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ABSTRACT
The increasing computational power enables various new ap-
plications that are runtime prohibitive before. FPGA is one of
such computational power with both reconfigurability and
energy efficiency. In this paper, we demonstrate the feasi-
bility of eyeglasses-free displays through FPGA acceleration.
Specifically, we propose several techniques to accelerate the
sparse matrix-vector multiplication and the L-BFGS iterative
optimization algorithm with the consideration of the charac-
teristics of FPGAs. The experimental results show that we
reach a 12.78X overall speedup of the glass-free display ap-
plication.

1. INTRODUCTION
FPGAs have been increasingly popular as accelerators for

large scale compute-intensive applications because of their
inherent parallelism. With massive on-chip logics and flexi-
ble on-chip memories, FPGAs can be expediently customized
as high throughput, low latency computing systems. Nev-
ertheless, the degree of computational parallelism is limited
by either on-chip memory bandwidth or IO rate of external
memory.

Light field, defined as a part of space studied from the
standpoint of transmission of radiant energy within that space
by Gershun [1], can now be recorded, manipulated and dis-
played with the advent of computers, color displays and in-
expensive digital sensors [2]. While an image is a 2D slice of
the 4D light field, computational light field display applica-
tions aim to construct a 4D light field from a set of 2D images
of different angle’s original view, where a significant amount
of raw data is required. On the one hand, the compute-intensive
nature of light field display applications makes them a par-
ticularly good fit for FPGA-based processing. On the other
hand, relevant issues concerning the vast amount of data
should be overcome to enhance the performance of the FPGA-
based application.

We explore light field display application on FPGA. In par-
ticular, we make the following contributions:
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1. We apply ideas of matrix compression and table look-
up to minimize the data volume to transfer.

2. We search for the optimal partitioning factor of array to
increase the concurrency of on-chip BRAM access.

3. We put forward an FPGA-friendly algorithm that effec-
tively reduces both computational load and data trans-
mission of the L-BFGS optimization method.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief introduction of our application and FPGA
acceleration. Section 3 shows the overall structure of the
system. Section 4 and 5 demonstrate our key techniques in
SpMV and L-BFGS in detail. Section 6 shows our experimen-
tal results. Section 7 and 8 are related work and conclusions
sections.

2. BACKGROUND
There are estimates that about 2.5 billion people (one-third

of the world’s population) could be affected by myopia by
the end of this decade [3], and thus, they need eyeglasses
or contact lenses to read or see clearly. Huang and Wet-
zstein [4] have introduced a computational display technol-
ogy that predistorts the presented content for the observer
so that the desired image is perceived without the need for
eyewear. However, the long runtime of solving linear sys-
tems in the eyeglass-free display algorithm acts as a signifi-
cant obstacle to process images at required rate. Therefore,
we focus on the interesting and useful subject of accelerating
the algorithm.

While section 2.1 gives a brief introduction of the algo-
rithm, section 2.2 shows the time profiling. Section 2.3 dis-
cusses the basic idea of FPGA acceleration.

2.1 Light Field Reconstruction Problem
The goal of Huang and Wetzstein’s algorithm is to present

a 4D light field to the observer, such that a desired 2D retinal
projection is perceived. Figure 1 demonstrates the applica-
tion. Formally speaking, given the desired 2D image u 2 RM

and the 2D-to-4D transformation matrix P 2 RM⇥N encod-
ing the projection of the screen-side light onto the retina, the
light field reconstruction problem is to find a proper light
field x 2 RN emitted by the display as follows:

minimize f (x) = ku � Pxk2
subject to 0  x  1 (1)

Here, M is the discretized locations on the retina (M =
128 ⇥ 128 in our program), and N is the number of emitted
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Figure 1: Glass-free Display Application

light rays (N = 700⇥ 700 is applied for iPod Touch 4 accord-
ing to Huang and Wetzstein).

