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Abstract—X-ray computed tomography (CT) is commonly used
to obtain vivo images to characterize diseases but results in
radiation exposure to patients. Low-dose CT (LDCT) provides
CT images of clinical quality with reduced cumulative radia-
tion dose. Iterative image reconstruction methods with effective
regularization are used for LDCT but generally require more
computing resources and induce higher computational load than
the conventional filtered backprojection (FBP) methods. The
high computational demand of the iterative reconstruction (IR)
with notably increased reconstruction time precludes its rou-
tine clinical application. In this work, we focus on the FPGA
acceleration of a compute-intensive full IR (full-IR) algorithm
based on the Mumford–Shah regularization. At the algorithmic
level, we propose a beam-based asynchronous update algorithm
to reduce the computational cost and alleviate the conflicts. At the
hardware-level, we first present pipeline-friendly optimization for
the original algorithm to increase the computation throughput.
We then apply the LDCT-specific tiling strategy to improve the
data reuse rate. The experimental results show that our imple-
mentation takes 8.5 min to reconstruct a typical physical phantom
with the image quality comparable with the vendor’s result. The
FPGA implementation achieves 11.6× throughput against the
state-of-the-art GPU version.

Index Terms—Asynchronous parallelism, field-programmable
gate array, iterative image reconstruction, low-dose computed
tomography (CT).

I. INTRODUCTION

X -RAY computed tomography (CT) provides high-
resolution in vivo characterization of disease processes.
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However, an ongoing concern is the amount of cumula-
tive radiation exposure that occurs, particularly when patients
undergo a regular series of CT exams, such as the annual
screening for lung cancer. With increased CT examinations
conducted worldwide, radiation dose reduction in CT has
become an active topic in the last decades [1]–[3]. Low-
dose CT (LDCT) protocols have been developed to reduce
the radiation dose at the cost of a reduced ability to resolve
finer structures and a worse signal-to-noise ratio (SNR).
To compensate for the decrease in image quality, advanced
image reconstruction methods beyond the conventional fil-
tered back-projection (FBP) method are being explored [1],
[3], [4]. However, these methods are currently obstructed by
the long reconstruction time caused by the high computational
demand. From the computational perspective, the difficulty
of LDCT is that the projection data from LDCT is of low
SNR with reduced or insufficient sampling rates by such as
the increased table pitch of current multislice CT scanners
[1], [2], [4], [5]. Hence, the conventional FBP method can-
not be applied directly. Therefore, iterative reconstruction (IR)
with its theoretical foundation in inverse problems [6], [7]
was successfully introduced to clinical CT scanners for LDCT
around 2010 [1]. IR iteratively improves image quality by
using the mathematical models of scanner physics and geom-
etry together with statistical priors about projection data and
image to be reconstructed.

IR can be generally classified into two types: 1) hybrid-IR
and 2) full-IR [3]. Hybrid-IR iteratively improves the image
quality in the image domain and data quality in the projection
data domain, but still uses the FBP for image reconstruction to
circumvent the forward and backward projection computation.
Currently, hybrid-IR is the typical type of IR used by manu-
facturers [3] as an expedient solution because it has moderate
computational workloads and satisfies the timing constraints.
Full-IR requires multiple rounds of the forward and backward
projection computation and additional repetitive computation
induced by priors. It produces better-quality reconstructed
image volumes with higher resolution than both FBP and
hybrid-IR. However, the high computational demand of the
full-IR with notably increased reconstruction time precludes
its routine clinical application and makes it unacceptable in
emergency [3], [8]–[10].

An IR method can be formulated mathematically by the
Bayesian approach or the regularization approach with a prop-
erly chosen statistical prior about projection data and image to
be reconstructed [11]. By using the regularization approach,
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a penalty functional1 to model the statistical prior is added
to the data fidelity functional that models the forward projec-
tion process. There are many choices of statistical priors or
penalty functionals. Among them, the Mumford–Shah (MS)
functional models not only the image smoothness but also the
image edge [11], [12]. Hence, IR with the MS functional can
avoid computing derivatives across edges unlike the popular
total variation [11], [13], and can obtain both the reconstructed
image and its segmentation [11], [14]. The MS functional has
been successfully applied for image reconstruction problems
by peers [14]–[18]. We also implement various versions on
CPU, GPU, and FPGA in our previous works [19]–[21].

In this work, we develop an FPGA-based acceleration of the
MS-based full-IR algorithm. Its quality and performance are
evaluated on the raw 3-D datasets collected using a helical CT
scanner. We also demonstrate that it reaches the performance
requirement for routine clinical applications of 3-D LDCT.
FPGA accelerators have efficient DSP resources for float-
ing arithmetic and on-chip memory with high bandwidth
and customized optimization. First, we propose a beam-based
asynchronous update method to reduce the computational cost
of backward projection and reduce the communication latency
among iterations. Second, we apply pipeline-friendly algo-
rithm optimization to the decomposed beam-based streaming
computation flow to achieve optimal pipeline performance.
Third, we introduce LDCT-specific tiling optimization to
reduce the data exchange and increase the efficiency of the
on-chip buffer by improving the data reuse rate. We quantita-
tively analyze the design space and use an automated method
to search for the optimal tiling scheme. Finally, we evaluate
the implementation with a real CT phantom. The quality of
our results is comparable to the vendor’s, especially in the
line pair regions. It takes 8.5 min to reconstruct a full helical
chest CT image sized 874 × 874 × 161. We achieve 11.6×
throughput against the state-of-the-art GPU implementation
and 1.56× throughput compared with a state-of-the-art FPGA
implementation.

Our contributions in this article are threefold as follows.
1) Asynchronous Beam-Based Parallelism: In the original

IR algorithm, backward projection dominate the execu-
tion time (around 90%). Besides, IR algorithms are usu-
ally synchronously parallelized, hence with notable com-
munication latency. We apply beam-based optimization
to reduce the backward projection to a light-weight
operation. Then, by using the asynchronous update, we
guarantee the convergence of the reconstruction with
reduced synchronous latency.

2) Pipeline-Friendly Algorithm Optimization: To make full
use of the hardware performance on the FPGA accel-
erator, we decompose the computational kernels of
the beam-based update into a streaming dataflow. In
order to achieve the optimal pipeline performance, we
apply pipeline-friendly algorithm optimization on the
ray tracing algorithm to remove data dependency and
balance the workloads among all stages.

1The term “functional” is a noun in mathematical analysis and it refers to
a mapping from a space X into the real numbers.

Fig. 1. Discretized X-ray line integral. We illustrate the simple parallel
beams to scan a discretized object to generate the projection data g, which is
the sum of line integrals of the attenuation coefficient. At any given angle θ ,
multiple X-rays pass through the object f . Since the parallel beam is used, the
number of X-ray beams here is equal to the number of sensors used to receive
the actual measurement data. The helical beams have a more complicated
projection geometry.

3) LDCT-Specific Tiling Optimization: Full-IR 3-D recon-
struction of LDCT has large-sized input, output, and
intermediate data and is thus memory intensive. We tile
the image and projection data to enable a high data reuse
rate and ensure the data locality according to the access
patterns of full-IR LDCT. We save the memory band-
width and increase performance by a proper prefetching
and buffering strategy.

