually. For example, APIM [26] designs a carry save tree
structure for fast addition and multiplication. IMAGING [28],
[19] proposes four algorithms for efficient execution of Fixed
Point (FiP) multiplication using MAGIC gates under dif-
ferent constraints and then accelerate three common image
processing applications. Although these designs achieve high
throughput, their mapping methods are only optimized for a
particular application and cannot apply to other applications.

Some studies perform computation on RRAM without the
non-volatile stateful logic. For example, Pinatubo [20] and
PIMA [29] implements bulk bitwise operations by redesigning
the read circuitry. Besides digital fashion, RRAM also supports
matrix-vector multiplication in the analog fashion, which has
been exploited to accelerate convolutional neural networks
(CNN) [30], [31], [32] and binary neural networks (BNN) [33].
Despite low latency, it lacks in accuracy and suffers from high
variation, which restricts its scope of application. Moreover,
power consumption from additional AD-conversion and I/Os
cannot be ignored [34].

VII. CONCLUSION

In this work, we propose STAR, a synthesis flow for
stateful logic in RRAM, to improve the area utilization without
throughput loss. In STAR, we first reduce the area for primary
inputs by not copying inputs, encoding the shared constants
into the control signals, and erasing invalid inputs during
the computation procedure. Then, we propose a scheduling
algorithm to get the computation sequence with minimal
erasing operations. Experimental evaluation shows that we can
achieve ultra-high area utilization and improve the throughput
in various benchmarks.
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