The matrix P is constant under the rule of light field trans-
formation [5], when viewing distance, pupil size, and other
parameters are fixed. Therefore, the process of building the
projection matrix P needs to be done merely once, and can
be considered as pretreatment and input of the algorithm. In
other words, for each input image, the only work of the algo-
rithm is to calculate the light field by Equation 1.

Equation 1 can be solved using standard convex optimiza-
tion algorithms, and we employ the L-BFGS algorithm [6]
here. However, this is still of high calculation strength due to
the high dimensionality of P and u.

2.2 The Algorithm and its Runtime Profiling
As mentioned above, since P can be treated as the input

of the algorithm, we want to focus on the runtime of solving
Equation 1 and other processes that need to be done respec-
tively for each input image.

In a C++ prototype of the reconstruction algorithm1, pro-
cessing a 128⇥ 128 image needs approximately 124.5s, where
L-BFGS accounts for 122.5s, namely 98.4% of runtime. The
high percentage pushes us to concentrate on the acceleration
of the L-BFGS algorithm.

Listing 1 is a rough outline of the L-BFGS algorithm. We
timed respectively for the four primary procedures in L-BFGS
algorithm in line 2-5, and the result is as Figure 2.

Besides, we also timed for the basic matrix-vector oper-
ations. The result is shown in Figure 3, from which we can
see multiplication and inner product operations take up over
70% of runtime.

These profiling results indicate that the matrix-vector mul-
tiplication, the inner product, and the vector addition are
the most time-consuming matrix-vector operations in the L-
BFGS algorithm. They are the focus of acceleration.

1We test it using the same configuration as the baseline de-
scribed in Section 6.1.

Listing 1 L-BFGS Algorithm Outline [7]
Input: starting point x0, integer history size m > 0, k = 0;
Output: the position x with a minimal objective function
1: while not converge do
2: Calculate gradient r f (xk) at position xk;
3: Compute direction pk using two-loop recursion as

Listing 2;
4: Search for step length ak which satisfies Wolfe condi-

tions;
5: Update xk+1 = xk + ak pk, k = k + 1 and other infor-

mation;
6: end while
7: return final x

Calculate gradient

18.83%

Compute direction

37.11%

Search step length

28.87%
Update information

12.28%
The rest

3.91%

Figure 2: Time of Procedures (Totally 123.72s)
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Vec-vec addition

14.93%

Vec-vec inner product

28.38%

Mat-vec multiplication

43.19%
The rest

13.50%

Figure 3: Time of Operations (Totally 122.48s)

2.3 FPGA Acceleration and Challenges
FPGA acceleration is a promising technique to implement

energy-efficient and low-latency computational tasks. Let’s
take the computation of inner product as an instance here.

Ideally, the speed of inner product calculation is limited by
the computational resources, assuming that on-chip memory
is large enough to hold the two operand vectors. Suppose
Fm floating-point multiplications and Fa floating-point addi-
tions are performed per second. For an inner product opera-
tion between two vectors in RN , totally N times multiplica-
tions and N � 1 times additions are needed. Therefore, the
sequential computation time Tcomp = N/Fm + (N � 1)/Fa.
Thanks to the inherent parallelism structure of FPGA, we can
directly implement a parallel design for inner product calcu-
lation. If the design consists of K multipliers and a reduc-
tion tree for summation, the computation time is reduced to
Tcomp = N/(K · Fm) + log2(N � 1)/Fa.

However, the limited on-chip block RAM (BRAM) imposes
a barrier for exposing the peak computational performance
of FPGAs. If memory bandwidth is denoted by B elements
per second, the memory I/O time TI/O = 2N/B. Then the
total time for inner product takes T � max(Tcomp, TI/O). Typ-
ically, TI/O is the bottleneck.

In this paper, we apply the idea of data compression and
data reuse to reduce the requirement of data transfer and im-
prove the performance.