The outline of this article is as follows. In Section II, we
introduce the background of the LDCT. In Section III, we rep-
resent our algorithm and software optimization. In Section IV,
we describe our hardware implementation and design automa-
tion flow. In Section V, we evaluate the implementation
with a real CT phantom and compare it with state-of-the-art
implementations. Section VI contains the discussions and the
comparison to related works. We provide concluding remarks
in Section VII.

II. BACKGROUND AND MOTIVATION

A. Background of CT and LDCT

In the following, we will briefly introduce CT’s principle,
which is necessary to understand our work in this article.
Interested readers can refer to [7], [22], and [23] for details.
As in Fig. 1, every beam of X-ray penetrates an object as
a straight-line and intersects with a number of voxels2 with
X-ray attenuation coefficient f1, f2, . . . , fn. Let the intersection
length of the ith beam with voxel j be Rij. The forward pro-
jection data of the ith beam is then equal to gi =∑n

j=1 Rijfj,
which is the discretization of the Radon transform [24]. For
the image reconstruction of CT, projection data of multiple
beams from many directions that covers the whole object is
needed. There are many kinds of projection geometry, such as
parallel beams, fan beams, and cone beams. For IR, the adjoint
of R, called the backward projection R� in literature, is used
to transform the measured data in the projection domain to the
image domain.

We then introduce the background of 3-D helical scanning
used for LDCT in this article. For 3-D clinical imaging, helical

2A voxel represents a value on a regular grid in 3-D space.
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(a) (b) (c)

Fig. 2. Helical CT geometry. (a) Diagram of the helical CT geometry, where the trajectory of the X-ray source is a helix relative to an object. (b) Detector
rows and channels in the current multirow CT scanners. The X-ray source is moving in the Z direction relative to the object under imaging. The black
dots represent the detectors. C is the number of the detector channels, and W is the number of the detector rows. (c) Diagram of the geometry for image
reconstruction. ROI means the region of interest. The object under imaging is included in a circle of radius r in each slice. The distance between the source
and the center of the rotation R, i.e., the source-to-object distance (SOD). D is the source-to-detector distance (SDD), i.e., the distance between the source
and the detectors. R and D are parameters obtained by routine system calibration. s is the slice thickness of the image volume chosen for reconstruction.

CT scanners with multirows of detectors are currently widely
used in clinics. A helical CT system consists of one or more
X-ray sources and multirows of detectors. The raw projection
data are continuously acquired while the patient is moving
forward at a constant speed. At the same time, X-ray source
and detectors are rotating simultaneously. The scanning mode
in helical CT is called a helical scan, because the trajectory
of the X-ray source relative to the object is a helix or a spiral,
as shown in Fig. 2(a). The pitch of the helix is an important
parameter for reducing the dosage for LDCT. The bigger the
pitch, the less the dose is imposed. It is possible to reconstruct
a CT image with an axial spatial resolution larger than the
pitch. A CT image volume consists of many slices of 2-D
images, which are the gray circles in Fig. 2(a). Each X-ray
beam intersects more than one slices because of the cone-beam
geometry. In Fig. 2(b), we illustrate a simplified cone-beam.
The detector grids used to receive the attenuation coefficient
g have two dimensions: channel C and row W. In Fig. 2(c),
we demonstrate important parameters and a slide-view of the
helical scanning.

B. Motivation

Typical full-IR reconstruction takes around 30–60 min [3],
[8]. The acceleration of full-IR aims to shorten the recon-
struction time as much as possible. First, the necessity of the
full-IR parallelization originates from the complicated geom-
etry and the enormous total number of X-ray beams in a
typical clinical scan. Full-IR needs to process the forward
and backward projection in each iteration, which induces high
computational cost. Second, the original ray tracing algorithm
in the forward and backward projection has data dependency
and is not pipeline-friendly. Besides, the unbalanced workloads
of all the operations in reconstruction reduce the hardware
performance as well. Third, priors or penalty functionals are
usually made of stencil memory accesses, which increase the
computation load. The stencil access is a mapping where each
output depends on the “neighborhood” of inputs, and these
inputs are a set of fixed offsets relative to the output position.

We propose three techniques to solve the above prob-
lems from three perspectives: 1) parallelism; 2) hardware
optimization; and 3) memory. First, we aim to improve the par-
allelism in full-IR. We propose a beam-based update method
to accelerate the computation of the forward and backward
projection by reducing them to light-weight versions. Still, par-
allel processing elements (PEs) conflict with each other when
updating the same voxel values in synchronous parallelization.
We introduce the asynchronous update and the diminish-
ing step sizes to reduce communication latency. Moreover,
we apply pipeline-friendly algorithm optimization to achieve
optimal hardware efficiency. We use a state machine for the
original ray tracing algorithm to remove the data dependency.
Besides, we decompose the computation kernels into a stream-
ing dataflow and balance the workloads among all stages and
increase the hardware efficiency. Furthermore, we propose
LDCT-specific tiling optimization, because the above two tech-
niques require efficient use of memory. The stencil accesses
in them result in multiple voxels accessing at the same time.
We tile the image and projection data to increase the data
reuse rate. We also propose a prefetching strategy to save the
memory bandwidth.

III. FPGA-FRIENDLY ALGORITHM DESIGN

A. Full-IR With Mumford-Shah Regularization

In this work, we use the MS functional [12] as the reg-
ularization term for the full-IR of LDCT aforementioned in
Section I. We designate to perform one reconstruction of a
certain number of image slices with the projection data of
those slices at the CSP, no matter how many channels of
detectors there are. The number of slices to be reconstructed
at the CSP is determined from the number of detector rows
[refer to Fig. 2(c)]. Let the number of detector rows be L.
At the CSP, we update the image slices fl (l = 1, . . . , L)
which are penetrated by X-rays from the CSP. Those image
slices fl (l = 1, . . . , L) constitute the current subvolume (CSV)
F = [f1, . . . , fL] to be updated. Some parts in this subvolume
F are not penetrated by X-ray beams at the CSP and will
be not updated at this time, but will be updated from other
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source positions when we run through the helical trajectory
of the X-ray sources. For one CSP, the objective minimization
function to update the CSV F = [f1, . . . , fL] and the derived
image edges K = [K1, . . . , KL] is as follows:

E(F, K) =
L∑

l=1

{

‖Rfl − gl‖2 + α

∫

�\Kl

|∇fl|2 dx+ βH(Kl)

}

(1)

where � is the image domain; ‖ · ‖ is the L2 norm on the pro-
jection data domain, which is S1 ×R for 2-D CT or S2 ×R
for 3-D CT; Kl (l = 1, . . . , L) is the edge set of image fl; Rfl
is the forward projection of the image slice fl at the CSP; gl

is the detected projection data of fl; ∇fl is the 2-D gradient of
f in the plane orthogonal to the scanning direction; and H(Kl)

(l = 1, . . . , L) is the 1-D Hausdorff measure of the edge set
Kl. The first term in the sum on the right-hand-side of (1) is
the fidelity term to force the reconstruction image fl to have
a projection that matches the measured data gl. The second
term is to induce smoothness of the image fl in everywhere
other than the edge set. The third term is to avoid oscillating
edges such as fractals and consequently to encourage smooth
edges [12]. The second and third terms are together called the
MS functional. α > 0 and β > 0 are parameters to control the
regularization length of the latter two terms, respectively. In
summary, the MS functional models not only image smooth-
ness but also image edge [11], [12]. It also avoids computing
derivatives across edges unlike other derivative-based regular-
ization methods, such as the popular total variation [11], [13],
and thus can preserve edges during iterative updates.