3. OVERALL ACCELERATOR DESIGN
Figure 4 shows the overall structure of our system. The

Flow Controller assembles the modules to form the applica-
tion. The Memory Manager sees to BRAMs management and
off-chip data transfer management. Mul-Add, SpMV, and In-
nerProduct are the processing modules. Whenever the con-
trol flow reaches the three operations, the Memory Manger
is invoked to read required data from external memory and
store them in on-chip BRAMs, after which the corresponding
processing module starts computation. Results are written
back to external memory if necessary.

4. SPARSE MATRIX-VECTOR MULTIPLI-
CATION

In this sparse matrix-vector multiplication section, we pri-
marily focus on the memory issues within the problem, which
significantly affect the performance. Specifically, we reduced
the data transfer time by compressing the sparse matrix size

Figure 4: Overall Structure of Accelerator

(elaborated in section 4.1) and reduced the data access time
by partitioning the vector (elaborated in section 4.2).

We have to emphasize here that our problem is not very
similar to the traditional deconvolution problem, since the
projection matrix (namely the sparse matrix here) is an ana-
log result generated by the simulation of the projection pro-
cess. That is to say, building the matrix involves analog phases,
such as sampling and rounding, which makes the matrix anoma-
lous and so that access pattern of the vector is not affine-
access for the matrix.

4.1 Storage of the Sparse Matrix

4.1.1 Bitwidth Reduction for COO and CRS
Note that the projection matrix P is a large matrix with bil-

lions of elements, but only no more than a million of them are
non-zero. Spontaneously, the matrix should be represented
in a sparse format. And the simplest one, the coordinate list
(COO), is to use a triplet h(r, c), vi to denote each non-zero
element, where r and c are the row index and column index
of an element and v is its corresponding value. Here, r and
c are integers range from 0 to M � 1 and 0 to N � 1, and can
be stored in a dlog2 Me-bit integer and a dlog2 Ne-bit inte-
ger, respectively. v is a floating-point number range from
0-1, and takes up 32-bit width space as a single-precision
floating-point number in IEEE 754. Suppose there are totally
nz non-zero elements in the matrix, the matrix can be stored
in (dlog2 Me+ dlog2 Ne+ 32)nz bits, namely ( 1

8 (dlog2 Me+
dlog2 Ne) + 4)nz bytes space.

If all the non-zero elements in triplet are sorted in a row-
major order and are placed together, we get a nz-row ta-
ble with three columns: row-index column, column-index
column, and value column. Notice that the elements are
sorted in row-major order, which means the elements from
the same row are placed successively, and the duplicate row
indices are redundant. Therefore, we can compress the row-
index column. In this Compress Row Storage (CRS), the row-
index column contains only M elements. The ith element
stores the row index in the table of the first non-zero element
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in the ith row. There are nz non-zero elements so the row
index of an entry is no more than nz � 1, and thus can be
store in dlog2 nze bits. With the column-index column and
value column remained the same, the matrix can be stored
in Mdlog2 nze+ dlog2 Ne+ 32nz bits, namely M

8 dlog2 nze+
( 1

8 dlog2 Ne+ 4)nz bytes.

4.1.2 Compression using Look-up Table of Values
We have different strategies to store and transfer the value

column. As mentioned above, we need nz 32-bit floating-
point numbers to store the values directly, and that counts
for 4nz bytes storage space.

However, in the algorithm, the value is something like light
intensity and is calculated as the number of samples falling
on a discrete screen light field coordinate divided by total
number of samples generated. Given that, since the total
number is fixed, we can only store the number of samples for
each coordinate, and calculates the actual value when neces-
sary. According to the result of building projection matrix,
the max number of samples is less than 600, and can be rep-
resented as a 10-bit integer, so we need only 1.25nz bytes stor-
age space, at the cost of an extra division for each value.