The edge set is a continuous function and difficult to repre-
sent and trace its update in a computer system. In this work,
we use the �-approximation for the MS functional [25]. The
edge set Kl is replaced by a smooth edge indicator function vl

(l = 1, . . . , L) such that vl(x) ≈ 0 for x ∈ Kl and vl(x) ≈ 1 for
x ∈ � \ Kl. We obtain the following �-approximation for (1):

�(F, V) =
L∑

l=1

{

‖Rfl − gl‖2 + α

∫

�

v2
l |∇fl|2 dx

+ β

∫

�

(

ε|∇vl|2 + (1− vl)
2

4ε

)

dx

}

(2)

where V = [v1, . . . , vL], for ε > 0. When ε → 0+, �(·, ·)
converges to E(·, ·) in the sense of �-convergence, and con-
sequently the minimizer (F, V) of �(·, ·) is an approximated
minimizer of E(·, ·) [14], [25], which provides an update of the
full-IR at the CSP. Theoretically, ε is twice of the edge width
and is usually chosen by experiments at implementation [14],
[17], [19]–[21], [25].

In order to minimize �(f , v), it is straightforward to use the
incremental gradient descent method [26]. They alternatively
conduct the gradient descent algorithm for each slice at the
CSP and fl, vl at each slice, and then iterate over all source
positions. At each step, both approaches will be required to
compute the gradient of the entire slice fl and vl, and also the
forward projection operator R and backward projection oper-
ator R�, i.e., the transpose of R. However, either approach

has poor parallelism and induces high memory and commu-
nication expenses because the image and projection data are
variables of large sizes, and gradients involved are difficult for
parallel optimization.

B. Asynchronous Beam-Based Parallelism

1) Beam-Based Optimization: In this section, we present
a decomposition method to reduce the computation expenses
aforementioned in the last paragraph of the previous section.
Along each X-ray beam, the forward projection R performs
the line integral. For the ith beam at the CSP, let R(i) be the
nonzero entries of {Rij}, and f(i) and v(i) be values of the image
slice and edge indicator corresponding to R(i), respectively.
Our approach is not only based on incremental gradient decent
but also mixed with the beam-based decomposition of F and
V . For the ith beam, the gradient �(F, V) with respect to f(i)
and v(i) is calculated by

∇f(i)�(f , v) = 2(R(i)f(i) − gi)R(i) − 2α ÷ (v2∇f )(i) (3)

∇v(i)�(f , v) = 2α|∇f(i)|2v+ β

2ε
(v(i) − 1)− 2βε�v(i) (4)

where � is the 2-D Laplacian. It can be seen from (3) and (4)
that the common usage of the backward projection R� for
IR methods is reduced to a light-weight operation R(i) with
the beam-based fine-grained decomposition. This reduces the
computation cost of forward and backward projection greatly
by using separated line integral calculations. In this work, we
use the fast ray-tracing technique [27] to compute the forward
projection R(i)f(i), though we develop a pipeline-friendly ver-
sion in our implementation (see Section IV-B). The forward
projection can be written as

R(i)f(i) =
∑

k

fIk wk (5)

where wk is the intersection length between the ith beam and
the voxel; Ik is the index of the kth voxel along the beam; fIk

is the density weights of the voxel (the value of f at index IK).
2) Asynchronous Parallelism With Diminishing Step Sizes:

In order to encourage the parallelism and reduce communi-
cation latency, we further introduce the asynchronous update
with diminishing step sizes. “Asynchronous update” means
that multiple beams are computed in parallel to update the
CSV (F, V) without waiting the complete computation of each
other in the inner loop. When those beams intersect and pass
through the same voxels, this incurs conflict updates. These
conflict updates at the intersections of beams can be resolved
by using diminishing relaxation coefficients on step sizes.
The diminishing relaxation coefficients (step sizes) guaran-
tee the convergence of the asynchronously parallel algorithm
[28], [29], as follows:

∑

k

λk = +∞, lim
k

λk = 0, λk > 0. (6)

The relaxation coefficient μk satisfy the same diminishing
condition. A typical choice of the diminishing condition is

λk = A

B+ k
(7)
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Algorithm 1 Asynchronous Parallel Beam-Based Update at
the CSP
Input: measured projection data g at the CSP
Output: CSV F, edge indicators V updated at the CSP

1: f 0 = 0
2: v0 = 1
3: Initialize step size λk and μk by (7)
4: for k = 1 to #iterations do 
 outermost loop
5: for p = 1 to #sources do 
 outer loop
6: (f k, vk) = (f k−1, vk−1)

7: for all processing elements for beam updating do
8: 
 parallelization loop
9: for i-th beam of this processing element do

10: 
 inner loop
11: Fetch (f(i), v(i)) as a local copy
12: f(i) = f(i) − λk∇f(i)�(f(i), v(i))

13: v(i) = v(i) − μk∇v(i)�(f(i), v(i))

14: Commit (f(i), v(i)) to (f k, vk)

15: end for
16: end for
17: end for
18: Reduce step size λk and μk by (7).
19: 
 for the convergence
20: end for

where A and B are positive constants. In Section V-B, we
will explain how to choose proper A and B for λk and μk.
Algorithm 1 presents the asynchronous parallel version of our
beam-based algorithm.

In summary, at the algorithmic level, our full-IR algo-
rithm is to iteratively execute Algorithm 1 by using each
X-ray source along the trajectory as the CSP. The paral-
lelization loop in Algorithm 1 can also be run synchronously
with simplified relaxation coefficients update, though it will
increase the latency. Furthermore, at the hardware level, we
need to optimize the memory and bandwidth usage by care-
fully scheduling the asynchronous parallel beam-based updates
at the inner loop of Algorithm 1 at each CSP, and bal-
ance the number of parallel units and hardware resource. The
“inner loop” is actually implemented by the PE and will be
furthermore introduced in Section IV-B as the PE.

IV. FPGA ACCELERATOR DESIGN

A. Design Flow and Overall Architecture

We use Xilinx SDx Environment [30] to program FPGA
devices. We first write the C/C++ version of Algorithm 1
for correctness verification. Second, we synthesize the high-
level source code into the hardware design. We use pipelining,
streaming, and parallel modules to improve the performance
of the computation modules. Finally, we place and route the
hardware design to examine the correctness at the physical
level. At this step, we will verify the clock frequency and
resource utilization. After the implementation of placement
and routing, the bitstream file will be generated.