Moreover, we notice that there are only 350 different val-
ues, so the idea of the index table is under consideration here.
We can use a 9-bit number to represent an unsigned integer
less than 512, which means we reduce the storage space to
1.125nz bytes for the values, but have to keep an index table
in memory with a size of about 0.5 Kbytes (350⇥ 10 bits), and
have to look up the index table and calculate for each value.
The compressed row-index column and col-index column re-
main the same as that in section 4.1.1.

4.1.3 Overall Matrix Size Reduction
The effects of different storage methods are summarized

in Table 1. Our CRS+LUT representation achieves a 1.81⇥
reduction in the matrix storage compared to the conventional
CRS, and thus greatly relieve the bandwidth bottleneck of the
sparse matrix-vector multiplication.

Format Space complexity Storage
(bytes) (MB)

flat 4MN 32112.64

COO
1
8 dlog2 Menz+ 6.63

( 1
8 dlog2 Ne+ 4)nz

CRS
M
8 dlog2 nze+ 5.24

( 1
8 dlog2 Ne+ 4)nz

CRS+LUT
M
8 dlog2 nze+ 2.90

( 1
8 dlog2 Ne+ 1.125)nz

Table 1: Storage of the single-precision sparse matrix with
M = 16384 rows, N = 490000 columns, and nz = 816272
non-zero entries in our application. The CRS+LUT format
has an overhead of 437.5 bytes for the look-up table (LUT).

4.2 Partitioning of the Vector
Typically, a block RAM in FPGA provides up to 16Kb stor-

age size (if not using parity bits). In our problem, the vec-
tor consists of 490000 32-bit floating-point numbers, which
takes 980 BRAMs to hold the whole vector. Due to the lim-
ited number of read ports of the BRAMs, the mapping from

an array (e.g., a vector in SpMV) to the BRAMs is important
to fetch enough data in every clock cycle during pipelining.

As we mentioned, the access pattern of the vector is irreg-
ular on the matrix rows, because the matrix simulates some
analog processes. Therefore, conventional methods for sten-
cil computation to partition the vector is no longer feasible.
The good thing is that since the matrix is constant during
computation and thus, the access pattern is statistically an-
alyzable, it is possible to search for an optimal partitioning
factor to reach a maximum access rate of the vector elements.
With the sparse matrix donated as P and the vector donated
as x, we divide the vector into N blocks to minimize the
memory access latency. Formally, we search for such an N
that:

argmin
N

P.rows

Â
r=1

N
max
b=1

accr,b (2)

Here, accr,b = k indicates that when we calculate the inner-
product between the rth row of P and x, there will be k read
transactions for block b. Since different BRAMs can be read
or written in parallel, the number of cycles for each row-
vector multiplication is decided by the block with the most
read transactions, and the equation 2 is rather straightfor-
ward.

We enumerate the factors of |x| as potential partitioning
factors, which is intuitive and avoids small storage fragmen-
tation. We also try both block partition and cyclic partition.
Considering both the search time and the BRAM resource
limitation, we set an upper bound of 1500 for N during the
enumeration. Table 2 shows part of the results. In this case,
980 is a perfect partitioning factor, which not only cause no
conflict in memory access, but also brings about no storage
fragmentation.

Factor N Method Min cyc/r Max cyc/r Total cyc
980 cyclic 1 1 16384
1225 cyclic 1 1 16384
1250 cyclic 1 2 19840
· · · · · · · · · · · · · · ·
1400 block 4 18 188564
1250 block 5 18 193276
· · · · · · · · · · · · · · ·
1 N/A 37 54 816272

Table 2: Partition Results of Various N

5. DECOMPOSED L-BFGS ALGORITHM

5.1 Vector-free L-BFGS
The major component of the overall algorithm is the it-

erative L-BFGS algorithm, where the computation of inner
products consumes most of the time. The computational ker-
nel of the L-BFGS algorithm is a two-loop recursion, as shown
in Listing 2. The direction pk depends on the the current gra-
dient direction r f (xk) and the last m updates si = xi+1 � xi
and yi = r f (xi+1)�r f (xi) for i = k � m, ..., k � 1.

We adopt the vector-free L-BFGS algorithm [7] which can
reduce both the efforts in computation and data transfer. The
key idea is to represent the vector pk as a linear combina-
tion of the precomputed inner products, as shown in fig-
ure 5. Specifically, let bk

j = sk�m�1+j, bk
m+j = yk�m�1+j for
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Listing 2 The original L-BFGS two-loop recursion [7]
Input: r f (xk), si, yi for i = k � m, ..., k � 1
Output: new direction pk
1: pk = �r f (xk)
2: for i = k � 1 to k � m do
3: ai =

si ·pk
si ·yi

4: pk = pk � aiyi
5: end for
6: pk = sk�1·yk�1

yk�1·yk�1
pk

7: for i = k � m to k � 1 do
8: b = yi ·pk

si ·yi

9: pk = pk + (ai � b)si
10: end for

Figure 5: Two-loop recursion in the original L-BFGS (the
left) and the vector-free L-BFGS (the right)

Listing 3 The vector-free L-BFGS two-loop recursion [7]

Input: inner product table Tk[ ][ ] of size (2m + 1)2

Output: coefficients dk
i for i = 1, 2, ..., 2m + 1

1: for i = 1 to 2m + 1 do
2: dk

i = (i < 2m) ? 0 : �1
3: end for
4: for i = k � 1 to k � m do
5: j = i � (k � m) + 1

6: ai =
Â2m+1

l=1 dk
l Tk [l][j]

Tk [j][m+j]
7: dk

m+j = dk
m+j � ai

8: end for
9: for i = 1 to 2m + 1 do

10: dk
i = Tk [m][2m]

Tk [2m][2m]
dk

i
11: end for
12: for i = k � m to k � 1 do
13: j = i � (k � m) + 1

14: b = Â2m+1
l=1 dk

l Tk [m+j][l]
Tk [j][m+j]

15: dk
j = dk

j + (ai � b)

16: end for

j = 1, 2, ..., m, and bk
2m+1 = r f (xk), we can write the direc-

tion pk as Â2m+1
i=1 dk

i bk
i . In this way, we can replace the vector

computations in Listing 2 by the scalar computations in List-
ing 3.

Each time when executing Listing 3, we need a look-up
table for the inner products among r f (xk), si and yi for i =
k � m, ..., k � 1. There are 2m + 1 vectors in total, so the table

size is (2m + 1)2. The entry Tk[i][j] stores the value of the
inner product bk

i · bk
j .

When iterating from k to k + 1, we only need to update the
look-up table by discarding the outdated vectors and insert-
ing new entries. The new entries include the inner products
between r f (xk+1), sk, yk and the remaining vectors. Notic-
ing that sk = xk+1 � xk and yk = r f (xk+1)�r f (xk), there
are many computations that can be shared when computing
the new inner products relating to sk or yk.

5.2 TESC for VL-BFGS
Here we put forward an efficient algorithm to update the

look-up table in VL-BFGS called “Transfer Equation and Shared
Computation” (TESC). Our algorithm is shown in Listing 4,
and it has the minimum inner product computations so that
it highly improves the performance of VL-BFGS.

TESC is based on the following two observations:

1. When entering an iteration, most of the vector entries
are overlapped with the previous ones.

2. When finishing an iteration, r f (xk) is the only vector
that cannot be linearly represented by previous vectors.

From the first observation, we obtain the following trans-
fer equation:

(
bk

i = bk�1
i+1 , for i = 1, . . . , m � 1

bk
m+i = bk�1

m+i+1, for i = 1, . . . , m � 1
(3)

From the second observation, we can conclude that the in-
ner products involving the newly produced vector r f (xk)
are inevitable. In fact, with equation 3, the rest of the look-
up table entries can be calculated from the previous look-up
table and other scalars. For example:

bk
m · bk

m = (ak�1

2m+1

Â
i=1

dk
i bk�1

i ) · bk
m

= ak�1

2m+1

Â
i=1

(dk
i bk�1

i · (ak�1

2m+1

Â
j=1

(dk
j bk�1

j )))