In Fig. 3, we illustrate the overall architecture of the hard-
ware design. The raw data obtained by the CT scanner will

Fig. 3. Overall architecture of the hardware design. The CT scanner obtains
the raw data first and sends them to the workstation with the FPGA board.
Each PE consists of five stages. Two of the stages work in the on-chip memory
(BRAM). PEs access the DDR memory by using the sliding window.

be transfered to FPGA’s DDR memory through high-speed
links such as PCIe. We use a ray controller to scheduling
the execution order and dispatch computational tasks to PEs.
Each of PEs has five basic stages: starting with “ray trac-
ing” and ending with “write back.” Two of them—forward
projection and gradient descent will compute in the on-chip
memory. All the stages are connected using FIFOs. We also
use a sliding window as the buffering strategy, as described in
Section IV-C1.

B. Pipeline-Friendly Algorithm Optimization

We use the straightforward algorithm described at the end
of Section III-A, and its computational components are shown
in Fig. 4(a). We can see that different modules have differ-
ent magnitudes in terms of time complexity. For an efficient
pipeline, each stage should be expected with the same level
of time complexity, or there will be inefficient bubbles and
stalls causing performance hazard. This is one reason why we
choose the beam-based optimization approach. The computa-
tion flow of the inner loop body in Algorithm 1 is shown in
Fig. 4(b). There are five parts in detail as follows.

1) Ray Tracing: Perform line integral algorithm to generate
the voxel indices and weights for related rays Ri.

2) Memory Prefetch: Fetch (f(i), v(i)) from the main
memory.

3) Forward Projection: Perform forward projection R(i)f(i)
and compute R(i)f(i) − gi.

4) Gradients Descent: Compute the gradients
∇f(i)�(f(i), v(i)) and ∇v(i)�(f(i), v(i)), and update the
local copy of (f(i), v(i)).

5) Write-Back: Commit local copy back to the main
memory without waiting for the completion of updates
at other beams.

We can see that both fetch and commit parts are memory-
related, while the other three parts are computation-related.
The ray tracing part takes the source and destination of the
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(a)

(b)

Fig. 4. Raw computation flow and pipelined flow. (a) Original flow of the
typical IR algorithm. m is the total number of the projections and n is the
average length of the X-ray beam. We can see that the first component has
different time complexity from others, and other components have a squared
complexity. (b) Pipelined flow after applying beam-based update and asyn-
chronous update. After pipelining optimization, all the components have the
same linear time complexity O(#steps·mn). This balanced design will increase
the hardware occupancy compared to the original flow.

ray beam as inputs and generates the indices and weights.
In the line integral algorithm, we used [27], there are many
floating-point numbers multiplication and division operations.
The forward projection R(i)f(i) and computation of R(i)f(i)−gi

is computed as in (5). Equation (5) is a summation of fIk wk.
We will apply hardware optimization on this streaming

dataflow to achieve optimal FPGA-based design. Memory
prefetch and write-back are memory-related steps and they
can be pipelined with simple directive clauses “#pragma HLS
pipeline.” Compared to memory-related stages, the other three
computational stages cannot be pipelined efficiently using a
straightforward directive clause.

For ray tracing, the original algorithm [27] produces the
voxel indices and intersection lengths. The original algorithm
cannot be pipelined efficiently mainly because data depen-
dency prevents the optimal initial interval of the loop. In 3-D,
the original algorithm generates a list of the passed voxels
I1, I2, . . . , IK and the weights w1, w2, . . . , wK [as in (5)]. The
calculation of Ij+1 and wj+1 depends on the latest results at
Ij. Taking I as an example, we formulate the pipeline of the
ray tracing in 3-D as a state machine with two state variables:
one is for updating Ij+1 using results at Ij (update state); the
other is for replacing Ij with Ij+1 (replace state). In order to
achieve the best initial interval, we forbid simultaneous read
and write for a variable in one state in this context. By using
two variables for Ij and Ij+1, respectively, Ij is written in the
replace state and read in the update state; Ij+1 is written in
the update state and read in the replace state. Thus, the vari-
able dependency between Ij and Ij+1 is removed for the best
initial interval of the loop. In a hardware implementation, we
use two temporary variables v and u to store the update and
replace state, as shown in Fig. 5. In Fig. 5, we also illustrate
the optimized pipeline of ray tracing.

The forward projection is a summation process. In hardware
design, when the latency of the multiplication and addition is

Fig. 5. Details of PEs. All five stages of a PE are connected using FIFOs.
We apply pipeline-friendly optimization to the original ray tracing algorithm
to remove data dependency. For the forward projection and write-back, we
use well-designed techniques to achieve the best performance.

determined, we can use a latency-aware pipelining method to
obtain the initial interval of 1, shown as below.

In this code, “LATENCY” must be greater than the actual
latency of the multiplication “f[i]*weight[i].” T is the total
number of voxels in the ray. #pragma HLS pipeline is used
to pipeline the loop body. In Xilinx Vivado HLS, the pipelin-
ing directive will always achieve the optimal initial interval
available, unless one desired initiation interval other than 1 is
given. We use LATENCY local accumulators and one adder
for this loop. The final execution time will be T cycles and
the result is the summation of the last LATENCY elements in
the array. In Fig. 5, we illustrate the computation process of
forward projection. It can be implemented using a buffer of
LATENCY length and an accumulator. This buffer hides the
latency of multiplication. A reduction tree is also viable for
this accumulation but requires more adders.

The gradient descent part has an initial interval greater
than 1 if only simple pragmas are used because of the sten-
cil accesses in the regularization terms. In the computation
of (2)–(4), there are calculus operations, such as ∇f , ∇v, and
÷(v2∇f ). These operations need to access a voxel and its four
surrounding neighbors. If the memory has not enough ports
for the stencil accesses, the initial interval of the pipelining
will be greater than 1. We use coloring to partition the CSV
into multiple banks. We partition the BRAM cyclically using
16 colors (16 banks), and for a pixel (x, y) in a 2-D slice, its
color is

color of (x, y)← (x mod 4) · 4+ (y mod 4). (8)
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In Xilinx Vivado SDx and HLS, we can use “#pragma HLS
array_partition” to implement the multibank BRAM. In this
way, any five voxels of this pattern have different colors and
banks. The gradient descent is performed in BRAM and each
PE has its own local buffer, as shown in Fig. 5. The data in
BRAM are transferred using FIFOs to the data-path of gra-
dient descent. Hence, stencil readings can be done in one
single hardware cycle. In Fig. 5, we illustrate the details of
the implementation of gradient descent.

C. Memory Optimization

1) Slice-Driven Reconstruction: In previous works [19],
[21], [31], either voxel-driven or ray-driven execution order
is proposed for IR algorithms. For 3-D reconstruction, voxel-
driven algorithms have a bad data reuse rate since the accesses
of the projection data are out of order. In addition to this, we
do not use voxel-driven reconstruction for the following rea-
son. Many X-ray beams are passing through one voxel, and
the voxel-driven iteration is to update the CT volume voxel by
voxel. Many forward projections are computed to update only
one voxel at each step. All the computation of these forward
projections at other voxels than the current voxel is wasted. For
the ray-driven algorithms, although they can fully utilize the
locality of measured projection data, the memory accesses of
the image and edge indicator are out of order and inefficient if
this strategy is simply applied to Algorithm 1. Hence, we need
to find how to improve the memory usage for Algorithm 1.