= a2
k�1

2m+1

Â
i=1

2m+1

Â
j=1

(dk
i dk

j bk�1
i · bk�1

j )

= a2
k�1

2m+1

Â
i=1

2m+1

Â
j=1

(dk
i dk

j Tk�1[i][j])

(4)

The expression to calculate bk
m · bk

m above consists of only
scalar operations, so no direct inner product is needed here.
Most of the derivations are evident, so we just omit them
here. Some operations involve the two discarded vectors af-
ter the last iteration, so we just postpone discarding until fin-
ishing updating the look-up table.

Listing 4 shows the outline of TESC.

5.3 Complexity Analysis and Comparison
In TESC, with the history size m and the vector dimension

d, the computational complexity of updating the inner prod-
uct table for each iteration is (2m + 4)d, compared to the ori-
gin 6md in VL-BFGS. Even better, the 2m + 4 inner product
computations involve the same vector, which means we can
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Listing 4 TESC for VL-BFGS

Input: previous look-up table Tk�1[ ][ ], r f (xk), and the rel-
evant scalars and vectors

Output: new look-up table Tk[ ][ ]
1: for i = k � m to k � 1 do
2: compute r f (xk) · si and r f (xk) · yi
3: end for
4: compute r f (xk) ·r f (xk) and r f (xk) ·r f (xk�1)
5: compute r f (xk) · (sk�m�1) and r f (xk) · (yk�m�1)
6: for r = 1 to 2m + 1 do
7: for c = 1 to r do
8: Update Tk[r][c] using Tk�1[ ][ ], the inner product

results above and the relevant scalars
9: end for

10: end for

keep that vector in the BRAM on FPGA during the computa-
tions, and thus reduce the data transfer. We will discuss the
details in the following paragraphs.

Originally, L-BFGS needs 2 · (2m) inner product computa-
tions in its two-loop recursion, and another (2m + 2)d mul-
tiplications to calculate the new direction pk. Therefore, the
total complexity of the origin algorithm is (6m + 2)d multi-
plication for each iteration. Intuitively, (6m + 2)d multiplica-
tions bring about (12m + 4)d data transfer. However, since
some data can be shared between the multiplications due to
the certain calculation pattern here, data transfer can be low-
ered to (8m + 4)d per iteration.

For VL-BFGS, with the consideration of the commutative
law of multiplication since si · yj ⌘ yj · si, each new iteration
only need to calculate 6m new dot products which involve
new sk, yk and gk. The other and the final step is to calcu-
late the new direction p based on dk and the base vectors,
i.e. bk

1, . . ., bk
2m+1. The complexity is another 2md multiplica-

tions, which means the overall complexity of the algorithm
is 8md multiplications. Similarly, the idea of data reuse can
be applied here. For example, when we are calculating inner
products related to new sk, we simply have sk stored in the
block RAM of FPGA and fetch the other party of the product
from on-board memory one by one. Therefore, data transfer
can also be reduced to 8md per iteration.

Things get much more amazing when it comes to VL-BFGS
with TESC. As mentioned above, the computational com-
plexity of updating the inner product table is 2m + 4 inner
products involving the same vector, so data transfer com-
plexity is 2m + 4 here. With the addition of the calculation
for the new direction p, the overall complexity is (4m + 4)d
multiplications with (4m + 4)d data transfer.

Table 3 shows and compares the analysis results.

Multiplication Data transfer
L-BFGS (6m + 2)d (8m + 4)d
VL-BFGS 8md 8md
VL-BFGS with TESC (4m + 4)d (4m + 4)d

Table 3: Complexity Analysis and Comparison

6. EXPERIMENTAL EVALUATIONS

6.1 Experimental Setup
We tested our optimizations on VC707 evaluation board

featuring the Virtex-7 XC7VX485T-2FFG1761C FPGA. Designs
are implemented as IP cores with Vivado High-Level Synthe-
sis v2015.2 and synthesized and place-and-route by Vivado
v2015.2.