We propose a slice-driven method to implement the beam-
based asynchronous Algorithm 1. For 3-D CT, the projection
data size is enormous. In our experiments, the entire set of
the projection data is of 108 size. Hence, the data locality of
the projection data is critical for the memory performance for
3-D CT. Our solution is to consider the data locality of the
projection data first. On the other side, we need to consider
the data locality of the image volume. Our slice-driven method
is to enumerate the CSPs along the trajectory path. At each
CSP, the CSV is determined by the geometric parameters of
the CT scanner and the image resolution. The reconstruction is
applied slice by slice for each slice in the CSV. Please refer to
Section V-B for examples of choosing the CSV. For a segment
of consecutive CSPs, their corresponding CSVs also form a
segment of consecutive slices. Those CSVs constitute a sliding
window covering the segment of consecutive slices, as shown
in Fig. 6. In simple words, the sliding window is a FIFO of
slices.

2) Tiling: The image volume and measured data can be
stored in a multilevel structure as we use the slice-driven
method. At the first level, we use BRAM as the high-speed
cache for the voxels under current reconstruction. If there are
M PEs for beam-based IR algorithms, and the average number
of voxels that a ray crosses is Q, the total number of voxels in
the first level should be M ·Q. At the second level, we need to
store the sliding window. The total amount of memory usage
is determined by the width L of the sliding window. If the
image slice size, i.e., the XY-plane size, is Nx · Ny in pixels,
and we use a CSV or sliding window of L image slices, the
memory consumption is Nx · Ny · L.

Fig. 6. Demonstration of the sliding window. CSP1 and CSP2 correspond
to the two different windows (red and blue windows, respectively). Every
window needs to cover at least the range of the CSV [Fig. 2(c)]. When the
new projection data are introduced in the reconstruction, the window will
move along the z-axis.

(a) (b)

Fig. 7. (a) Demonstration of LDCT-specific tiling. Different colors represent
different tiles. Our tiles are of the shape (x, y, z). (b) Block of the measured
projection data and its related tiles. Solid red lines represent a group of X-ray
beams and the blue tiles are its in-use cache.

One way to improve the memory efficiency is to increase the
data reuse rate and decrease the memory I/O requests between
DRAM and BRAM. Data reuse rate can be formulated as the
size of the CSV divided by the total number of the memory
I/O requests for applying Algorithm 1 for this CSV

Data reuse rate = Nx · Ny · L
#Mem I/O

. (9)

The PEs will fetch and buffer the image volume in the on-
chip BRAM from DRAM in execution. A higher data reuse
rate means that we use less bandwidth of DRAM. We use
LDCT-specific tiling optimization to improve the data reuse
rate.

We denote (x, y, z) as the shape of the tile, as shown in
Fig. 7(a). When the sliding window is Nx ·Ny ·L, the total num-
ber of tiles is �Nx/x
 · �Ny/y
 · �L/z
. The shape and number
of the tiles affect the data reuse rate and the final memory
performance. Our objective is to find out the best (x, y, z)
options to optimize the data reuse rate. Because the helical
scanning is circular symmetric with respect to the center of
each image slice, we set x = y to reduce the dimension of the
design space. The search space is then reduced to 1 ≤ x ≤ Nx

and 1 ≤ z ≤ L. We can enumerate each possible value of x, z,
and record the total number of memory I/O requests and the
maximal local memory used. The maximal local memory used
helps prevent the implementation from exceeding the on-chip
memory limit.

In Fig. 8, we present our search result for z = 1, using
the experimental setting in Section V-C, where Nx = 874.
In this figure, the memory I/O requests and local memory



ZHANG et al.: FPGA ACCELERATION FOR 3-D LOW-DOSE TOMOGRAPHIC RECONSTRUCTION 673

Fig. 8. Searching for the best tiling shape and option. The solid line is the
total amount of the data exchange. The dashed line is the memory usage (in
voxels).

usage are demonstrated as the solid and dashed lines, respec-
tively. The fluctuations are because Nx is not divided by some
x exactly. The memory I/O requests are decreasing when the
tile size increases. Hence, an optimal tiling can be found given
reconstruction parameters and hardware resources. Because
CT scanners are operated with the same scanning parameters
by clinical protocols, the optimal tiling we obtained can be
reused for routine clinical usage.

Furthermore, we reschedule the execution order of beams
for Algorithm 1 to further improve the performance because
the order of beams affects the performance of memory and
asynchronous parallelism. The original execution order of the
X-ray beams is a two-level nested loop with (C, W) as the
upper bounds. For a tiled sliding window with our method in
the previous section, we aim to schedule the execution order of
all the beams involved to improve data reuse rate since the data
reuse rate is already improved with our LDCT-specific tiling
optimization. Moreover, each X-ray beam should be applied
only once because of the massive number of beams in 3-D
CT. The data reuse rate here is defined as the ratio of the
total number of the in-use X-ray beams divided by the num-
ber of the cached tiles. Our scheduling regroups the X-ray
beams and each group of X-rays beams shares as many tiles
as possible.

We regroup the original loops using execution blocks
(Cb, Wb) [in solid red Fig. 7(b)] smaller than the tiled image
to improve the data reuse rate, as shown below.

In Fig. 7(b), we represent an illustration of the blocked
projection. This block of the X-ray beams will be covered
by the tiles marked in the image volume. The only problem
here is how to decide the (Cb, Wb) for promising data reuse
rate. We maintain the in-use tiles satisfying the local BRAM
capacity and maximize the data reuse rate. Cb, Wb depend on
the parameters of CT scanners. Cb is related to the spacing
between the detector channels. We can find a maximum Cb and

ensure this block of X-ray beams not exceed the local cache
limitation. Wb is related to the spacing between the detec-
tor rows and can be calculated similarly. We can enumerate
them for the best data locality because its design space is not
large.

3) Design Space Exploration: In previous sections, we have
to determine the values of several parameters for our design:
x, z, Wb, and Cb. We will find the optimal values of them to
generate efficient designs. For each possible combination of
(x, z, Wb, Cb), we will examine the data reuse rate and (9) has
already defined the calculation of data reuse rate. The input
of design space exploration is the CT parameters. The output
is the optimal (x, z, Wb, Cb).

We use a two-step searching strategy. We first eumerate
the combinations of (x, z) and then (Wb, Cb). In the end, we
record the one with the best data reuse rate. x, z, Wb, and
Cb are bounded by Nx, L, W, and C, respectively. To calcu-
late the data reuse rate by (9), we have to run one iteration
of the reconstruction program with only ray tracing to col-
lect the information. Taking the parameters in Section V-B
as the example, there are L = 24 and upper bound of Cb is
50 [according to (10)]. Besides, we only need to enumerate
the integral point for �Nx/x
. When Nx = 874, the validate x
can be one of 874, 437, 292, 219, 175, 146, . . . , 30 (30 possi-
ble values) Hence, the search space of (x, z) is 30 · 24 = 720;
the search space of (Wb, Cb) is 50 · 24 = 1200. One iteration
of ray tracing takes around 58 s on a 16-core workstation.
Therefore, the total design space exploration on a CPU-based
workstation for dataset ACR464 (see Section V-C) will take
around (720 + 1200) · 58 ≈ 31 h. In real practice, we
can also prune some suboptimal combinations by interme-
diately checking the data reuse rate without completing the
iteration.