The Huang and Wetzstein’s original algorithm was imple-
mented in MATLAB. And we convert the original implemen-
tation into C++ as the baseline for the following compar-
isons. The baseline uses Eigen (a C++ template library for
linear algebra) and CppNumericalSolvers (an L-BFGS imple-
mentation in C++11 based on Eigen) for the matrix-vector
manipulation and optimization. We tested on a server with
a 20-core Intel Xeon CPU E5-2630 v3 @ 2.30GHz and 64GB
main memory, hereinafter inclusive.

6.2 Analysis of the SpMV Optimization
In section 4.1, we introduced the idea of matrix compres-

sion using bitwidth reduction and look-up table, which achieves
a 2.28X reduction in storage compared with the conventional
CRS representation. Naturally, it saves 56.1% data transfer
time of the sparse matrix, and that is 43.0% of IO for each
SpMV execution.

In section 4.2, we partitioned the vector with the optimal
factor to achieve the maximum on-chip memory bandwidth.
Besides, we also notice that there are approximately fifty to
sixty non-zero elements in a sparse matrix row, and none of
them holds more than 64 non-zeros. To simplify our design,
we propagate a constant of 64 elements down the processing
unit chain and the reduction tree each trip, and the accesses
of corresponding vector elements cause no conflict because
of the array partition.

To take full advantage of previous ideas, we first rewrite
the original MATLAB-style SpMV operation (which looks like
a dense matrix-matrix multiplication) as an FPGA-friendly
one (which uses CRS and LUT as mentioned) in C++. The
change greatly reduces the runtime of the CPU version ap-
plication from over two minutes to 65.49 seconds.

We employ ping-pong buffer in our FPGA design, and the
performance is entirely limited by the external memory band-
width in this situation. Runtime comparison and source uti-
lization are listed in section 6.4.

6.3 Analysis of the L-BFGS Enhancement
By adopting vector-free L-BFGS, as shown in Listing 3,

inter-data dependencies between iterations are removed in
the two-loop recursions of L-BFGS. Not only can we divide
the operand vectors into blocks for parallel computing, but
we may parallelize different inner-product operations. The
greater granularity of parallelism is also applicable to FPGA
clusters or distributed systems.

Listing 4 shows our TESC algorithm that updates the look-
up table in VL-FBGS efficiently using transfer equation and
shared computation. With TESC, the runtime of the CPU ver-
sion decreases to around 47.47 seconds.

Before we load certain computations onto FPGA, we tested
different history size m (see Listing 1), and we take m = 3 as
the history size hyperparameter, which guarantees conver-
gence and lowers calculation cost. In this case, the runtime is
reduced to 25.26 seconds.
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6.4 FPGA Speedup of each Component
With the consideration of the nature of the algorithm and

the optimizations, we conclude three most basic operations
in VL-BFGS with TESC:

1. Sparse matrix-vector multiplication (SpMV)
(vectorres = SpM ⇤ vector)

2. Inner product of vectors (InnProd)
(scalarres = vector1 · vector2)

3. Scalar multiplication and vector addition (Mul-Add)
(vectorres = scalar · vector1 + vector2)

It is reasonable to compare the runtime between FPGA im-
plementation and multi-threading implementation of each
operation. We use OpenMP to implement the multi-threading
version from the C++ code, where Eigen is adopted as the
linear algebra library, as mentioned above.

According to the analysis of VL-BFGS with TESC in sec-
tion 5.3, there are 2m + 4 consecutive inner products in the
updating phase and 2m multiple-additions in the phase of
calculating new direction p. Therefore, we test the two oper-
ations in loops that repeat them for corresponding times and
add OpenMP directives to the loops. The SpMV operation
will not be tested with repetitive computation, and we add
the OpenMP directives to the for loops inside the operation.

Table 4 shows the runtime comparison of each component,
while figure 6 illustrates the speedup comparison. Table 5
shows the resource utilizations of each component and the
summation on FPGA.

SpMV InnProd Mul-Add
FPGA 0.0085s⇤ 0.0237s 0.0635s
1-thread 0.0312s 0.1247s 0.1920s
2-threads 0.0204s 0.1120s 0.1437s
4-threads 0.0121s 0.0741s 0.1091s
* estimated

Table 4: Runtime Comparison of each Component

LUT FF BRAM DSP
SpMV 8290 6038 1058 10
InnProd 21722 26372 39 0
Mul-Add 27834 40959 169 0
Total 57846 73369 1266 10
Available 303600 607200 2060 2800
Utilization(%) 19 12 61 ⇠0

Table 5: Resource Utilizations of each Component

6.5 The Overall Speedup and Discussions
Finally, we can obtain the overall speedup. The FPGA ver-

sion takes totally 9.74 seconds to accomplish, which reaches a
12.78⇥ speedup compared with the baseline. 3.64⇥ speedup
is closely FPGA-related, including L-BFGS enhancement and
FPGA acceleration of some operations. L-BFGS enhancement
contributes 1.38⇥ to the speedup directly and more impor-
tantly, it enables the employment of FPGA. Yet our system
didn’t fully utilize the external memory bandwidth. Cur-
rently, the peak memory bandwidth in our experiment is less
than 800MB/s. Therefore, there is still considerable room for
performance improvement.
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Figure 6: Speedup Comparison

7. RELATED WORK
Though our FPGA acceleration of the light field reconstruc-

tion problem is quite different from the previous problems,
some challenges are solved by our novel techniques, which
are partly inspired by the following works.

SpMV on FPGA The sparse matrix-vector multiplication
is one of the most important kernels in scientific comput-
ing. P. Grigoras and et al. [8] have used the Bounded CSRVI
Format to compress the sparse matrix values on CPU and
decompress in runtime. Y. Umuroglu and M. Jahre [9] [10]
have described a scalable backend architecture that exploits
column-major traversal and interleaving to achieve high band-
width utilization. They have also proposed a hardware-software
caching scheme that exploits preprocessing to enable perfor-
mant and area-effective SpMV acceleration. S. Guo and et
al. [11] have presented a deeply-pipelined SpMV accelerator
by exploiting a hardware-friendly storage scheme.

Memory Partition Memory partitioning can efficiently map
data elements in the same logical array onto multiple phys-
ical banks so that the accesses to the array are parallelized.
Y. Wang and et al. [12] have proposed a generalized memory-
partitioning framework using a polyhedral model. J. Cong
and et al. [13] have presented an automatic memory parti-
tioning technique which can efficiently improve throughput
and reduce the energy consumption of pipelined loop ker-
nels for given throughput constraints and platform require-
ments.

System Optimization It is always important to balance the
resource usage of different processing modules to reach bet-
ter performance. P. Li and et al. [14] have developed an algo-
rithm to determine the optimal resource usage and initiation
intervals for each loop in the applications to achieve maxi-
mum throughput within a given area budget.

8. CONCLUSIONS AND FUTURE WORK
In our experiment, we achieve a 12.78X speedup for the

light field reconstruction application using FPGA. On-chip
memory bandwidth and IO rate turn out to be the greatest
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limitation for FPGA performance, so we compress the ma-
trix and partition the vector in SpMV operations to get better
properties. Besides, we come up with a novel and efficient
algorithm to update the look-up table in the vector-free L-
BFGS.

In the future, we would like to explore real-time light field
reconstruction technique with a more customized system. Be-
sides, the system should apply to various viewing distance
with eyeball tracking feature, which bound to be attractive
and practical.
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