V. EXPERIMENTS AND RESULTS

A. Environment Setup

We select Xilinx Zynq UltraScale+ MPSoC ZCU102 [32]
as our heterogeneous platform for our parallel framework of
the full-IR reconstruction. ZCU102 has Xilinx XCZU9EG-
2FFVB1156 FPGA with 2520 DSP slices. The baseline meth-
ods are executed on a multicore server with two Intel Xeon
CPU E5-2650 CPUs and 64-GB main memory. Each E5-2650
has ten physical cores running at 2.30 GHz.

We use the parameters from SOMATOM Definition AS
(Siemens Healthcare GmbH, Erlangen, and Germany) CT
scanner to conduct the physical study. The pitch value is
19.2 mm. The SOD R is 595.0 mm. The SDD D is 1085.6 mm.
The spacing between the detector rows is 2.052 394 65 mm.
The fan angle is 50◦, and then the detector channel spac-
ing is around 1.287 mm. It has 16 detector rows and 736
detector channels. Those parameters are available from the
literature [33].

We use the structural similarity index (SSIM) [34] as the
image quality criteria to evaluate the quality of reconstructed
images. For the physical study, we further use the contrast-to-
noise ratio (CNR) [10], [35] to evaluate specifically the image
quality of regions of line pairs.
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B. Reconstruction Parameters and Resource Allocation

In this section, we will demonstrate the parameter selec-
tion in our FPGA implementation. The helical scan mode is
described in Section V-A. For image reconstruction, the x-axis
and y-axis spacings are both 0.5859 mm; the image slice size is
set to 874×874 in pixels; by default, dimensions of the image
volume are in pixels/voxels; the slice thickness s is 1.5 mm,
to be consistent with the physical experiment in Section V-C
to compare our results with those from the vendor. We then
determine the design parameters in our FPGA implementation.

First, the width of the sliding window depends on the detec-
tor rows. The z-axis distance for a cone-beam is 2.05239465×
16 = 32.8 mm. Since the slice thickness is 1.5 mm, a cone-
beam covers 32.8/1.5 = 21.9 slices. Thus, we choose 24 as
the width of the sliding window to cover enough slices for
stability with our sliding window approach.

Second, the shape of the tiles relies on the on-chip memory
capacity of our FPGA chip. ZCU102 has 1824 BRAM_18
K resources and therefore has 32-Mb BRAM. We will use
16-b fixed point numbers for the image and 8-b fixed point
numbers for the edge indicator. We search the design space, as
described in Section IV-C2. We choose z = 6 and x = 110 as
the tile shape, which partitions the image slice into 8× 8 and
consumes at most around 2.91 MB BRAM during runtime.

Third, we decide the values of Cb and Wb. Since x = 110
and the fan angle is 50◦, Wb should be at max as

110× 0.5859/

(

SDD · tan

(
50◦

736

))

= 110× 0.5859/1.287

= 50. (10)

Cb can be as large as the width of the sliding window.
However, there may be insufficient hardware resources for so
many X-ray beams processed at the same time. We will exam-
ine the resource usage of one single PE. Table I shows the
resource utilization. The first part of the table represents the
resource usage of one single PE. DSP and LUT are in shortage
if more PEs are implemented. The resource utilization cannot
be too high, or probably the design cannot be synthesized,
placed, or routed properly. Therefore, we can parallel at most
48 PEs at once on ZCU102, which will consume 91.4% of the
DSP resources. We set Wb = 48 and Cb = 1, and 48 PEs will
access among the cached tiles and have efficient data locality.
The reason for Wb = 48 is that 736/48 = 15.3 almost equals
to the row blocks (16 detector rows and Wb = 1). The total
resource usage for the 48 PEs is shown in Table I. We can see
that BRAM, DSP, and LUT are almost used up.

At the algorithm level, there are also some reconstruction
parameters to determine for applications. The first is about
the regularization parameters α and β. We can compare the
qualities of reconstructed images with different choices of
parameters by their SSIM values against the baseline because
we have the image from the full-dose scan as the base-
line. Hence, the optimal set of parameters for reconstructed
images of the best quality could be found by searching the
space of regularization parameters with the SSIM as the cri-
terion. The same approach can be applied to determine other
parameters, including the step sizes λk and μk. In this work,

TABLE I
RESOURCE UTILIZATION FOR A SINGLE PE AND 48 PES

Fig. 9. (a) Example slice of vendor’s reconstructed images; display win-
dow [216,3200]; current 215 mA. No. 1–8 represent line pairs of different
widths. (b)–(i) Vendor’s results of line pairs with different widths. We show
the corresponding area of these line pairs in (a).

we choose α = 0.1, β = 0.05. For step sizes, we choose
A = 1/500, B = 2 for λk and A = 1/2000, B = 2.5 for μk.

C. Quality of Results

In this section, we will evaluate our framework’s quality of
results (QoRs) by using CT ACR 464 phantom (Sun Nuclear
Headquarters, Melbourne, FL, USA), built for routine CT
scanner evaluation. We compare the vendor result at the full
dose level (215 mA) and our result at a reduced dose level
(50 mA), i.e., with 23% of the full dose. We reconstructed
raw data acquired at different dose levels using CT ACR 464
phantom on the SOMATOM Definition AS. The raw projec-
tion data have 14524 samples in total. Every 360◦, the CT
scanner produces 1152 samples. Therefore, the total number
of slices is 14524/1152 × 19.2/1.5 = 161. The tube voltage
of these projections is fixed at 120 KV and the current is set
to 215, 150, 100, or 50 mA for performing LDCT imaging.

Fig. 9(a) shows one typical slice from the vendor’s result
of the CT ACR 464 phantom at the dose of 215 mA, recon-
structed using the vendors proprietary algorithm. The phantom
contains eight high contrast resolution patterns. Each of them
has multiple line pairs per centimeter. From No. 1–8, they have
4, 5, 6, 7, 8, 9, 10, and 12 line pairs per centimeter, respec-
tively. These line pairs are designed to evaluate the spatial and
contrast resolution of the reconstructed images. Fig. 9(b)–(i)
show the detail of these line pairs with different width. The



ZHANG et al.: FPGA ACCELERATION FOR 3-D LOW-DOSE TOMOGRAPHIC RECONSTRUCTION 675

TABLE II
IMAGE QUALITY BY SSIM AT DIFFERENT DOSES

Fig. 10. (a) 29th slice of the reconstructed image. (b) Segmentation of the
29th slice. (c)–(f) Represent line pairs 1–4. (g)–(j) Represent line pairs 5–8.
(Display window [216, 3520]. Current 100mA.)

images from the vendor at this high dose of 215 mA are used
as the baseline in the following comparison of image qual-
ity. We first evaluate the correctness of our implementation
with the high dose of 215 mA, and obtain images of the same
quality as the vendor’s, as shown in the first line of Table II.

Then we perform the experiment with different dose levels
with current 215, 150, 100, or 50 mA at fixed voltage 120 KV.
Table II shows the image quality comparison in terms of SSIM
at different dose levels in ten iterations. It can be seen that our
results are comparable to the vendor’s at all dose levels in the
experiment.

Fig. 10 shows our reconstructed images and the details of
the line-pair region of 100 mA. In order to compare the spa-
tial and contrast resolution of our reconstructed images and
the vendor’s results, we present the line profile of different
patterns of line pairs in Fig. 11. From line pairs 1–6, both our
and vendor’s results are visually the same. For the other two
line pairs, both our and vendor’s results cannot distinguish the
lines.

In order to evaluate the reconstruction quality quantitatively,
we use the CNR to evaluate the image quality for regions of
line pairs. We use the following CNR = A/σN [10], [35],
where A is the amplitude of the signal and σN is the standard
deviation of the noise. Fig. 12 shows the CNRs of the regions
of line pairs. We can see that our results have higher CNR
compared with the vendor results at line pairs 6–8, and these
are very thin line pairs. An interesting observation is that in
the vendor results, line pairs 1 and 2 have very similar CNR
values; line pairs 3–6 have almost the same CNR values; and
line pairs 7 and 8 are nearly the same. We guess that the vendor

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Line profile of these line pairs shown in Fig. 10. The blue lines
represent our results. The red lines represent the vendor’s results.

Fig. 12. CNR of the different line pair regions [Fig. 9(a)]. Current 100 mA.

use different filters to enhance the reconstruction quality for
certain patterns, especially line pairs 1 and 2.

In summary, we conclude that our framework achieves
comparable spatial and contrast resolution compared with the
vendor’s results, verified by our radiologist co-authors.

D. Performance

In this section, we will report our implementation’s
performance, and compare with other works. Other works
include various platforms such as CPUs, GPUs, and FPGAs.

1) Beam-Based Asynchronous Update Improvement: The
baseline in this section is the reconstruction of a 2-D Shepp-
Logan phantom with an image size of 512× 512 and parallel
beams. The algorithm used in the baseline is the synchronous
parallel version of Algorithm 1. For Algorithm 1, we evaluate
the performance improvement with the same phantom as in the
baseline. Table III shows the performance of the baseline ver-
sion and the asynchronous versions. The “time in seconds”
in Table III is the time for one iteration over all sources.
Async-X means the asynchronous version with X threads.
When using only one thread, our beam-based asynchronous
method achieves 2.82× speed-up compared with the baseline
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TABLE III
PERFORMANCE IMPROVEMENT THROUGH BEAM-BASED

ASYNCHRONOUS UPDATE

TABLE IV
PERFORMANCE OF DIFFERENT PARTS

version. When using 16 threads, the beam-based asynchronous
method achieves 26.7× speed-up.

To analyze the performance in detail, we report the
performance of each part in the streaming flow in Fig. 4 using
CPU in Table IV. This “gradient descent” in async-2-D is
different from baseline’s gradient descent. async-2-D uses the
balanced gradient descent shown in Fig. 4(b) and traverses the
domain of projection data, while the baseline implementation
only computes on the image volume. We split the table into
the computation parts and memory parts. It can be seen that
the computation of the forward and backward projections is
the bottleneck of the baseline. Although the forward projec-
tion is invoked many times, its computation cost of async-2-D
is significantly reduced because of the beam-based approach.
As aforementioned in Section III-B1, the common usage of
the backward projection R� for IR methods is reduced to a
light-weight operation R(i) with the beam-based fine-grained
decomposition for Algorithm 1.

2) Overall Performance Comparison: After thorough
research on some previous works, we compile the necessary
results of different implementations in Table V. In Table V,
we list all the information of the implementations, includ-
ing the algorithms used, the dimension of the raw projection
data, the image volume, etc. A limitation of the summary
is that not all exact details of implementation are available,
although we have tried to find details from public literatures.
In Table V, “baseline” is our baseline implementation in the
previous section, running on the E5-2650 CPU without the
beam-based synchronous update; beam-async is the optimized
version using the beam-based asynchronous update. Both PSV
is a model-based IR (MBIR) method for LDCT [36], [37].
PSV-ICD [36] is a CPU-based parallel structure with super-
voxel to improve the cache performance. PSV-GPU [37] is
the GPU version of PSV-ICD and optimizes the coalesced
memory access. FPGA-Choi [31] is the implementation of the
EM algorithm with hybrid tiling to increase the data reuse
rate and locality. cuMBIR [21] is the GPU implementation of

Algorithm 1 with a conflict-graph solution to reschedule the
X-ray beam execution order and mitigates the memory colli-
sion and noncoalesced memory accesses. TO3 is the ALERT
Task Order 3 dataset [38]. M.12500 [31] is a helical CT chest
scan dataset. “Ours” is our FPGA implementation on ZCU102
for the beam-based asynchronous Algorithm 1 in this work.

We first check the image quality (as addressed in
Section V-C) for both our FPGA-accelerated version and base-
line version. They have the same level of spatial resolution
(9 line pairs per centimeter) and the same average CNR of
1.50.

It is difficult to compare fairly the performance of all the
implementations in Table V because of various CT geometries,
reconstruction algorithms, unknown implementation details,
and different image quality metrics. Moreover, no widely rec-
ognized criterion has been proposed in previous acceleration
works. Because the overall throughput of the implementation
is critical to meet the timing requirement of the routine appli-
cation of LDCT, we define MUPS as the million updates
of voxels per second to normalize the throughput of an
implementation as

MUPS = N · L
T · 106

(11)

where N is the total number of the X-ray beams of the dataset;
L is the average length of the X-ray beams; and T is the
execution time. The speed-up of one implementation compared
to the baseline is computed by

Speed-up = MUPSi

MUPSb
(12)

where MUPSb is the MUPS of the baseline and MUPSi is
the MUPS of the implementation under comparison. N can
be calculated from the CT geometry. L is an inferred value
from X, Y . If previous works did not reveal the details of their
line integral algorithms, we can only speculate about N and
L. We do not use GFLOPS because it does not focus on the
throughput of CT reconstruction and is affected by different
CT geometries and line integral algorithms.

In Table V, the baseline, PSV-ICD, and PSV-GPU are
all conducted for 2-D CT. 2-D images are too small to
stall the memory accesses and have little impact on memory
performance. The number of X-ray beams in 2-D CT is much
less than that in 3-D CT. Moreover, all three implementations
use simple parallel-beam. Because of the geometric simplic-
ity, the parallel beam induces easy computation of the forward
and backward projections and is memory-friendly because of
the no-intersections of beams from the same view. Although
both PSV-ICD and PSV-GPU have demonstrated excellent
performance, they are impractical because of the simple 2-D
parallel-beam geometry.

cuMBIR [21] is one of the recent works on accelerating CT
reconstruction with GPU. Instead of helical scanning in cur-
rent clinical CT with multirow detectors, they use the circular
trajectory of cone-beam with a flat-panel detector. The circular
geometry is simpler than the helical and induces less compu-
tation of the forward projection. Compared to it, we achieve
11.5× throughput improvement in terms of MUPS.



ZHANG et al.: FPGA ACCELERATION FOR 3-D LOW-DOSE TOMOGRAPHIC RECONSTRUCTION 677

TABLE V
OVERALL COMPARISON OF OUR IMPLEMENTATION AND OTHER WORKS. (MS IS SHORT FOR MUMFORD–SHAH)

TABLE VI
RESOURCE UTILIZATION COMPARISON

FPGA-Choi [31] also accelerates the 3-D LDCT reconstruc-
tion with the FPGA platform. The implementation is a mixed
parallelism of beam-driven and voxel-driven reconstruction.
FPGA-Choi uses the EM algorithm without TV regularization,
which has the same computational cost with our beam-based
optimized algorithm without the MS regularization. When
the MS regularization is applied, it induces more computa-
tion load because of more regularization terms than the TV
regularization. Our algorithm has more workloads than FPGA-
Choi’s even with algorithmic optimization because we use
a more advanced regularization model. Hence, the improve-
ment comes from the architectural optimization majorly. We
achieve a 1.56× throughput compared with FPGA-Choi. We
compare the resource utilization between FPGA-Choi and
our implementation in Table VI. FPGA-Choi uses 4 Virtex-
6 LX760 FPGAs and we use one ZCU102 (XCZU9EG).
From Table VI we can see that FPGA-Choi has used more
BRAM, FF, and LUT resource units than ours. However,
FPGA-Choi uses much fewer DSP slices. In our opinion, it
is because FPGA-Choi has not used regularization terms and
hence involves much less floating-point arithmetic. In terms of
accuracy, we measured SSIM [34], SNR, root-mean-squared
error (RMSE), universal quality index (UQI), and correlation
coefficient (CC). Our method has SSIM = 0.967, SNR = 21.2,
RMSE = 0.02, UQI = 0.963, and CC = 0.997, while FPGA-
Choi has SNR = 27.5, RMSE = 3.97, UQI = 0.975, and
CC = 0.975. Hence, the accuracy of our results is very close
to FPGA-Choi’s for the M.12500 chest scans.

E. Summary

Previously in Sections I and II-B, we have concluded our
threefold contributions. We analyze their effects as follows.

1) Asynchronous Beam-Based Parallelism: Section V-D1
demonstrates that a beam-based asynchronous version
has 2.8× speed-up in execution time than the baseline
version. When the number of cores increases to 16, the
speed-up is 26.7×—remaining 60% efficiency.

2) Pipeline-Friendly Algorithm Optimization: To achieve
the best pipeline performance, we propose a state
machine to remove the data dependency in the origi-
nal algorithm. Afterward, all the parts in a single PE
complete one pixel/voxel per cycle. Besides, we save
the hardware resources, as shown in Table VI.

3) LDCT-Specific Tiling Optimization: We achieve a
106.9× data reuse rate by LDCT-specific tiling
optimization, which means the same reduction rate
of external memory accesses. Compared to memory
optimization implemented in FPGA-Choi [31], our
method is 1.93× better (FPGA-Choi’s data reuse rate is
55.3), because we use a quantitative model to search the
design space and reschedule the X-rays for the sliding
windows (See Section IV-C).

VI. DISCUSSION WITH RELATED WORKS

There have been already many works accelerating the
CT reconstruction. In 1994, the first GPU implementation
used texture mapping hardware to improve the memory
performance [39]. Later, GPU was used to accelerate the for-
ward and backward projections [40]. The MBIR method PSV
(PSV-ICD in Table V) was first implemented in CPU to speed
up the reconstruction using 20 cores combined with divid-
ing an image into several super voxels [36]. PSV-ICD [36] is
a CPU-based parallel structure with supervoxel to improve
the cache performance. However, the parallelism was lim-
ited by the number of CPU cores and not parallel-friendly
main memory. Afterward, a GPU framework (PSV-GPU in
Table V) was reported to speed up the reconstruction by
data layout transformations, which optimized the coalesced
memory access [37]. In order to make full use of GPU
resources, their algorithm exploited three levels of paral-
lelism, included intravoxel parallelism, intra-SV parallelism,
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and inter-SV parallelism. Another recent GPU implementa-
tion is cuMBIR in Table V. It is the GPU implementation
of Algorithm 1 with a conflict-graph solution to reschedule
the X-ray beam execution order and mitigates the memory
collision and noncoalesced memory accesses. Their frame-
work also introduced mixed-precision computing to accelerate
reconstruction. Another GPU solution was to process sets of
independent voxels parallelly without introducing additional
computations [41]. Their algorithm used a multivoxel update
scheme within the ICD framework.

The first wave of the FPGA-based CT accelerators focused
on the forward and backward projection [42], using the ping-
pong buffering technique. Then, FBP was implemented in a
ray-by-ray manner using Impulse C tools [43]. Later, a hybrid
solution, consisting of a CPU, GPU, and FPGA, was proposed
to implement a 3-D image reconstruction with the compres-
sive sensing technique [44]. An FPGA is used to speed up
the major computation kernel—forward and backward projec-
tion, and a GPU is used to accelerate the TV operations. The
EM algorithm was implemented with 4 FPGAs to reconstruct
the 3-D images and they proposed a hybrid driven method
to improve the data locality [31]. They applied the tiling
technique to increase the data reuse rate.

Our framework has several advantages and differences
compared with previous works. First, our framework uses
sophisticate prior models such as the MS regularization for
LDCT. At the same time, previous approaches only focus
on the forward and backward projection or simple regular-
ization methods such as total variation. Second, we propose
a beam-based asynchronous parallel Algorithm 1 to reduce
the overhead of computing the forward and backward pro-
jection and communication latency, and increase parallelism.
Third, our framework is based on a quantitative analysis of the
design space and LDCT-specific tiling optimization to improve
the data reuse rate.

VII. CONCLUSION

In this work, we accelerate the full-IR with the MS func-
tional by FPGA device to reach the required performance
for routine clinical applications of 3-D LDCT. In general,
three major contributions are made to achieve the desired
performance. First, we proposed the asynchronous beam-
based update to exploit the parallelism with reduced latency
and the backward projection computation cost. Second, after
analyzing every step in the streaming dataflow, we find
they have the same linear time complexity because of the
beam-based approach. We apply pipeline-friendly algorithm
optimization to all compute components in the streaming
dataflow to utilize the hardware resources with balanced work-
loads fully. Third, we apply LDCT-specific tiling optimization
to save the memory bandwidth and increase the memory
performance through prefetching and buffering. The experi-
mental results show that our implementation takes 8.5 min to
reconstruct a typical physical phantom with the image qual-
ity comparable with the vendor’s result. We achieve 11.6×
throughput against the state-of-the-art GPU implementation

and 1.56× throughput compared with a state-of-the-art FPGA
implementation.
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